On the Formation and Characterization of Nanoplastics During Surface Wear Processes
Abstract
:1. Introduction
2. Recent Advances in Nanoplastics Research
2.1. Formation Mechanisms of Nanoplastics
2.2. Mechanical Properties and Wear Behavior
2.3. Characterization Techniques
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic Contamination of River Beds Significantly Reduced by Catchment-Wide Flooding. Nat. Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- Yildiz, R.O.; Koc, E.; Der, O.; Aymelek, M. Unveiling the Contemporary Research Direction and Current Business Management Strategies for Port Decarbonization Through a Systematic Review. Sustainability 2024, 16, 10959. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Besseling, E.; Shim, W.J. Nanoplastics in the Aquatic Environment. Critical Review. In Marine Anthropogenic Litter; Springer International Publishing: Cham, Switzerland, 2015; pp. 325–340. [Google Scholar]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a Consensus on the Definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wick, P.; Nowack, B. Placing Nanoplastics in the Context of Global Plastic Pollution. Nat. Nanotechnol. 2021, 16, 491–500. [Google Scholar] [CrossRef]
- Li, W.; Luo, Y.; Pan, X. Identification and Characterization Methods for Microplastics Basing on Spatial Imaging in Micro-/Nanoscales. In Microplastics in Terrestrial Environments; Springer: Berlin/Heidelberg, Germany, 2020; pp. 25–37. [Google Scholar]
- Wagner, J.; Wang, Z.-M.; Ghosal, S.; Rochman, C.; Gassel, M.; Wall, S. Novel Method for the Extraction and Identification of Microplastics in Ocean Trawl and Fish Gut Matrices. Anal. Methods 2017, 9, 1479–1490. [Google Scholar] [CrossRef]
- Schiavi, S.; Parmigiani, M.; Galinetto, P.; Albini, B.; Taglietti, A.; Dacarro, G. Plasmonic Nanomaterials for Micro- and Nanoplastics Detection. Appl. Sci. 2023, 13, 9291. [Google Scholar] [CrossRef]
- Adetuyi, B.O.; Mathew, J.T.; Inobeme, A.; Falana, Y.O.; Adetunji, C.O.; Shahnawaz, M.; Oyewole, O.A.; Eniola, K.I.T.; Yerima, M.B.; Popoola, O.A. Tyres, Bitumen Wear and Plastic Bottles, Other Single Used Plastic as Major Sources of Microplastic. In Microplastic Pollution; Springer Nature: Singapore, 2024; pp. 141–160. [Google Scholar]
- Rahman, E.; BinAhmed, S.; Keyes, P.; Alberg, C.; Godfreey-Igwe, S.; Haugstad, G.; Xiong, B. Nanoscale Abrasive Wear of Polyethylene: A Novel Approach To Probe Nanoplastic Release at the Single Asperity Level. Environ. Sci. Technol. 2024, 58, 13845–13855. [Google Scholar] [CrossRef]
- Khaksar, H.; Ma, C.; Janiszewska, N.; Awsiuk, K.; Budkowski, A.; Gnecco, E. Nanoscale Wear Evolution on a Polystyrene/Poly (n-Butyl Methacrylate) Blend. Wear 2024, 536–537, 205160. [Google Scholar] [CrossRef]
- Ordu, M.; Der, O. Polymeric Materials Selection for Flexible Pulsating Heat Pipe Manufacturing Using a Comparative Hybrid MCDM Approach. Polymers 2023, 15, 2933. [Google Scholar] [CrossRef]
- Sipe, J.M.; Bossa, N.; Berger, W.; von Windheim, N.; Gall, K.; Wiesner, M.R. From Bottle to Microplastics: Can We Estimate How Our Plastic Products Are Breaking Down? Sci. Total Environ. 2022, 814, 152460. [Google Scholar] [CrossRef] [PubMed]
- Musa, I.O.; Auta, H.S.; Ilyasu, U.S.; Aransiola, S.A.; Makun, H.A.; Adabara, N.U.; Abioye, O.P.; Aziz, A.; Jayanthi, B.; Maddela, N.R.; et al. Micro- and Nanoplastics in Environment: Degradation, Detection, and Ecological Impact. Int. J. Environ. Res. 2024, 18, 1. [Google Scholar] [CrossRef]
