# Efficient Modelling of Acoustic Metamaterials for the Performance Enhancement of an Automotive Silencer

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Modular Silencer Design

## 3. Analytical Model

**M**is diagonal with elements $m\{1/2,1,1,\dots \}$,

**C**which is frequency dependent is also diagonal with elements $\{{\eta}^{\prime},\eta ,\eta ,\dots \}$ and the stiffness matrix $\mathbf{K}$ is tri-diagonal of the form

## 4. Performance Validation

## 5. Silencer Model

## 6. Experimental Silencer Performance

## 7. Conclusions

## Author Contributions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Lee, H.J.; Park, Y.C.; Lee, C.; Youn, D.H. Fast active noise control algorithm for car exhaust noise control. Electron. Lett.
**2000**, 36, 1250–1251. [Google Scholar] [CrossRef] - Rahman, M.; Sharmin, T.; Hassan, A.; Al Nur, M. Design and construction of a muffler for engine exhaust noise reduction. In Proceedings of the International Conference on Mechanical Engineering, Dhaka, Bangladesh, 28–30 December 2005; Volume 28. [Google Scholar]
- Mohamad, B. A review of flow acoustic effects on a commercial automotive exhaust system-methods and materials. J. Mech. Energy Eng.
**2019**, 3, 149–156. [Google Scholar] [CrossRef] [Green Version] - WHO Regional Office for Europe. Environmental Noise Guidelines for the European Region; WHO Regional Office for Europe: Copenhagen, Denmark, 2018. [Google Scholar]
- Zion Market Research, Global Automobile Muffler Market Will Reach USD 6.41 Billion by 2022. Zion Market Research. 2017. Available online: https://www.zionmarketresearch.com/report/automobile-muffler-market (accessed on 25 February 2022).
- Vasco, J.C. Chapter 16—Additive manufacturing for the automotive industry. In Additive Manufacturing; Pou, J., Riveiro, A., Davim, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 505–530. [Google Scholar]
- Santoliquido, O.; Bianchi, G.; Dimopoulos Eggenschwiler, P.; Ortona, A. Additive manufacturing of periodic ceramic substrates for automotive catalyst supports. Int. J. Appl. Ceram. Technol.
**2017**, 14, 1164–1173. [Google Scholar] [CrossRef] - Patalas-Maliszewska, J.; Topczak, M.; Kłos, S. The Level of the Additive Manufacturing Technology Use in Polish Metal and Automotive Manufacturing Enterprises. Appl. Sci.
**2020**, 10, 735. [Google Scholar] [CrossRef] [Green Version] - Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous materials for sound absorption. Compos. Commun.
**2018**, 10, 25–35. [Google Scholar] [CrossRef] - Potente, D. General design principles for an automotive muffler. In Proceedings of the ACOUSTICS, Busselton, Australia, 9–11 November 2005; pp. 153–158. [Google Scholar]
- Bhattu, A.; Sahasrabudhe, A. Acoustic Performance of Reactive Central Inlet and Side Outlet Muffler by Analytical Approach. Int. J. Eng. Innov. Technol.
**2012**, 2, 44–49. [Google Scholar] - Rice, H.; Kennedy, J.; Göransson, P.; Dowling, L.; Trimble, D. Design of a Kelvin cell acoustic metamaterial. J. Sound Vib.
**2020**, 472, 115167. [Google Scholar] [CrossRef] - Opiela, K.; Rak, M.; Zielinski, T. A concept demonstrator of adaptive sound absorber/insulator involving microstructure-based modelling and 3Dprinting. In Proceedings of the ISMA 2018 Including USD 2018, Leuven, Belgium, 17–19 September 2018. [Google Scholar]
- Kennedy, J.; Flanagan, L.; Dowling, L.; Bennett, G.; Rice, H.; Trimble, D. The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial. Int. J. Polym. Sci.
**2019**, 2019. [Google Scholar] [CrossRef] [Green Version] - Flanagan, L.; Heaphy, D.; Kennedy, J.; Leiba, R.; Rice, H. Development of acoustic “meta-liners” providing sub-wavelength absorption. Int. J. Aeroacoustics
**2020**, 19, 310–323. [Google Scholar] [CrossRef] - Li, K.; Nennig, B.; Perrey-Debain, E.; Dauchez, N. Poroelastic lamellar metamaterial for sound attenuation in a rectangular duct. Appl. Acoust.
**2021**, 176, 107862. [Google Scholar] [CrossRef] - Kheybari, M.; Ebrahimi-Nejad, S. Locally resonant stop band acoustic metamaterial muffler with tuned resonance frequency range. Mater. Res. Express
**2018**, 6, 025802. [Google Scholar] [CrossRef] - Kheybari, M.; Ebrahimi-Nejad, S. Dual-target-frequency-range stop-band acoustic metamaterial muffler: Acoustic and CFD approach. Eng. Res. Express
**2021**, 3, 035027. [Google Scholar] [CrossRef] - An, B.; Lee, J. Design of a metamaterial-based muffler for a target frequency range. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Reston, VA, USA, 2021; Volume 263, pp. 3607–3614. [Google Scholar]
- Multiphysics, C. Acoustics Module User’s Guide Version 5.3. User’s Manual. 2017. Available online: https://doc.comsol.com/5.3/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf (accessed on 24 February 2022).
