The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics
Abstract
:1. Introduction
2. Representatives of the Genus Bacillus as Corrosive Bacteria
3. Bacteria of the Genus Bacillus in the Biodegradation of Some Synthetic Plastics
4. The Application of Bacteria of the Genus Bacillus to Materials’ Biodamage Control
5. Siderophores of Bacteria in Corrosion Damage of Materials
6. Progress, Challenges and Future Direction for This Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreyuk, K.; Kozlova, I.; Kopteva, Z.; Pilyashenko-Novokhatny, A.; Zanina, V.; Purish, L. Mikrobna Koroziia Pidzemnykh Sporud; Naukova Dumka Publishing House: Kyiv, Ukraine, 2005; 258p. (In Ukrainian) [Google Scholar]
- Tregubova, N.V.; Kochkarov, R.H.; Morgunova, A.V.; Drizhd, N.A.; Dinaev, E.K. Biopovrezhdeniya Produktov; Publishing and Information Center “Fabula”: Stavropol, Russia, 2019; 100p. (In Russian) [Google Scholar]
- Netrusov, A.I.; Bonch-Osmolovskaya, E.A.; Gorlenko, V.M.; Ivanov, M.V.; Karavajko, G.I.; Kozhevin, P.A.; Kolotilova, N.N.; Kotova, I.B.; Maksimov, V.N.; Nozhevnikova, A.N.; et al. Ekologiya Mikroorganizmov; Netrusov, A.I., Ed.; Academia Publishing Center: Moscow, Russia, 2004; 272p. (In Russian) [Google Scholar]
- Scarascia, G.; Wang, T.; Hong, P.-Y. Quorum sensing and the use of quorum quenchers as natural biocides to inhibit sulfate-reducing bacteria. Antibiotics 2016, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Smykun, N.V. Rozvytok koroziino-nebezpechnoi mikroflory gruntu pid vplyvom deiakykh pestytsydiv. Mikrobiol. Z. 2008, 70, 74–87. (In Ukrainian) [Google Scholar] [PubMed]
- Lin, J.; Ballim, R. Biocorrosion control: Current strategies and promising alternatives. Afr. J. Biotechnol. 2012, 11, 15736–15747. [Google Scholar] [CrossRef] [Green Version]
- Little, B.J.; Blackwood, D.J.; Hinks, J.; Lauro, F.M.; Marsili, E.; Okamoto, A.; Rice, S.A.; Wade, S.A.; Flemming, H.-C. Microbially influenced corrosion—Any progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Wang, Y.S.; Liu, L.; Fu, Q.; Sun, J.; An, Z.Y.; Ding, R.; Li, Y.; Zhao, X.D. Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment. Sci. Rep. 2020, 10, 5744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtil’man, M.I. Biodegradaciya polimerov. SibFU J. Biol. 2015, 2, 113–130. (In Russian) [Google Scholar]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Shen, F.; Khan, K.; Liu, L.X.; Wu, H.H.; Luo, J.Q.; Wan, Y.H. Biofouling control in membrane filtration system by newly isolated novel quorum quenching bacterium, Bacillus methylotrophicus sp. WY. RSC Adv. 2016, 6, 28895–28903. [Google Scholar] [CrossRef]
- Blackwood, D.J. An Electrochemist Perspective of Microbiologically Influenced Corrosion. Corros. Mater. Degrad. 2018, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Moura, M.C.; Pontual, E.V.; Paiva, P.M.G.; Coelho, L.C.B.B. An Outline to Corrosive Bacteria. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; Volume 1, pp. 11–22. [Google Scholar]
- Nuňez, M. Prevention of Metal Corrosion: New Research; Nova Science Publishers, Inc.: New York, NY, USA, 2007; 313p. [Google Scholar]
- Li, X.; Xiao, H.; Zhang, W.; Li, Y.; Tang, X.; Duan, J.; Yang, Z.; Wang, J.; Guan, F.; Ding, G. Analysis of cultivable aerobic bacterial community composition and screening for facultative sulfate-reducing bacteria in marine corrosive steel. J. Ocean. Limnol. 2019, 37, 600–614. [Google Scholar] [CrossRef]
- Tkachuk, N.V.; Zelena, L.B.; Parminska, V.S.; Yanchenko, V.O.; Demchenko, A.M. Identyfikatsiia heterotrofnykh bakterii ferosfery gruntu ta yikh chutlyvist do pestytsydu linuron. Mikrobiol. Z. 2017, 79, 75–87. (In Ukrainian) [Google Scholar] [CrossRef]
- Rajasekar, A.; Ting, Y.-P. Microbial Corrosion of Aluminum 2024 Aeronautical Alloy by Hydrocarbon Degrading Bacteria Bacillus cereus ACE4 and Serratia marcescens ACE2. Ind. Eng. Chem. Res. 2010, 49, 6054–6061. [Google Scholar] [CrossRef]
- Bragadeeswaran, S.; Jeevapriya, R.; Prabhu, K.; Rani, S.S.; Priyadharsini, S.; Balasubramanian, T. Exopolysaccharide production by Bacillus cereus GU812900, a fouling marine bacterium. Afr. J. Microbiol. Res. 2011, 5, 4124–4132. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Song, F.; Gu, T. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci. 2013, 77, 385–390. [Google Scholar] [CrossRef]
