Perspectives on the Sonic Environment and Noise Mitigations during the COVID-19 Pandemic Era
Abstract
:1. Introduction
2. Impact on the Acoustic Environment during the COVID-19 Lockdown
3. Noise Complaints and Legislation on Noise Control
4. Key Acoustic Solutions
4.1. Construction Noise Mitigations
4.2. Need for Noise Barriers with Antimicrobial Characteristics
4.3. Noise Mitigation While Maintaining Natural Ventilation
5. Future Perspective
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gandhiok, J.; Ibrar, M. Covid-19: Noise Pollution Falls as Lockdown Rings in Sound of Silence | India News—Times of India. Available online: https://timesofindia.indiatimes.com/india/covid-19-noise-pollution-falls-as-lockdown-rings-in-sound-of-silence/articleshow/75309318.cms (accessed on 14 June 2021).
- Comprehensive Assessment of COVID-19′s Impact on European Air Traffic. Available online: https://www.eurocontrol.int/publication/eurocontrol-comprehensive-assessment-covid-19s-impact-european-air-traffic (accessed on 15 June 2021).
- Ulloa, J.S.; Hernández-Palma, A.; Acevedo-Charry, O.; Gómez-Valencia, B.; Cruz-Rodríguez, C.; Herrera-Varón, Y.; Roa, M.; Rodríguez-Buriticá, S.; Ochoa-Quintero, J.M. Listening to cities during the COVID-19 lockdown: How do human activities and urbanization impact soundscapes in Colombia? Biol. Conserv. 2021, 255, 108996. [Google Scholar] [CrossRef]
- Aletta, F.; Oberman, T.; Mitchell, A.; Tong, H.; Kang, J. Assessing the changing urban sound environment during the COVID-19 lockdown period using short-term acoustic measurements. Noise Mapp. 2020, 7, 123–134. [Google Scholar] [CrossRef]
- Bonet-Solà, D.; Martínez-Suquía, C.; Alsina-Pagès, R.M.; Bergadà, P. The Soundscape of the COVID-19 Lockdown: Barcelona Noise Monitoring Network Case Study. Int. J. Environ. Res. Public Health 2021, 18, 5799. [Google Scholar] [CrossRef] [PubMed]
- Alsina-Pagès, R.M.; Bergadà, P.; Martínez-Suquía, C. Changes in the soundscape of Girona during the COVID lockdown. J. Acoust. Soc. Am. 2021, 149, 3416–3423. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, K. A Note on Variation of the Acoustic Environment in a Quiet Residential Area in Kobe (Japan): Seasonal Changes in Noise Levels Including COVID-Related Variation. Urban Sci. 2020, 4, 63. [Google Scholar] [CrossRef]
- Munoz, P.; Vincent, B.; Domergue, C.; Gissinger, V.; Guillot, S.; Halbwachs, Y.; Janillon, V. Lockdown during COVID-19 pandemic: Impact on road traffic noise and on the perception of sound environment in France. Noise Mapp. 2020, 7, 287–302. [Google Scholar] [CrossRef]
- Mishra, A.; Das, S.; Singh, D.; Maurya, A.K. Effect of COVID-19 lockdown on noise pollution levels in an Indian city: A case study of Kanpur. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Rumpler, R.; Venkataraman, S.; Göransson, P. An observation of the impact of CoViD-19 recommendation measures monitored through urban noise levels in central Stockholm, Sweden. Sustain. Cities Soc. 2020, 63, 102469. [Google Scholar] [CrossRef]
- Basu, B.; Murphy, E.; Molter, A.; Sarkar Basu, A.; Sannigrahi, S.; Belmonte, M.; Pilla, F. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustain. Cities Soc. 2021, 65, 102597. [Google Scholar] [CrossRef]
- Manzano, J.V.; Pastor, J.A.A.; Quesada, R.G.; Aletta, F.; Oberman, T.; Mitchell, A.; Kang, J. The “sound of silence” in Granada during the COVID-19 lockdown. Noise Mapp. 2021, 8, 16–31. [Google Scholar] [CrossRef]
- Kalawapudi, K.; Singh, T.; Vijay, R.; Goyal, N.; Kumar, R. Effects of COVID-19 pandemic on festival celebrations and noise pollution levels. Noise Mapp. 2021, 8, 89–93. [Google Scholar] [CrossRef]
- Bartalucci, C.; Bellomini, R.; Luzzi, S.; Pulella, P.; Torelli, G. A survey on the soundscape perception before and during the COVID-19 pandemic in Italy. Noise Mapp. 2021, 8, 65–88. [Google Scholar] [CrossRef]
