You are currently viewing a new version of our website. To view the old version click .
Surfaces
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

13 December 2025

The Effect of Co/TiN Interfaces on Co Interconnect Resistivity

,
,
and
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
*
Author to whom correspondence should be addressed.
Surfaces2025, 8(4), 89;https://doi.org/10.3390/surfaces8040089 
(registering DOI)
This article belongs to the Special Issue Surface Engineering of Thin Films

Abstract

Electron transport measurements on Co/TiN multilayers are employed to explore the effect of TiN layers on Co resistivity. For this, 50 nm thick multilayer stacks containing N = 1–10 individual Co layers that are separated by 1 nm thick TiN layers are sputter deposited on SiO2/Si(001) substrates at 400 °C. X-ray diffraction and reflectivity measurements indicate a tendency for a 0001 preferred orientation, an X-ray coherence length of 13 nm that is nearly independent of N, and an interfacial roughness that increases with N. The in-plane multilayer resistivity ρ increases with increasing N = 1–10, from ρ = 14.4 to 36.6 µΩ-cm at room temperature and from ρ = 11.2 to 19.4 µΩ-cm at 77 K. This increase is due to a combination of increased electron scattering at interfaces and grain boundaries, as quantified using a combined Fuchs–Sondheimer and Mayadas–Shatzkes model. The analysis indicates that a decreasing thickness of the individual Co layers dCo from 50 to 5 nm causes not only an increasing resistivity contribution from Co/TiN interface scattering (from 9 to 88% with respect to the room-temperature bulk resistivity) but also an increasing (39 to 154%) grain boundary scattering contribution, which exacerbates the resistivity penalty due to the TiN liner. These results are supported by Co/TiN bilayer and trilayer structures deposited on Al2O3 (0001) at 600 °C. Interfacial intermixing causes Co2Ti and Co3Ti alloy phase formation, an increase in the contact resistance, a degradation of the Co crystalline quality, and a 2.3× higher resistivity for Co deposited on TiN than Co directly deposited on Al2O3(0001). The overall results show that TiN liners cause a dramatic increase in Co interconnects due to diffuse surface scattering, interfacial intermixing/roughness, and Co grain renucleation at Co/TiN interfaces.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.