- Yu, Y.; Craig, N.; Su, L. A Hidden Pathway for Human Exposure to Micro- and Nanoplastics—The Mechanical Fragmentation of Plastic Products during Daily Use. Toxics 2023, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- da Silva Antunes, J.C.; Sobral, P.; Branco, V.; Martins, M. Uncovering Layer by Layer the Risk of Nanoplastics to the Environment and Human Health. J. Toxicol. Environ. Health Part B 2025, 28, 63–121. [Google Scholar] [CrossRef]
- Suzuki, G.; Uchida, N.; Tuyen, L.H.; Tanaka, K.; Matsukami, H.; Kunisue, T.; Takahashi, S.; Viet, P.H.; Kuramochi, H.; Osako, M. Mechanical Recycling of Plastic Waste as a Point Source of Microplastic Pollution. Environ. Pollut. 2022, 303, 119114. [Google Scholar] [CrossRef]
- Bulut, M.S.; Ordu, M.; Der, O.; Basar, G. Sustainable Thermoplastic Material Selection for Hybrid Vehicle Battery Packs in the Automotive Industry: A Comparative Multi-Criteria Decision-Making Approach. Polymers 2024, 16, 2768. [Google Scholar] [CrossRef]
- Nilsson, D.; Stavlid, N.; Lindquist, M.; Hogmark, S.; Wiklund, U. The Role of Aluminum Additions in the Oxidation and Wear of a TaC:C Low-Friction Coating. Surf. Coat. Technol. 2009, 203, 2989–2994. [Google Scholar] [CrossRef]
- Yoshida, K.; Horiuchi, T.; Kano, M.; Kumagai, M. Or0404—Effect of a Tribochemical Reacted Film on Friction and Wear Properties of DLC Coatings. Plasma Process. Polym. 2009, 6, S96–S101. [Google Scholar] [CrossRef]
- Fan, X.; Li, G.; Guo, Y.; Zhang, L.; Xu, Y.; Zhao, F.; Zhang, G. Role of Reinforcement Types and Silica Nanoparticles on Tribofilm Growth at PTFE-Steel Interface. Tribol. Int. 2020, 143, 106035. [Google Scholar] [CrossRef]
- Venkatesan, M.; Palanikumar, K.; Boopathy, S.R. Experimental Investigation and Analysis on the Wear Properties of Glass Fiber and CNT Reinforced Hybrid Polymer Composites. Sci. Eng. Compos. Mater. 2018, 25, 963–974. [Google Scholar] [CrossRef]
- Reyes Acosta, Y.K.; Cruz Martinez, W.E.; Reyes Acosta, A.V.; Cepeda Tovar, V.A.; Contreras Esquivel, J.C.; Aguilar Gonzales, C.N.; Narro Cespedes, R.I.; Martinez, R.R. Thermal Properties by Adding Natural Oils, Foods, Organic Materials, Fibers, and Nanocomposites in the PLA, and Applications in 3D Printing. In Engineering Principles for Food Processing Technology and Product Realization; Apple Academic Press: New York, NY, USA, 2024; pp. 87–110. [Google Scholar]
- Reyes Acosta, Y.K.; Martinez, E.C.; Reyes Acosta, A.V.; Torre, L.S.; Aguilar Gonzales, C.N.; Narro Cespedes, R.I. Release Studies to Improve the Mechanical Properties of the Biopolymer, Polylactic Acid (PLA) for Food Packaging Applications. In Engineering Principles for Food Processing Technology and Product Realization; Apple Academic Press: New York, NY, USA, 2024; pp. 67–85. [Google Scholar]
- Levchenko, I.; Xu, S.; Baranov, O.; Bazaka, O.; Ivanova, E.; Bazaka, K. Plasma and Polymers: Recent Progress and Trends. Molecules 2021, 26, 4091. [Google Scholar] [CrossRef]
- Maraveas, C.; Kyrtopoulos, I.V.; Arvanitis, K.G.; Bartzanas, T. The Aging of Polymers under Electromagnetic Radiation. Polymers 2024, 16, 689. [Google Scholar] [CrossRef]
- Yong, C.; Valiyaveettil, S.; Tang, B. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Liu, Z.; Yu, B.; Zhang, Y.; Yang, H.; Han, Y.; Wang, B.; Liu, Z.; Zhang, H. Emergence of Nanoplastics in the Aquatic Environment and Possible Impacts on Aquatic Organisms. Sci. Total Environ. 2024, 906, 167404. [Google Scholar] [CrossRef]
- Zhang, L.; García-Pérez, P.; Muñoz-Palazon, B.; Gonzalez-Martinez, A.; Lucini, L.; Rodriguez-Sanchez, A. A Metabolomics Perspective on the Effect of Environmental Micro and Nanoplastics on Living Organisms: A Review. Sci. Total Environ. 2024, 932, 172915. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Amar, A.; Olihan, S. Environmental Fate, Behavior, and Risk Management Approaches of Nanoplastics in the Environment. In Solid Waste Treatment Technologies; CRC Press: Boca Raton, FL, USA, 2024; pp. 148–172. [Google Scholar]