- Zambon, G.; Confalonieri, C.; Angelini, F.; Benocci, R. Effects of COVID-19 outbreak on the sound environment of the city of Milan, Italy. Noise Mapp. 2021, 8, 116–128. [Google Scholar] [CrossRef]
- Steele, D.; Guastavino, C. Quieted city sounds during the covid-19 pandemic in montreal. Int. J. Environ. Res. Public Health 2021, 18, 5877. [Google Scholar] [CrossRef]
- Gevú, N.; Carvalho, B.; Fagerlande, G.C.; Niemeyer, M.L.; Cortês, M.M.; Torres, J.C.B. Rio de Janeiro noise mapping during the COVID-19 pandemic period. Noise Mapp. 2021, 8, 162–171. [Google Scholar] [CrossRef]
- Asensio, C.; Pavón, I.; de Arcas, G. Changes in noise levels in the city of Madrid during COVID-19 lockdown in 2020. J. Acoust. Soc. Am. 2020, 148, 1748–1755. [Google Scholar] [CrossRef]
- Maggi, A.L.; Muratore, J.; Gaetán, S.; Zalazar-Jaime, M.F.; Evin, D.; Pérez Villalobo, J.; Hinalaf, M. Perception of the acoustic environment during COVID-19 lockdown in Argentina. J. Acoust. Soc. Am. 2021, 149, 3902–3909. [Google Scholar] [CrossRef]
- Challéat, S.; Farrugia, N.; Gasc, A.; Froidevaux, J.; Hatlauf, J.; Dziock, F.; Charbonneau, A.; Linossier, J.; Watson, C.; Ullrich, P.A. Silent·Cities; Open Science Framework (OSF). 2020. Available online: https://osf.io/h285u/ (accessed on 14 June 2021).
- Welch, C. Seas Quieted by Pandemic Could Reduce Stress, Improve Health in Whales. Available online: https://www.nationalgeographic.com/science/article/seas-silenced-by-pandemic-could-improve-health-whales (accessed on 14 June 2021).
- Rutz, C.; Loretto, M.C.; Bates, A.E.; Davidson, S.C.; Duarte, C.M.; Jetz, W.; Johnson, M.; Kato, A.; Kays, R.; Mueller, T.; et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 2020, 4, 1156–1159. [Google Scholar] [CrossRef]
- Derryberry, E.P.; Phillips, J.N.; Derryberry, G.E.; Blum, M.J.; Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 2020, 370, 575–579. [Google Scholar] [CrossRef]
- Tan, M.K.; Robillard, T. Population divergence in the acoustic properties of crickets during the COVID-19 pandemic. Ecology 2021, 102, e03323. [Google Scholar] [CrossRef]
- Shannon, G. Noisy Humans Make Birds Sleep with One Eye Open—But Lockdown Offered a Reprieve. Available online: https://theconversation.com/noisy-humans-make-birds-sleep-with-one-eye-open-but-lockdown-offered-a-reprieve-141000 (accessed on 4 July 2021).
- Gibney, E. Coronavirus lockdowns have changed the way Earth moves. Nature 2020, 580, 176–177. [Google Scholar] [CrossRef] [Green Version]
- Dutheil, F.; Baker, J.S.; Navel, V. COVID-19 and cardiovascular risk: Flying toward a silent world? J. Clin. Hypertens. 2020, 22, 1945–1946. [Google Scholar] [CrossRef]
- ACOEM Our Relationship with Sound: The Role Noise Plays in Our Lives. Available online: https://www.01db.com/all-about-01db/actualites-all-about-01db/our-relationship-with-sound-the-role-noise-plays-in-our-lives/ (accessed on 14 June 2021).
- Díaz, J.; Antonio-López-Bueno, J.; Culqui, D.; Asensio, C.; Sánchez-Martínez, G.; Linares, C. Does exposure to noise pollution influence the incidence and severity of COVID-19? Environ. Res. 2021, 195, 110766. [Google Scholar] [CrossRef]
- Magee, M.; Lewis, C.; Noffs, G.; Reece, H.; Chan, J.C.S.; Zaga, C.J.; Paynter, C.; Birchall, O.; Rojas Azocar, S.; Ediriweera, A.; et al. Effects of face masks on acoustic analysis and speech perception: Implications for peri-pandemic protocols. J. Acoust. Soc. Am. 2020, 148, 3562–3568. [Google Scholar] [CrossRef]
- Ajuntament de Barcelona COVID-19 Report on Alteration of Sound Levels. Available online: https://ajuntament.barcelona.cat/ecologiaurbana/ca/serveis/la-ciutat-funciona/manteniment-de-l-espai-public/gestio-energetica-de-la-ciutat/servei-de-control-acustic/informe-covid-19 (accessed on 6 July 2021).
