Sustainable Sound Absorbers to Improve Acoustical Comfort in Atria: A Methodological Approach
Abstract
:1. Introduction
2. Acoustic Comfort in Large Spaces
3. Textile Material
3.1. Overview of General Properties and Manufacturing Process
3.2. Acoustic Measurements
4. Case Study
4.1. Architectural Features
4.2. Acoustic Measurements
5. Acoustic Modelling
5.1. Implementation and Calibration of the Model
5.2. Acoustic Treatment Design
6. Results
7. Conclusions
- T20 was lower than 1.49 s at each octave band frequency from 125 Hz to 4 kHz, with a significant reduction compared to the values observed before treatment which reached about 2.5 s at 500 Hz and 1 kHz;
- the sound pressure level value was reduced by 3 dB (Lb,A equal to 59.2 dB compared to 62.3 dB), with a consequent decrease in the background noise level due to speech;
- as a consequence of the “Lombard effect”, a reduction in the background noise level also reduced the sound power level of the speakers by 2 dB (Lp,A,1m equal to 62.3 dB compared to 60 dB). A spectrum very close to the normal voice level was obtained, assuming the reduction to be evenly distributed among frequencies;
- taking into account the “Lombard effect”, the overall expected reduction in the sound pressure level was 5 dB, with an Lb,A equal to 57.2 dB.
- the perceived clarity of sound and the speech intelligibility in the atrium were found to be significantly improved as proven by the increased values of Clarity and Speech Transmission Index.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aly, N.M.; Seddeq, H.S.; Elnagar, K.; Hamouda, T. Acoustic and thermal performance of sustainable fiber reinforced thermoplastic composite panels for insulation in buildings. J. Build. Eng. 2021, 40, 102747. [Google Scholar] [CrossRef]
- Tóthová, D.; Heglasová, M. Measuring the environmental sustainability of 2030 Agenda implementation in EU countries: How do different assessment methods affect results? J. Environ. Manag. 2022, 322, 116152. [Google Scholar] [CrossRef]
- Nering, K.; Kowalska-Koczwara, A.; Shymanska, A.; Pawluś, M. The possibility of providing acoustic comfort in hotel rooms as an element of sustainable development. Sustainability 2022, 14, 13692. [Google Scholar] [CrossRef]
- Puglisi, G.E.; Warzybok, A.; Astolfi, A.; Kollmeier, B. Effect of reverberation and noise type on speech intelligibility in real complex acoustic scenarios. Build. Environ. 2021, 204, 108137. [Google Scholar] [CrossRef]
- Kang, S.; Mak, C.M.; Ou, D.; Zhang, Y.; Mak, C.M.; Ou, D.; Zhang, Y. The effect of room acoustic quality levels on work performance and perceptions in open-plan offices: A laboratory study. Appl. Acoust. 2022, 201, 109096. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, P.-J.; Lee, B.K.; Roskams, M.; Haynes, B.P. Associations between job satisfaction, job characteristics, and acoustic environment in open-plan offices. Appl. Acoust. 2022, 201, 109096. [Google Scholar] [CrossRef]
- Ricciardi, P.; Buratti, C. Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Build. Environ. 2018, 127, 27–36. [Google Scholar] [CrossRef]
- Simone, S.; Astolfi, A.; Calosso, G.; Casini, D.; Cellai, G.; Scamoni, F.; Scrosati, C.; Shtrepi, L. Effect of outdoor noise and façade sound insulation on indoor acoustic environment of Italian schools. Appl. Acoust. 2017, 126, 120–130. [Google Scholar]
- UNI 11532-2; Internal Acoustical Characteristics of Confined Spaces—Design Methods and Evaluation Techniques—Part 2: Educational Sector. UNI: Milan, Italy, 2020.