- Wan, H.; Song, D.; Zhang, D.; Du, C.; Xu, D.; Liu, Z.; Ding, D.; Li, X. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry 2018, 121, 18–26. [Google Scholar] [CrossRef]
- Bano, A.S.; Qazi, J.I. Soil buried mild steel corrosion by Bacillus cereus—SNB4 and its inhibition by Bacillus thuringiensis—SN8. Pak. J. Zool. 2011, 43, 555–562. [Google Scholar]
- Santana, J.J.; Santana, F.J.; Gonzảlez, J.E.; Souto, R.M.; Gonzảlez, S.; Morales, J. Electrochemical analysis of the microbiologically influenced corrosion of AISI 304 stainless steel by sulphate reducing bacteria associated with Bacillus cereus. Int. J. Electrochem. Sci. 2012, 7, 711–724. [Google Scholar]
- Juzeliunas, E.; Ramanauskas, R.; Lugauskas, A.; Leinartas, K.; Samulevicene, M.; Sudavicius, A. Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection. Electrochim. Acta 2006, 51, 6085–6090. [Google Scholar] [CrossRef]
- Du, J.; Li, S.; Liu, J.; Yu, M. Corrosion behavior of steel Q235 co-influenced by Thiobacillus thiooxidans and Bacillus. J. Beijing Univ. Aeronaut. Astronaut. 2014, 40, 31–38. [Google Scholar]
- Karn, S.K.; Fang, G.; Duan, J. Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Front. Microbiol. 2017, 24, 2038. [Google Scholar] [CrossRef] [Green Version]
- Mora, M.; Wink, L.; Kögler, I.; Mahnert, A.; Rettberg, P.; Schwendner, P.; Demets, R.; Cockell, C.; Alekhova, T.; Klingl, A.; et al. The International Space Station selects for microorganisms adapted to the extreme environment, but does not induce genomic and physiological changes relevant for human health. BioRxiv 2019, 533752, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Shakerifard, P.; Gancel, F.; Jacques, P.; Faille, C. Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 2009, 25, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, K.; Taniguchi, I.; Yoshida, S.; Kimura, Y.; Oda, K. Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution. EMBO Rep. 2019, 20, e49365. [Google Scholar] [CrossRef] [PubMed]
- Restrepo-Flórez, J.-M.; Bassi, A.; Thompson, M.R. Microbial degradation and deterioration of polyethylene—A review. Int. Biodeter. Biodegr. 2014, 88, 83–90. [Google Scholar] [CrossRef]
- Ghatge, S.; Yang, Y.; Jae-Hyung Ahn, J.-H.; Hur, H.-G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 27. [Google Scholar] [CrossRef]
- Hakkarainen, M.; Albertsson, A. Environmental degradation of polyethylene. Adv. Polym. Sci. 2004, 169, 177.e199. [Google Scholar]
- Novotný, Č.; Malachova, K.; Adamusc, G.; Kwiecień, M.; Lotti, N.; Soccio, M.; Verney, V.; Fava, F. Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. Int. Biodeterior. Biodegrad. 2018, 132, 259–267. [Google Scholar] [CrossRef]
- Leja, K.; Lewandowicz, G. Polymer Biodegradation and Biodegradable Polymers—A Review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Van Beilen, J.B.; Li, Z.; Duetz, W.A.; Smits, T.H.M.; Witholt, B. Diversity of Alkane Hydroxylase Systems in the Environment. Oil Gas Sci. Technol.-Rev. IFP 2003, 58, 427–440. [Google Scholar] [CrossRef]
- Seneviratne, G.; Tennkoon, N.S.; Weerasekara, M.L.M.A.W.; Nandasena, K.A. Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr. Sci. 2006, 90, 20–21. [Google Scholar]
- Montazer, Z.; Habibi Najafi, M.B.; Levin, D.B. Challenges with Verifying Microbial Degradation of Polyethylene. Polymers 2020, 12, 123. [Google Scholar] [CrossRef] [Green Version]
- Das, M.P.; Kumar, S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 2015, 5, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Wasserbauer, R.; Beranova, M.; Vancurova, D.; Dolezel, B. Biodegradation of polyethylene foils by bacterial and liver homogenates. Biomaterials 1990, 11, 36–40. [Google Scholar] [CrossRef]
- Sowmya, H.V.; Ramalingappa, M.K.; Thippeswamy, B. Biodegradation of polyethylene by Bacillus cereus. Adv. Polym. Sci. Technol.-Int. J. 2014, 4, 28–32. [Google Scholar]