- Alsina-Pagès, R.M.; Alías, F.; Bellucci, P.; Cartolano, P.P.; Coppa, I.; Peruzzi, L.; Bisceglie, A.; Zambon, G. Noise at the time of COVID 19: The impact in some areas in Rome and Milan, Italy. Noise Mapp. 2020, 7, 248–264. [Google Scholar] [CrossRef]
- Bruitparif Monitoring of Changes in the Sound Environment Related to Confinement and Deconfinement. Available online: https://www.bruitparif.fr/suivi-des-modifications-de-l-environnement-sonore-en-lien-avec-le-confinement-et-le-deconfinement1/ (accessed on 6 July 2021).
- Choon, C.M. Complaints about Noisy Neighbours in South Korea Spike Amid Covid-19, East Asia News & Top Stories—The Straits Times. Available online: https://www.straitstimes.com/asia/east-asia/complaints-about-noisy-neighbours-in-south-korea-spike-amid-covid-19 (accessed on 14 June 2021).
- Dümen, A.Ş.; Şaher, K. Noise annoyance during COVID-19 lockdown: A research of public opinion before and during the pandemic. J. Acoust. Soc. Am. 2020, 148, 3489–3496. [Google Scholar] [CrossRef]
- Wong-Tam, K. Suffering from Excessive Construction Noise during COVID-19? Available online: https://www.torontonoisecoalition.ca/single-post/2020/04/16/suffering-from-excessive-construction-noise-during-covid-19 (accessed on 14 June 2021).
- Tong, H.; Aletta, F.; Mitchell, A.; Oberman, T.; Kang, J. Increases in noise complaints during the COVID-19 lockdown in Spring 2020: A case study in Greater London, UK. Sci. Total Environ. 2021, 785, 147213. [Google Scholar] [CrossRef]
- Yildirim, Y.; Arefi, M. Noise complaints during a pandemic: A longitudinal analysis. Noise Mapp. 2021, 8, 108–115. [Google Scholar] [CrossRef]
- Lin, C. Uptick in Complaints about Renovation Noise as More People Work from Home—CAN. Available online: https://www.channelnewsasia.com/news/singapore/covid-19-work-from-home-complaints-noisy-renovation-contractors-13626932 (accessed on 14 June 2021).
- Covid-19: Noise—Temporary Changes. Available online: https://www.georgesriver.nsw.gov.au/StGeorge/media/Documents/Council/Fact-Sheet-COVID-19-Noise-Temporary-Change.pdf (accessed on 14 June 2021).
- Lee, H.P.; Wang, Z.; Lim, K.M. Assessment of noise from equipment and processes at construction sites. Build. Acoust. 2017, 24, 21–34. [Google Scholar] [CrossRef]
- Nakashima, H.; Ueda, K.; Tomoyuki, T. Ultra-low Noise Hydraulic Excavators Using a Newly Developed Cooling System (iNDr). Kobelco Technol. Rev. 2013, 31, 12–18. [Google Scholar]
- Nakada, K.; Imamura, K.; Yabe, M. Technical Paper Research and Development of Low-Noise Bucket for Construction Machinery; Komatsu Technical Report; Komatsu Ltd.: Tokyo, Japan, 2006. [Google Scholar]
- Karimi, M.; Younesian, D. Optimized T-shape and Y-shape inclined sound barriers for railway noise mitigation. J. Low Freq. Noise Vib. Act. Control 2014, 33, 357–370. [Google Scholar] [CrossRef]
- Ho, S.S.T.; Busch-Vishniac, I.J.; Blackstock, D.T. Noise reduction by a barrier having a random edge profile. J. Acoust. Soc. Am. 1997, 101, 2669–2676. [Google Scholar] [CrossRef]
- Ekici, I.; Bougdah, H. A review of research on environmental noise barriers. Build. Acoust. 2003, 10, 289–323. [Google Scholar] [CrossRef]
- Wang, Z.; Kian Meng, L.; Priyadarshinee, P.; Lee, H.P. Applications of noise barriers with a slanted flat-tip jagged cantilever for noise attenuation on a construction site. JVC J. Vib. Control 2018, 24, 5225–5232. [Google Scholar] [CrossRef]
- Lund, S.; Madgavkar, A.; Manyika, J.; Smit, S.; Ellingrud, K.; Meaney, M.; Robinson, O. The Future of Work after COVID-19. Available online: https://www.mckinsey.com/featured-insights/future-of-work/the-future-of-work-after-covid-19# (accessed on 14 June 2021).