- Chen, X.; Kang, J. Acoustic comfort in large dining spaces. Appl. Acoust. 2017, 115, 166–172. [Google Scholar] [CrossRef]
- Rychtáriková, M.; Chmelík, V.; Urbán, D.; Vargová, A. Acoustic conditions in the atrium of Slovak philharmonic. Procedia Eng. 2016, 155, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, A.; Lechleitner, J.; Pak, J. Measurements and predictions of room acoustics in atria. J. Build. Perform. Simul. 2008, 1, 67–74. [Google Scholar] [CrossRef]
- Mei, H.; Kang, J. An experimental study of the sound field in a large atrium. Build. Environ. 2012, 58, 91–102. [Google Scholar] [CrossRef]
- Fratoni, G. The sound of a monumental architecture. Can. Acoust.-Acoust. Can. 2020, 48, 5–13. [Google Scholar]
- Rindel, J.H. Verbal communication and noise in eating establishments. Appl. Acoust. 2010, 71, 1156–1161. [Google Scholar] [CrossRef]
- Urbán, D.; Zrneková, J.; Zat’ko, P.; Maywald, C.; Rychtáriková, M. Acoustic comfort in atria covered by novel structural skins. Procedia Eng. 2016, 155, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Eldakdoky, S. Optimizing acoustic conditions for two lecture rooms in Faculty of Agriculture, Cairo University. Ain Shams Eng. J. 2017, 8, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Rubino, C.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. Characterization of sustainable building materials obtained from textile waste: From laboratory prototypes to real-world manufacturing processes. J. Clean. Prod. 2023, 390, 136098. [Google Scholar] [CrossRef]
- Martellotta, F.; Rubino, C.; Liuzzi, S. Sound absorption of hung elements: Comparing measurements in a reverberant chamber. In Proceedings of the 24th International Congress on Acoustics, Gyeongju, Republic of Korea, 24–28 October 2022. [Google Scholar]
- Bengt-Inge Dalenbäck (Ph.D.). CATT-Acoustic Software; v. 9.1g. Bengt-Inge Dalenbäck: Gothenburg, Sweden, 2022. Available online: www.catt.se (accessed on 26 January 2023).
- Ganesh, G.A.; Sinha, S.L.; Verma, T.N.; Dewangan, S.K. Investigation of indoor environment quality and factors affecting human comfort: A critical review. Build. Environ. 2021, 204, 108146. [Google Scholar] [CrossRef]
- Meng, Q.; Kang, J.; Jin, H. Field study on the influence of user’s social qualities on the evaluation of subjective loudness and acoustic comfort in underground shopping streets. Appl. Acoust. 2010, 29, 371–381. [Google Scholar]
- Yang, W.; Kang, J. Acoustic comfort evaluation in urban open public spaces. Appl. Acoust. 2015, 66, 211–229. [Google Scholar] [CrossRef]
- Vigran, T.E. Room Acoustic. In Building Acoustics, 1st ed.; Taylor & Francis: New York, NY, USA; London, UK, 2008; pp. 103–151. [Google Scholar]
- Hopkins, C. Sound fields. In Sound Insulation, 1st ed.; Butterworth-Heinemann: London, UK, 2007; pp. 1–110. [Google Scholar]
- Scoczynski Ribeiro, R.; Amlani, A.M.; de Conto, J.; Schwerz, B.G.; Deniz Amarilla, R.S.; Sant’Ana, L.H.; Avelar, M.; Catai, R.E.; Matoski, A. Acoustical treatment characterization of a classroom with wood-based composites. Appl. Acoust. 2021, 178, 107967. [Google Scholar] [CrossRef]
- Braat-Eggen, E.; Poll, M.K.V.D.; Hornikx, M.; Kohlrausch, A. Auditory distraction in open-plan study environments: Effects of background speech and reverberation time on a collaboration task. Appl. Acoust. 2019, 154, 148–160. [Google Scholar] [CrossRef]
- ISO 9921; Ergonomics—Assessment of Speech Communication. ISO: Geneva, Switzerland, 2004. Available online: http://store.uni.com/catalogo/uni-en-iso-9921-2004 (accessed on 15 October 2022).