- Suresh, B.; Maruthamuthu, S.; Palanisamy, N.; Ragunathan, R.; Pandiyaraj, K.N.; Muralidharan, V.S. Investigation on biodegradability of polyethylene by Bacillus cereus strain Ma-Su isolated from compost soil. Int. Res. J. Microbiol. 2011, 2, 292–302. [Google Scholar]
- Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 2018, 13, e0198446. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, M.; Saidu, B. Biodegradation of polythene and plastic using fadama soil amended with organic and inorganic fertilizer. Indian J. Sci. Res. 2013, 4, 17–24. [Google Scholar]
- Vimala, P.P.; Mathew, L. Biodegradation of polyethylene using Bacillus subtilis. Proc. Technol. 2016, 24, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Ibiene, A.A.; Stanley, H.O.; Immanuel, O.M. Biodegradation of Polyethylene by Bacillus sp. Indigenous to the Niger Delta Mangrove Swamp. Nig. J. Biotech. 2013, 26, 68–79. [Google Scholar]
- Waqas, M.; Haris, M.; Asim, N.; Islam, H.; Abdullah, A.; Khan, A.; Khattak, H.; Waqas, M.; Ali, S. Biodegradable potential of Bacillus amyloliquefaciens and Bacillus safensis using low density polyethylene thermoplastic (LDPE) substrate. Eur. J. Environ. Public Health 2021, 5, em0069. [Google Scholar]
- Pinchuk, L.S.; Makarevich, A.V.; Vlasova, G.M.; Kravtsov, G.A.; Shapovalov, V.A. Electret-thermal analysis to assess biodegradation of polymer composites. Int. Biodeter. Biodegr. 2004, 54, 13–18. [Google Scholar] [CrossRef]
- Sudhakar, M.; Doble, M.; Sriyutha Murthy, P.; Venkatesan, R. Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int. Biodeterior. Biodegrad. 2008, 61, 203–213. [Google Scholar] [CrossRef]
- Abrusci, C.; Pablos, J.L.; Marín, I.; Espí, E.; Corrales, T.; Catalina, F. Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int. Biodeterior. Biodegrad. 2013, 83, 25–32. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Wu, W.-M.; Zhao, J.; Jiang, L. Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms. Environ. Sci. Technol. 2014, 48, 13776–13784. [Google Scholar] [CrossRef] [PubMed]
- Usha, R.; Sangeetha, T.; Palaniswamy, M. Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric. Res. Cent. J. Int. 2011, 2, 200–204. [Google Scholar]
- Kumari, A.; Chaudhary, D.R.; Jha, B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environ. Sci. Pollut. Res. 2019, 26, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Aravinthan, A.; Arkatkar, A.; Juwarkar, A.A.; Doble, M. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep. Biochem. Biotechnol. 2016, 46, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening for Polypropylene Degradation Potential of Bacteria Isolated from Mangrove Ecosystems in Peninsular Malaysia. Int. J. Biosci. Biochem. Bioinform. 2017, 7, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Kimi, J.; Bhunia, H.; Reddy, M.S. Degradation of polypropylene-poly-L-lactide blends by Bacillus isolates: A microcosm and field evaluation. Bioremed. J. 2021, 1–15. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 2837. [Google Scholar] [CrossRef]
- Shimpi, N.; Mishra, S.; Kadam, M. Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromol. Res. 2012, 20, 181–187. [Google Scholar] [CrossRef]
- Atiq, N.; Ahmed, S.; Ishtiaq Ali, M.; Andleeb, S.; Ahmad, B.; Robson, G. Isolation and identification of polystyrene biodegrading bacteria from soil. Afr. J. Microbiol. Res. 2010, 4, 1537–1541. [Google Scholar]
- Mohan, A.J.; Sekhar, V.C.; Bhaskar, T.; Nampoothiri, K.M. Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresour. Technol. 2016, 213, 204–207. [Google Scholar] [CrossRef]
- Meng, T.K.; Beng, D.Y.Y.; Mohd Kassim, A.S.; Razak, A.H.A.; Mohd Fauzi, N.A. Optimization of Polystyrene Biodegradation using Response Surface Methodology (RSM) Measured by Simple Colorimetric Method. Int. J. Eng. Technol. 2018, 7, 216–220. [Google Scholar] [CrossRef]
- Asmita, A.; Shubhamsingh, T.; Tejashree, S. Isolation of plastic degrading micro-organisms from soil samples collected at various locations in Mumbai, India. Int. Res. J. Environ. Sci. 2015, 4, 77–85. [Google Scholar]
- Ganesh Kumar, A.; Hinduja, M.; Sujitha, K.; Nivedha Rajan, N.; Dharani, G. Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis. Sci. Total Environ. 2021, 774, 145002. [Google Scholar] [CrossRef]