- Sakagami, K.; Okuzono, T. Some considerations on the use of space sound absorbers with next-generation materials reflecting COVID situations in Japan: Additional sound absorption for post-pandemic challenges in indoor acoustic environments. UCL Open Environ. 2020, 1–10. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Ohl, M.; Schweizer, M.; Graham, M.; Heilmann, K.; Boyken, L.; Diekema, D. Hospital privacy curtains are frequently and rapidly contaminated with potentially pathogenic bacteria. Am. J. Infect. Control 2012, 40, 904–906. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Bazzi, A.M.; Rabaan, A.A.; Okeahialam, C. The effectiveness of antibacterial curtains in comparison with standard privacy curtains against transmission of microorganisms in a hospital setting. Infez. Med. 2019, 27, 149–154. [Google Scholar]
- Shek, K.; Patidar, R.; Kohja, Z.; Liu, S.; Gawaziuk, J.P.; Gawthrop, M.; Kumar, A.; Logsetty, S. Rate of contamination of hospital privacy curtains in a burns/plastic ward: A longitudinal study. Am. J. Infect. Control 2018, 46, 1019–1021. [Google Scholar] [CrossRef]
- Chatterjee, S.; Murallidharan, J.S.; Agrawal, A.; Bhardwaj, R. Why coronavirus survives longer on impermeable than porous surfaces. Phys. Fluids 2021, 33, 21701. [Google Scholar] [CrossRef]
- World Health Organization. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Lee, H.M.; Tan, L.B.; Lim, K.M.; Lee, H.P. Experimental study of the acoustical performance of a sonic crystal window in a reverberant sound field. Build. Acoust. 2017, 24, 5–20. [Google Scholar] [CrossRef]
- Lee, H.M.; Tan, L.B.; Lim, K.M.; Xie, J.; Lee, H.P. Field Experiment of a Sonic Crystal Window. Fluct. Noise Lett. 2018, 17. [Google Scholar] [CrossRef]
- Lee, H.M.; Haris, A.; Lim, K.M.; Xie, J.; Lee, H.P. Incorporation of resonators into plenum window. Arch. Acoust. 2018, 43, 739–746. [Google Scholar] [CrossRef]
- Lee, H.M.; Wang, Z.; Lim, K.M.; Xie, J.; Lee, H.P. Novel plenum window with sonic crystals for indoor noise control. Appl. Acoust. 2020, 167, 107390. [Google Scholar] [CrossRef]
- Lee, H.M.; Haris, A.; Lim, K.M.; Xie, J.; Lee, H.P. Solving noise pollution issue using plenum window with perforated thin box. Crystals 2020, 10, 614. [Google Scholar] [CrossRef]
- Cheung, K.M.C.; Wong, H.Y.C.; Choi Tim, W.; Keung, K.; Chau Stephen, Y.; Cheung Rudolf, Y. Development and application of specially designed windows and balconies for noise mitigation in Hong Kong. In Proceedings of the International Noise 2019: Noise Control for a Better Environment, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Du, L.; Lau, S.-K.; Lee, S.E. Experimental study on sound transmission loss of plenum windows. J. Acoust. Soc. Am. 2019, 146, EL489–EL495. [Google Scholar] [CrossRef]
- Søndergaard, L.; Legarth, S.V. Investigation of sound insulation for a Supply Air Window—Field measurements and occupant response. In Proceedings of the Inter Noise 2014, Melbourne, Australia, 16–19 November 2014. [Google Scholar]
- Bhamjee, M.; Nurick, A.; Madyira, D.M. An experimentally validated mathematical and CFD model of a supply air window: Forced and natural flow. Energy Build. 2013, 57, 289–301. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.H. Air transparent soundproof window. AIP Adv. 2014, 4, 117123. [Google Scholar] [CrossRef]
- Tang, S.K.; Tong, Y.G.; Tsui, K.L. Sound transmission across a plenum window with an active noise cancellation system. Noise Control Eng. J. 2016, 64, 423–431. [Google Scholar] [CrossRef]
- Lam, B.; Shi, C.; Gan, W.-S. Active noise control systems for open windows: Current updates and future perspectives. In Proceedings of the 24th International Congress on Sound and Vibration, London, UK, 23–27 July 2017. [Google Scholar]