- Lazarus, H. Prediction of Verbal Communication in Noise—A Review: Part 1. Appl. Acoust. 1986, 19, 439–464. [Google Scholar] [CrossRef]
- Rindel, J.H. Acoustical capacity as a means of noise control in eating establishments. In Proceedings of the Joint Baltic Nordic Acoustic Meeting 2012, Odense, Denmark, 18–20 June 2012. [Google Scholar]
- Webster, J.C.; Klumpp, R.G. Effects of ambient noise and nearby talkers on a face-to-face communication task. J. Acoust. Soc. Am. 1962, 34, 936–941. [Google Scholar] [CrossRef]
- Gardner, M.B. Factors Affecting Individual and Group Levels in Verbal Communication. J. Audio Eng. Soc. 1971, 19, 560–569. [Google Scholar]
- Rubino, C.; Bonet Aracil, M.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. Wool waste used as sustainable nonwoven for building applications. J. Clean. Prod. 2021, 278, 123905. [Google Scholar] [CrossRef]
- Ingard, U.K.; Dear, T.A. Measurement of acoustic flow resistance. J. Sound Vib. 1985, 103, 567–572. [Google Scholar] [CrossRef]
- ISO 354; Acoustics—Measurement of Sound Absorption in a Reverberation Room. ISO: Geneva, Switzerland, 2003.
- Alonso, A.; Martellotta, F. Room acoustic modeling of textile materials hung freely in space: From the reverberation chamber to ancient churches. J. Build. Perform. Simul. 2016, 9, 469–486. [Google Scholar] [CrossRef]
- Sakagami, K.; Okuzono, T.; Somatomo, Y.; Funahashi, K.; Toyoda, M. A Basic Study on a Rectangular Plane Space Sound Absorber Using Permeable Membranes. Sustainability 2019, 11, 2185. [Google Scholar] [CrossRef] [Green Version]
- ISO 3382-2; Acoustics—Measurement of Room Acoustic Parameters—Part 2: Reverberation Time in Ordinary Rooms. ISO: Geneva, Switzerland, 2008.
- ISO 9613-1; Acoustics—Attenuation of Sound during Propagation Outdoors—Part 1: Calculation of the Absorption of Sound by the Atmosphere. ISO: Geneva, Switzerland, 1993.
- Cox, T.J.; D’Antonio, P.K. Acoustic Absorbers and Diffusers, Theory, Design and Application; Spon Press: London, UK, 2004; pp. 141–145. [Google Scholar]
- Postma, B.N.J.; Katz, B.F.G. Perceptive and objective evaluation of calibrated room acoustic simulation auralizations. J. Acoust. Soc. Am. 2016, 140, 4326. [Google Scholar] [CrossRef] [PubMed]
- ISO 3382-1; Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces. ISO: Geneva, Switzerland, 2008.
- Poncetti, N.F.; Soares, P.F. An analytical model for calculating the minimum space between restaurant tables in order to attenuate the Lombard effect. Appl. Acoust. 2022, 194, 108771. [Google Scholar] [CrossRef]
- Bottalico, P. Lombard effect, ambient noise, and willingness to spend time and money in a restaurant. J. Acoust. Soc. Am. 2018, 144, EL209–EL214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Orazio, D.; De Salvio, D.; Anderlucci, L.; Garai, M. Measuring the speech level and the student activity in lecture halls: Visual-vs blind-segmentation methods. Appl. Acoust. 2020, 169, 107448. [Google Scholar] [CrossRef]
- IEC 60268-16; Sound System Equipment—Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index. IEC: Geneva, Switzerland, 2020.