- Lou, Y.; Ekaterina, P.; Yang, S.-S.; Lu, B.; Liu, B.; Ren, N.; Corvini, P.F.X.; Xing, D. Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ. Sci. Technol. 2020, 54, 2821–2831. [Google Scholar] [CrossRef]
- Dąbrowska, G.B.; Janczak, K.; Richert, A. Combined use of Bacillus strains and Miscanthus for accelerating biodegradation of poly(lactic acid) and poly(ethylene terephthalate). PeerJ 2021, 9, e10957. [Google Scholar] [CrossRef]
- Vague, M.; Chan, G.; Roberts, C.; Swartz, N.A.; Mellies, J. Pseudomonas isolates degrade and form biofilms on polyethylene terephthalate (PET) plastic. BioRxiv 2019, 647321. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef] [Green Version]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Howard, G.T. Polyurethane Biodegradation. In Microbial Degradation of Xenobiotics, Environmental Science and Engineering; Singh, S.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 371–394. [Google Scholar] [CrossRef]
- Tan, J.D.; Ohwada, T. Isolation and identification of microorganisms for polyurethane degradation. Ann. Trop. Res. 2019, 41, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Rowe, L.; Howard, G.T. Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int. Biodeter. Biodegr. 2002, 50, 33–40. [Google Scholar] [CrossRef]
- Shah, Z.; Krumholz, L.; Aktas, D.F.; Hasan, F.; Khattak, M.; Shah, A.A. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation 2013, 24, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Nakkabi, A.; Sadiki, M.; Fahim, M.; Ittobane, N.; Ibnsouda Koraichi, S.; Barkai, H.; El abed, S. Biodegradation of Poly(ester urethane)s by Bacillus subtilis. Int. J. Environ. Res. 2015, 9, 157–162. [Google Scholar]
- Mahajan, N.; Gupta, P. New Insights into the Microbial Degradation of Polyurethanes. RSC Adv. 2015, 5, 41839–41854. [Google Scholar] [CrossRef]
- Ru, J.; Huo, Y.; Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. Rev. 2020, 11, 442. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.P.; Hartmann, A.; Gao, X.W.; Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—A review. Front. Microbiol. 2015, 6, 780. [Google Scholar] [CrossRef] [Green Version]
- Purwasena, I.A.; Astuti, D.I.; Fauziyyah, N.A.; Putri, D.A.S.; Sugai, Y. Inhibition of microbial influenced corrosion on carbon steel ST37 using biosurfactant produced by Bacillus sp. Mater. Res. Express. 2019, 6, 115405. [Google Scholar] [CrossRef]
- Aїmeur, N.; Houali, K.; Hamadou, L.; Benbrahim, N.; Kadri, A. Influence of strain Bacillus cereus bacterium on corrosion behaviour of carbon steel in natural sea water. Corros. Eng. Sci. Technol. 2015, 50, 579–588. [Google Scholar] [CrossRef]
- Ornek, D.; Jayaraman, A.; Syrett, B.C.; Hsu, C.H.; Mansfeld, F.B.; Wood, T.K. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or g-polyglutamate. Appl. Microbiol. Biotechnol. 2002, 58, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Mansfeld, F.B.; Wood, T.K. Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J. Ind. Microbiol. Biotechnol. 1999, 22, 167–175. [Google Scholar] [CrossRef]
- Wadood, H.Z.; Rajasekar, A.; ·Ting, Y.-P.; Sabari, A.N. Role of Bacillus subtilis and Pseudomonas aeruginosa on Corrosion Behaviour of Stainless Steel. Arab. J. Sci. Eng. 2015, 40, 1825–1836. [Google Scholar] [CrossRef]
- Zuo, R.; Kus, E.; Mansfeld, F.; Wood, T.K. The importance of live biofilms in corrosion protection. Corros. Sci. 2005, 47, 279–287. [Google Scholar] [CrossRef]
- Korenblum, E.; de Araujo, L.V.; Guimarães, C.R.; de Souza, L.M.; Sassaki, G.; Abreu, F.; Nitschke, M.; Lins, U.; Freire, D.M.G.; Barreto-Bergter, E.; et al. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria. BMC Microbiol. 2012, 12, 252. [Google Scholar] [CrossRef] [Green Version]
- Korenblum, E.; Sebastián, G.V.; Paiva, M.M.; Coutinho, C.M.L.M.; Magalhães, F.C.M.; Peyton, B.M.; Seldin, L. Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation. Appl. Microbiol. Biotechnol. 2008, 79, 97–103. [Google Scholar] [CrossRef]
- Hussain, A.; Bano, S.S.; Qazi, J.I. Corrosion of Mild Steel Simulating Long Term Soil Burial Field Conditions Differing in Nutritional and Biotic Components. World Appl. Sci. J. 2013, 22, 985–990. [Google Scholar]