- Kumar, S.; Lee, H.P. Recent Advances in Active Acoustic Metamaterials. Int. J. Appl. Mech. 2019, 11, 1950081. [Google Scholar] [CrossRef]
- Lee, H.M.; Hua, Y.; Wang, Z.; Lim, K.M.; Lee, H.P. A review of the application of active noise control technologies on windows: Challenges and limitations. Appl. Acoust. 2021, 174, 107753. [Google Scholar] [CrossRef]
- Kumar, S.; Xiang, T.B.; Lee, H.P. Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. Appl. Acoust. 2020, 159, 107088. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation. Appl. Phys. Lett. 2020, 116, 134103. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. Recent Advances in Acoustic Metamaterials for Simultaneous Sound Attenuation and Air Ventilation Performances. Crystals 2020, 10, 686. [Google Scholar] [CrossRef]
- Lee, H.M.; Lim, K.M.; Lee, H.P. Experimental and numerical studies of acoustical and ventilation performances of glass louver window. J. Vibroeng. 2017, 19, 699–706. [Google Scholar] [CrossRef]
- Salgado, C.D.; Sepkowitz, K.A.; John, J.F.; Cantey, J.R.; Attaway, H.H.; Freeman, K.D.; Sharpe, P.A.; Michels, H.T.; Schmidt, M.G. Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit. Infect. Control Hosp. Epidemiol. 2013, 34, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.; Wu, X.; Li, X.; Wu, P.; He, H.; Mu, Q.; Wang, S.; Huang, Y.; Wen, W. Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows. Extrem. Mech. Lett. 2020, 100786. [Google Scholar] [CrossRef]
Locations | Average Reductions | Noise Environments | References |
---|---|---|---|
Girona, Spain | 5 dB (Lday, weekend) 11 dB (Lnight, weekend) | Active areas | Alsina-Pagès et al. [6] |
Central Stockholm, Sweden | 4 dB(A) | Active areas | Rumpler et al. [10] |
Dadar, Mumbai, India | 28.5 dB(A), Leq | Indian festival (Ganeshotsav) time | Kalawapudi et al. [13] |
Rio de Janeiro, Brazil | 10–15 dB(A), Leq | Active areas | Gevú et al. [17] |
3–5 dB(A), Leq | Traffic noise | ||
Madrid, Spain | 3.9 dB (Leve, weekend) 6.3 dB (Lnight, weekend) | Active areas | Asensio et al. [18] |
3.9 dB (Leve, weekend) 7.4 dB (Lnight, weekend) | Traffic noise | ||
Barcelona, Spain | 9–12 dB(A) | Active areas * | Ajuntament de Barcelona [31] |
2–6 dB(A) | Heavy traffic highways | ||
Milan, Italy | 7.3 dB(A), Lden | Traffic noise | Alsina-Pagès et al. [32] |
Rome, Italy | 5.2 dB(A), Lden | ||
Paris, France | 4.5 dB(A), Lden | Traffic noise | Bruitparif [33] |
Location | % Rise in Noise Complaints | Noise Sources | References |
---|---|---|---|
South Korea | 61 | Stomping on the floor, dragging furniture, hammering, slamming doors, loud music, etc. | [34] |
Province of Ontario, Canada | - | Construction projects | - |
London | 48 | Construction (36%) and neighborhood (50%) | [37] |
Dallas, USA | −14 (reduction) | Apartment, neighbor, music, street | [38] |
Singapore | - | Renovations, construction projects, neighbor music | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.P.; Kumar, S. Perspectives on the Sonic Environment and Noise Mitigations during the COVID-19 Pandemic Era. Acoustics 2021, 3, 493-506. https://doi.org/10.3390/acoustics3030033
Lee HP, Kumar S. Perspectives on the Sonic Environment and Noise Mitigations during the COVID-19 Pandemic Era. Acoustics. 2021; 3(3):493-506. https://doi.org/10.3390/acoustics3030033
Chicago/Turabian StyleLee, Heow Pueh, and Sanjay Kumar. 2021. "Perspectives on the Sonic Environment and Noise Mitigations during the COVID-19 Pandemic Era" Acoustics 3, no. 3: 493-506. https://doi.org/10.3390/acoustics3030033
APA StyleLee, H. P., & Kumar, S. (2021). Perspectives on the Sonic Environment and Noise Mitigations during the COVID-19 Pandemic Era. Acoustics, 3(3), 493-506. https://doi.org/10.3390/acoustics3030033