- Hua, X.; Herrin, D. Practical considerations when using the two-load method to determine the transmission loss of mufflers and silencers. SAE Int. J. Passeng. Cars-Mech. Syst.
**2013**, 6, 1094–1101. [Google Scholar] [CrossRef] - Seybert, A.F.; Ross, D.F. Experimental determination of acoustic properties using a two-microphone random-excitation technique. J. Acoust. Soc. Am.
**1977**, 61, 1362–1370. [Google Scholar] [CrossRef] [Green Version] - Henríquez, V.C.; Andersen, P.R.; Jensen, J.S.; Juhl, P.M.; Sánchez-Dehesa, J. A numerical model of an acoustic metamaterial using the boundary element method including viscous and thermal losses. J. Comput. Acoust.
**2017**, 25, 1750006. [Google Scholar] [CrossRef] [Green Version] - Andersen, K. Analyzing muffler performance using the transfer matrix method. In Proceedings of the Comsol Conference, Hannover, Germany, 5 November 2008. [Google Scholar]
- Amuaku, R.; Asante, E.A.; Edward, A.; Gyamfi, G.B. Effects of Chamber Perforations, Inlet and Outlet Pipe Diameter Variations on Transmission Loss Characteristics of a Muffler Using Comsol Multiphysics. Adv. Appl. Sci.
**2019**, 4, 104. [Google Scholar] [CrossRef] - Seybert, A. Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts. J. Acoust. Soc. Am.
**1988**, 83, 2233–2239. [Google Scholar] [CrossRef] [Green Version] - Munjal, M.L. Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- ASTM E2611-19; Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method. ASTM Headquarters: West Conshohocken, PA, USA, 2019.
- ISO 10534-2:199; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. International Organization for Standardization: Geneva, Switzerland, 1998.
- Nouri, A.; Astaraki, S. Optimization of sound transmission loss through a thin functionally graded material cylindrical shell. Shock Vib.
**2014**, 2014, 814682. [Google Scholar] [CrossRef] - Åkerlund, E.; Löfstedt, P.; Landström, U.; Kjellberg, A. Low frequency noise and annoyance in working environments. J. Low Freq. Noise Vib. Act. Control
**1990**, 9, 61–65. [Google Scholar] [CrossRef] - Selamet, A.; Denia, F.; Besa, A. Acoustic behavior of circular dual-chamber mufflers. J. Sound Vib.
**2003**, 265, 967–985. [Google Scholar] [CrossRef] - Fan, W.; Guo, L.X. An investigation of acoustic attenuation performance of silencers with mean flow based on three-dimensional numerical simulation. Shock Vib.
**2016**, 2016, 6797593. [Google Scholar] [CrossRef] [Green Version] - Åbom, M. Derivation of four-pole parameters including higher order mode effects for expansion chamber mufflers with extended inlet and outlet. J. Sound Vib.
**1990**, 137, 403–418. [Google Scholar] [CrossRef] - Zieliński, T.G.; Opiela, K.C.; Pawłowski, P.; Dauchez, N.; Boutin, T.; Kennedy, J.; Trimble, D.; Rice, H.; Van Damme, B.; Hannema, G.; et al. Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study. Addit. Manuf.
**2020**, 36, 101564. [Google Scholar] [CrossRef] - Dowling, A.; Ffowcs-Williams, J.E. Sound and Sources of Sound; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Allard, J.; Atalla, N. Propagation of Sound in Porous Media; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Song, S.Y.; Yang, X.H.; Xin, F.X.; Ren, S.W.; Lu, T.J. Modeling of roughness effects on acoustic properties of micro-slits. J. Phys. D Appl. Phys.
**2017**, 50, 235303. [Google Scholar] [CrossRef] - Papadakis, N.M.; Stavroulakis, G.E. Effect of Mesh Size for Modeling Impulse Responses of Acoustic Spaces via Finite Element Method in the Time Domain. In Proceedings of the Euronoise, Hersonissos, Greece, 27–31 May 2018. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Deery, D.; Flanagan, L.; O’Brien, G.; Rice, H.J.; Kennedy, J.
Efficient Modelling of Acoustic Metamaterials for the Performance Enhancement of an Automotive Silencer. *Acoustics* **2022**, *4*, 329-344.
https://doi.org/10.3390/acoustics4020020

**AMA Style**

Deery D, Flanagan L, O’Brien G, Rice HJ, Kennedy J.
Efficient Modelling of Acoustic Metamaterials for the Performance Enhancement of an Automotive Silencer. *Acoustics*. 2022; 4(2):329-344.
https://doi.org/10.3390/acoustics4020020

**Chicago/Turabian Style**

Deery, Daniel, Lara Flanagan, Gordon O’Brien, Henry J. Rice, and John Kennedy.
2022. "Efficient Modelling of Acoustic Metamaterials for the Performance Enhancement of an Automotive Silencer" *Acoustics* 4, no. 2: 329-344.
https://doi.org/10.3390/acoustics4020020