- Eduok, U.; Khaled, M.; Khalil, A.; Suleiman, R.; El Ali, B. Probing the corrosion inhibiting role of thermophilic Bacillus licheniformis biofilm 1 on steel in a saline axenic culture. RSC Adv. 2016, 6, 18246–18256. [Google Scholar] [CrossRef]
- Jayaraman, A.; Hallock, P.J.; Carson, R.M.; Lee, C.C.; Mansfeld, F.B.; Wood, T.K. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl. Microbiol. Biot. 1999, 52, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Erofeevskaya, L.A.; Kychkin, A.K.; Kychkin, A.A. Prognozirovanie biodegradacii polimernyh kompozicionnyh materialov v klimaticheskih usloviyah Yakutii. Innovacii Invest. 2019, 6, 202–207. (In Russian) [Google Scholar]
- Garry, P.; Vendeuvre, J.L.; Bellon-Fontaine, M.N. Surface properties and adhesion of Bacillus cereus and Bacillus subtilis to polyurethane—Influence of growth temperature. J. Disper. Sci. Technol. 1998, 19, 1175–1197. [Google Scholar] [CrossRef]
- NCBI. Taxonomy Browser. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=492670&lvl=3&lin=f&keep=1&srchmode=1&unlock (accessed on 5 September 2019).
- Dunlap, C.A.; Kim, S.-J.; Kwon, S.-W.; Rooney, A.P. Bacillusvelezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 2016, 66, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yu, L.; Lin, C. Extraction of protease produced by sea mud bacteria and evaluation of antifouling performance. J. Ocean Univ. China 2019, 18, 1139–1146. [Google Scholar] [CrossRef]
- Yoo, Y.; Seo, D.-H.; Lee, H.; Cho, E.-S.; Song, N.-E.; Nam, T.G.; Nam, Y.-D.; Seo, M.-J. Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. J. Biotechnol. 2019, 298, 57–63. [Google Scholar] [CrossRef]
- Beech, I.B.; Gaylarde, C.C. Recent advances in the study of biocorrosion: An overview. Rev. Microbiol. 1999, 30, 117–190. [Google Scholar] [CrossRef] [Green Version]
- Little, B.; Ray, R. A Perspective on Corrosion Inhibition by Biofilms. Corrosion 2002, 58, 424–428. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut. Res. 2015, 23, 3984–3999. [Google Scholar] [CrossRef]
- Leonov, V.V.; Mironov, A.Y.; Anan’ina, I.V.; Rubal’skaya, E.E.; Sentyurova, L.G. Mikrobnye siderofory: Struktura, svojstva, funkcii. Astrakhan Med. J. 2016, 11, 24–37. (In Russian) [Google Scholar]
- Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 2013, 3, a010306. [Google Scholar] [CrossRef] [Green Version]
- Tkachuk, N.; Zelena, L.; Lukash, O.; Mazur, P. Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. Ecol. Quest. 2021, 32, 119–129. [Google Scholar] [CrossRef]
- Kishikawa, H.; Kamimura, T.; Soga, Y. Development of polypropylene coated steel pipe for high temperature service. Sumitomo Search 1996, 58, 1–9. [Google Scholar]
- Lueghamer, A.; Ratschmann, E. Polypropylene Piping Systems—A Long Term Solution in a Corrosive Environment. In Proceedings of the CORROSION 2006, San Diego, CA, USA, 11–16 March 2006. [Google Scholar]
- Tkachuk, N.; Zelena, L. Bioplivky sulfatvidnovliuvalnykh bakterii na poverkhni materialiv za vplyvu riznoi kilkosti batsylibaktynu. In Proceedings of the III International Conference on European Dimensions of Sustainable Development, Kyiv, Ukraine, 11 June 2021; NUFT: Kyiv, Ukraine, 2021; pp. 64–65. (In Ukrainian). [Google Scholar]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef] [PubMed]
- De Serrano, L.O. Biotechnology of siderophores in high-impact scientific fields. Biomol. Concepts 2017, 8, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Singh, P.; Srivastava, A. Synthesis, nature and utility of universal iron chelator—Siderophore: A review. Microbiol. Res. 2018, 212–213, 103–111. [Google Scholar] [CrossRef]
- Pal, R.; Hameed, S.; Sharma, S.; Fatima, Z. Influence of iron deprivation on virulence traits of mycobacteria. Braz. J. Infect. Dis. 2016, 20, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Simões, L.C.; Simões, M.; Vieira, M.J. Biofilm interactions between distinct bacterial genera isolated from drinking water. Appl. Environ. Microbiol. 2007, 73, 6192–6200. [Google Scholar] [CrossRef] [Green Version]