Specimen Area cm2 | Thickness cm | Density kg/m3 | Porosity - | Air Flow Resistivity kN·s/m4 |
---|---|---|---|---|
60 × 120 | 4 | 68 | 0.92 | 17.4 |
125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz | |
---|---|---|---|---|---|---|
Measured values (s) | 1.87 | 2.13 | 2.42 | 2.35 | 2.11 | 1.82 |
Predicted values (s) | 1.93 | 2.08 | 2.40 | 2.34 | 2.13 | 1.83 |
Percentage difference (%) | 3.6 | −2.1 | −0.5 | −0.6 | 0.6 | 0.6 |
Materials | Surface % | Absorption and Scattering Coefficients | ||||||
---|---|---|---|---|---|---|---|---|
125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz | |||
Rough plaster | 18.9 | α | 0.03 | 0.03 | 0.03 | 0.06 | 0.08 | 0.09 |
s | - | - | - | - | - | - | ||
Floor | 13.3 | α | 0.03 | 0.03 | 0.03 | 0.04 | 0.06 | 0.09 |
s | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | ||
Aluminium cladding | 8.4 | α | 0.20 | 0.35 | 0.13 | 0.10 | 0.10 | 0.10 |
s | 0.15 | 0.20 | 0.25 | 0.30 | 0.40 | 0.40 | ||
Glass | 11 | α | 0.20 | 0.15 | 0.10 | 0.10 | 0.08 | 0.05 |
s | * | * | * | * | * | * | ||
Marble | 1.5 | α | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 |
s | - | - | - | - | - | - | ||
Plexiglas ceiling | 18.4 | α | 0.25 | 0.15 | 0.08 | 0.08 | 0.04 | 0.02 |
s | 0.20 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | ||
Unoccupied table | 0.85 | α | 0.20 | 0.20 | 0.10 | 0.10 | 0.05 | 0.05 |
s | * | * | * | * | * | * | ||
Occupied table | 0.85 | α | 0.28 | 0.32 | 0.32 | 0.52 | 0.59 | 0.68 |
s | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | ||
Absorbing panels | 9.4 | α | 0.14 | 0.37 | 0.82 | 0.95 | 0.99 | 0.99 |
s | - | - | - | - | - | - | ||
Absorbing panels as baffles | 17.3 | α | 0.08 | 0.29 | 0.50 | 0.82 | 0.89 | 0.86 |
s | - | - | - | - | - | - |
Clarity C50 (dB) | Centre Time (ms) | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | |
Measured values | −0.2 | −1.5 | −2.8 | 146.6 | 134.7 | 168.6 |
Predicted values | −2.0 | 0.1 | −3.0 | 160.2 | 141.2 | 168.4 |
JND variation 1 | −1.8 | 1.4 | −0.1 | 1.4 | 0.7 | 0.0 |
125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz | |
---|---|---|---|---|---|---|
Measured values (dB) | 57.6 | 59.2 | 61.1 | 57.9 | 53.6 | 46.6 |
Predicted values (dB) | 57.6 | 59.3 | 61.1 | 57.9 | 53.5 | 46.6 |
Difference (dB) | 0.0 | 0.0 | −0.1 | 0.0 | 0.1 | −0.1 |
Clarity C50 (dB) | Speech Transmission Index STI (−) | |||||
---|---|---|---|---|---|---|
S1-R1 | S2-R2 | S3-R3 | S1-R1 | S2-R2 | S3-R3 | |
Before treatment | 7.10 | 5.00 | 6.00 | 0.45 | 0.40 | 0.43 |
After treatment | 18.90 | 17.20 | 18.95 | 0.60 | 0.57 | 0.61 |
Variation | 11.80 | 12.20 | 12.95 | 0.15 | 0.17 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubino, C.; Liuzzi, S.; Martellotta, F. Sustainable Sound Absorbers to Improve Acoustical Comfort in Atria: A Methodological Approach. Acoustics 2023, 5, 280-298. https://doi.org/10.3390/acoustics5010017
Rubino C, Liuzzi S, Martellotta F. Sustainable Sound Absorbers to Improve Acoustical Comfort in Atria: A Methodological Approach. Acoustics. 2023; 5(1):280-298. https://doi.org/10.3390/acoustics5010017
Chicago/Turabian StyleRubino, Chiara, Stefania Liuzzi, and Francesco Martellotta. 2023. "Sustainable Sound Absorbers to Improve Acoustical Comfort in Atria: A Methodological Approach" Acoustics 5, no. 1: 280-298. https://doi.org/10.3390/acoustics5010017
APA StyleRubino, C., Liuzzi, S., & Martellotta, F. (2023). Sustainable Sound Absorbers to Improve Acoustical Comfort in Atria: A Methodological Approach. Acoustics, 5(1), 280-298. https://doi.org/10.3390/acoustics5010017