- Gademann, K.; Kobylinska, J.; Wach, J.Y.; Woods, T.M. Surface modifications based on the cyanobacterial siderophore anachelin: From structure to functional biomaterials design. Biometals 2009, 22, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Little, B.; Mansfeld, F. Passivity of stainless steels in natural seawater. In Proceedings of the H.H. Uhlig Memorial Symposium; Mansfeld, F., Asphahani, A., Bohni, H., Latansion, R., Eds.; The Electrochemical Society, Inc.: Pennington, NJ, USA, 1995; Volume 94, pp. 42–52. [Google Scholar]
- McCafferty, E.; McArdle, J.V. Corrosion inhibition of iron in acid solutions by biological siderophores. J. Electrochem. Soc. 1995, 142, 1447–1453. [Google Scholar] [CrossRef]
- Rajala, P. Microbially-Induced Corrosion of Carbon Steel in a Geological Repository Environment; Julkaisija-Utgivare Publisher: Helsinki, Finland, 2017; 86p. [Google Scholar]
- Little, B.J.; Lee, J.S.; Ray, R.I. The influence of marine biofilms on corrosion: A concise review. Electrochim. Acta 2008, 54, 2–7. [Google Scholar] [CrossRef]
- Pérez-Miranda, S.; Zamudio-Rivera, L.S.; Cisneros-Dévora, R.; George-Téllez, R.; Fernández, F.J. Theoretical insight and experimental elucidation of desferrioxamine B from Bacillus sp. AS7 as a green corrosion inhibitor. Corros. Eng. Sci. Technol. 2020, 56, 93–101. [Google Scholar] [CrossRef]
- Javaherdashti, R.; Alasvand, K. Biological Treatment of Microbial Corrosion: Opportunities and Challenges, 1st ed.; Elsevier Science: Saint Louis, MO, USA, 2019; 156p. [Google Scholar]
- Zanna, S.; Seyeux, A.; Allion-Maurer, A.; Marcus, P. Escherichia coli siderophore-induced modification of passive films on stainless steel. Corros. Sci. 2020, 175, 108872. [Google Scholar] [CrossRef]
Reaction Type | Reaction Equation |
---|---|
Oxidation | Fe → Fe2+ + 2e− |
Reduction | 2NO3− + 10e− + 12H+ → N2 + 6H2O |
NO3− + 8e− + 10H+ → NH4+ + 3H2O |
Representative of the Genus Bacillus | Research Material | References |
---|---|---|
Bacillus cereus | Al 2024 Aeronautical alloy | [18] |
Mild steel | [20] | |
Stainless steel | [18] | |
AISI 304 stainless steel | [22] | |
Bacillus licheniformis/paralicheniformis | C1018 carbon steel | [19] |
Bacillus mycoides | Zn | [23] |
Bacillus subtilis | 10 MnNiCrCu steel | [7] |
Teflon | [27] | |
Bacillus sp. | Q235 steel | [24,25] |
Representative of the Genus Bacillus | Research Material | Preliminary Treatment | Incubation Time | Proposed Biodegradation Mechanisms | References |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
Bacillus amiloliquefaciens | Low-density PE (LDPE) | Heat treatment | 60 days | Depolymerization, various surface chemical changes, LDPE used as a sole carbon source | [37] |
Bacillus brevis | PE Bralen NA 7-25; PE Bralen VA 20-12, SA 200-22; PE Bralen RA 2-19; PE BralenFA 7-15; PE Liten BB 29; PE Liten BB 38; Ground PE Liten FB 22-402 | Not indicated | 64 h | Enzymatic oxidation (monooxygenase hydroxylation system); oxidation of PE with the formation carbonyl, ester and hydroxyl groups; changes in the mechanical properties of PE | [38] |
Bacillus cereus | PE | UV treatment; autoclaving; surface sterilization | 12 weeks | Enzymatic (laccase and manganese peroxidase) degradation; the formation of carboxylic acids, aldehydes, alcohols, esters, ethers, aromatics, alkene and phenol groups; changes in relative elongation, relative tensile strength and molecular weight distribution; UV-treated PE as sole source of carbon is much better than autoclaved and surface sterilized | [39] |
Bacillus cereus | LDPE (24FSO40); oxo-biodegra dable PE (10% oxo-biodegra dable additive, 90% PE) | UV-B treatment; heat treatment | 90 days | Influence of bacterial enzymes (oxidative (oxidoreductase) and degradative). The utilization of PE, especially the oxygenated fragments, by bacteria as their sole source of carbon. The increase in surface energy and decrease in contact angle; increased hydrophilicity of PE, which facilitates the bacterial attachment on the surface of polymer | [40] |
LDPE | Not indicated | 16 weeks | No mechanism proposed. There is the formation of aldehydes and ketones which are intermediate products of biodegradation of PE | [41] | |
Bacillus subtilis | LDPE; HDPE | UV treatment | 30 days | Treated PE had more weight loss than untreated PE because UV rays act as an initiator of PE oxidation which enhances the bacterial degradation. The addition of biosurfactant (surfactin) of B. subtilis caused the most efficient loss of PE, which proves the assistance in attachment of microbes to PE films. There is the formation of ketone, aldehyde, carboxyl acids and alcohols after biodegradation | [43] |
Bacillus sp. | LDPE; HDPE | Not indicated | 3 months | Bacteria adhere on plastics and destabilize their polymeric structures. The process of biodegradation of polymers is related to the transformations of chemical groups and mineralization of polymeric materials into CO2 | [51] |
LDPE DFDA-9020 | Not indicated | 60 days | Changes in surface topography, decrease in hydrophobicity, the formation of carbonyl groups, decrease in molecular weight and release of soluble daughter products were key reactions of PE biodegradation. PE acted as sole carbon source | [49] | |
Polymer composites containing LDPE and cornstarch | Fertilizer (cow dung and dolomite powder) | 12 months | Degradation of starch particles by soil microorganisms in PE–starch composites accelerates biodegradation of the binder as it alleviates access of microorganisms to the least ordered surface layers of the polymer binder at the interfaces | [46] | |
LDPE | Not indicated | 6 months | Not indicated | [50] | |
Bacillus amyloliquefaciens, Bacillus safensis | LDPE | Pretreatment of 0.1% mercuric chloride | 30 days | Enzyme action is assumed (extracellular and intracellular). pH of the aqueous media increased toward alkalinity that might be considered for degradation. Bacteria used plastic as sole source of carbon and energy | [45] |
Bacillus mycoides, Bacillus subtilis | LDPE; HDPE | Sunlight | 24 weeks | Biodegradation of films followed Norrish type I and II degradation. This is evident by the various degradation products revealed by FTIR spectra. Treated films served as sole carbon sources | [44] |
Bacillus sphericus, Bacillus cereus | LDPE; starch-blended LDPE; HDPE | Heat treatment | 12 months | Abiotic and biotic degradation PE have synergistic relationship. Thermal treatment plays a vital role in enhancing the rate of biodegradation. Blends with starch have a higher weight loss then unblended PE. The formation and disappearance of ester, keto, double bond and vinyl groups. Influence of bacteria increases with wettability of the polymer, decreases with tensile strength and percentage crystallinity. Bacillus species utilize PE as carbon source. The decrease in carbonyl index due to biodegradation occurs by the Norrish-type mechanism or by the formation of ester | [47] |
Bacillus subtilis, Bacillus cereus, Bacillus lentus | PE; plastics | Organic fertilizers (chicken droppings, cow dung); inorganic fertilizer (NPK) | 9 months | No mechanism proposed. The high rate of CO2 evolution for soils with chicken droppings and cow dung treatments was noted | [42] |
Bacillus cereus + Bacillus megaterium + Bacillus subtilis, Bacillus borstelensis | LDPE; HDPE films with iron, cobalt and manganese stearates as pro-oxidant additives (at 0.2% w/w) | Thermal and photoaging | 90 days | The first step of biotic degradation is the thermal and photochemical oxidation. The material should be substantially chemically transformed by the action of the pro-oxidant additives under light and heat, and thus more susceptible to microbial attack. The second step is mineralization of materials. It is indicated that the results are consistent with the oxidative activity of microorganisms. Cobalt and manganese have high catalytic effect in the photochemiical degradation of LDPE | [48] |
Bacillus mycoides; Bacillus mycoides + Penicillium frequentans | UV- and oxi-degradable PE | Heat treatment | 45 days | The formation of the Penicillium–Bacillus biofilm and its architecture help in the effective transport of the bacterium, colonization of PE and subsequent degradation of its surface by enzymatic reactions | [35] |
Reaction Type | Reaction Equation |
---|---|
Radical initiation | |
Chain scission | |
Cross linking |
Representative of the Genus Bacillus | Research Material | References |
---|---|---|
Bacillus amyloliquefaciens | Polyethylene | [29,30,37,45] |
Bacillus aryabhattai | Polystyrene | [60] |
Bacillus borstelensis | Polyethylene | [48] |
Bacillus brevis | Polyethylene | [29,30,38] |
Bacillus cereus | Polyethylene | [29,30,39,40,41] |
Polypropylene | [53,54] | |
Polystyrene | [55,63] | |
Poly (ethylene terephthalate) | [64,65] | |
Bacillus chitinolyticus | Polyurethane | [69] |
Bacillus circulans | Polyethylene | [29,30] |
Bacillus flexus | Poly (vinyl chloride) | [67] |
Bacillus gottheilii | Polypropylene | [55] |
Polystyrene | [55] | |
Bacillus halodenitrificans | Polyethylene | [29,30] |
Bacillus licheniformis/paralicheniformis | Polypropylene | [54] |
Polystyrene | [62] | |
Poly (ethylene terephthalate) | [66] | |
Bacillus megaterium | Poly (ethylene terephthalate) | [28] |
Bacillus lentus | Polyethylene | [42] |
Bacillus mycoides | Polyethylene | [29,30,35,42,44] |
Bacillus pumilus | Polyethylene | [29,30] |
Polyurethane | [69] | |
Bacillus safensis | Polyethylene | [45] |
Bacillus sp. | Polyethylene | [46,47,48,49,50,51] |
Polystyrene | [57,58,59] | |
Poly (vinyl chloride) | [51] | |
Bacillus sphericus | Polyethylene | [29,30] |
Bacillus subtilis | Polyethylene | [42,43,44] |
Polyethylene oxide hydrogel | [43] | |
Polystyrene | [61] | |
Poly (ethylene terephthalate) | [64,66] | |
Polyurethane | [70,71,72] | |
Bacillus thuringiensis | Polyethylene | [29,30] |
Polypropylene | [54] | |
Bacillus cereus + Bacillus megaterium + Bacillus subtilis | Polyethylene | [48] |
Bacillus flexus + Bacillus subtilis | Polypropylene | [52] |
Bacillus mycoides + Penicillium frequentans | Polyethylene | [35] |
Representative of the Genus Bacillus | Research Material | References |
---|---|---|
Bacillus brevis | 304 stainless steel | [79] |
Bacillus cereus | Carbon steel | [77] |
Bacillus firmus | Stainless steel AISI 304, stainless steel AISI 430, carbon steel, galvanized steel, polystyrene | [82,83] |
Bacillus licheniformis/paralicheniformis | Al 2024 | [78] |
Stainless steel 316 L | [85] | |
Bacillus sp. | Carbon steel ST37 | [76] |
Polymer composite materials | [87] | |
Carbon steel SAE-1010 | [113] | |
Bacillus subtilis | 304 stainless steel | [79] |
Stainless steel | [80] | |
Al 2024 | [81] | |
Stainless steel | [27] | |
Bacillus thuringiensis | Mild steel | [21] |
Bacillus velezensis | Membrane filtration system | [11] |
Organisms of marine fouling | [91] | |
Polystyrene | [92] | |
Poly (ethylene terephthalate) | [98] |
Representative of the Genus Bacillus | Compound | References |
---|---|---|
Bacillus brevis | Gramicidin S peptide, ampicillin | [86] |
Bacillus licheniformis/paralicheniformis | Chelating anionic peptides | [78] |
γ-polyglutamate | [78] | |
Bacillus sp. | Surfactin-like homologues | [82] |
Biosurfactant | [76] | |
Antifungal compounds | [87] | |
Siderophore desferroxamine B | [113] | |
Catalase and peroxidase (high concentrations) | [25] | |
Bacillus subtilis | Surfactin, iturin, fengycin | [27] |
Bacillus subtilis (genetically engineered) | Indolicidin, bactenecin, probacterin | [79] |
Bacillus velezensis | Siderophore bacillibactin | [98] |
Compounds with the property of destroying AHSL | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachuk, N.; Zelena, L. The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics. Corros. Mater. Degrad. 2021, 2, 531-553. https://doi.org/10.3390/cmd2040028
Tkachuk N, Zelena L. The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics. Corrosion and Materials Degradation. 2021; 2(4):531-553. https://doi.org/10.3390/cmd2040028
Chicago/Turabian StyleTkachuk, Nataliia, and Liubov Zelena. 2021. "The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics" Corrosion and Materials Degradation 2, no. 4: 531-553. https://doi.org/10.3390/cmd2040028
APA StyleTkachuk, N., & Zelena, L. (2021). The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics. Corrosion and Materials Degradation, 2(4), 531-553. https://doi.org/10.3390/cmd2040028