- Vettegren’, V.I.; Lyashkov, A.I.; Savitskii, A.V.; Shcherbakov, I.P.; Vasil’ev, K.D. Microcrack Dynamics in a Polymer Composite Material during Friction. Tech. Phys. 2012, 57, 1445–1448. [Google Scholar] [CrossRef]
- Ito, M.M.; Gibbons, A.H.; Qin, D.; Yamamoto, D.; Jiang, H.; Yamaguchi, D.; Tanaka, K.; Sivaniah, E. Structural Colour Using Organized Microfibrillation in Glassy Polymer Films. Nature 2019, 570, 363–367. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Z. Evolution of Silicon Particle Damage on Fatigue Crack Initiation and Early Propagation in an Aluminum Alloy. Rare Met. 2023, 42, 2470–2476. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Root, S.E.; Hilby, K.M.; Rodriquez, D.; Sugiyama, F.; Lipomi, D.J. Quantifying the Fracture Behavior of Brittle and Ductile Thin Films of Semiconducting Polymers. Chem. Mater. 2017, 29, 10139–10149. [Google Scholar] [CrossRef]
- Su, Y.; Yang, C.; Wang, S.; Li, H.; Wu, Y.; Xing, B.; Ji, R. Mechanochemical Formation of Poly(Melamine-Formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges. Environ. Sci. Technol. 2024, 58, 10764–10775. [Google Scholar] [CrossRef]
- Solasa, K.C.; Venkataraman, N.V.; Choudhury, P.R.; Schueller, J.K.; Bhattacharyya, A. On the Use of Alternative Measurement Methods in the Estimation of Wear Rates in Rotary-Pin-on-Disk Tribometry. Tribol. Lett. 2024, 72, 45. [Google Scholar] [CrossRef]
- Orgeldinger, C.; Rosnitschek, T.; Tremmel, S. Unveiling an Additively Manufactured Open Hardware Pin-on-Disc Tribometer Considering Its High Reproducibility. Wear 2024, 552–553, 205437. [Google Scholar] [CrossRef]
- Budinski, K.G. Adhesive Transfer to Abrasive Particles in Abrasion Testing. Wear 2011, 271, 1258–1263. [Google Scholar] [CrossRef]
- Morreale, M.; La Mantia, F.P. Current Concerns about Microplastics and Nanoplastics: A Brief Overview. Polymers 2024, 16, 1525. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Yu, L.; Hu, J.; Li, R.; Yang, Q.; Guo, F.; Pei, J. Tire-Pavement Contact Pressure Distribution Analysis Based on ABAQUS Simulation. Arab. J. Sci. Eng. 2022, 47, 4119–4132. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, H.; Zhang, K.; Xu, S.; Yan, M.; Leung, K.M.Y.; Lam, P.K.S. Microplastics: A Major Source of Phthalate Esters in Aquatic Environments. J. Hazard. Mater. 2022, 432, 128731. [Google Scholar] [CrossRef]
- Yang, N.; Men, C.; Zhang, Y.; Xie, Z.; Zuo, J. Exploring Polystyrene Weathering Behavior: From Surface Traits to Micro(Nano)Plastics and Additives Release. J. Environ. Manag. 2024, 367, 121880. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Yu, K.; Du, H.; Sioutas, C.; Wang, Q. Mechanics of Abrasion-Induced Particulate Matter Emission. J. Mech. Phys. Solids 2024, 188, 105661. [Google Scholar] [CrossRef]
- Gnecco, E.; Pedraz, P.; Nita, P.; Dinelli, F.; Napolitano, S.; Pingue, P. Surface Rippling Induced by Periodic Instabilities on a Polymer Surface. New J. Phys. 2015, 17, 032001. [Google Scholar] [CrossRef]
- Hennig, J.; Litschko, A.; Mazo, J.J.; Gnecco, E. Nucleation and Detachment of Polystyrene Nanoparticles from Plowing-Induced Surface Wrinkling. Appl. Surf. Sci. Adv. 2021, 6, 100148. [Google Scholar] [CrossRef]
- Heinrich, G.; Klüppel, M. Basic Mechanisms and Predictive Testing of Tire-Road Abrasion. In Degradation of Elastomers in Practice, Experiments and Modeling; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–14. [Google Scholar]
- Lisci, C.; Sitzia, F.; Pires, V.; Mirão, J. Building Stones Durability by UVA Radiation, Moisture and Spray Accelerated Weathering. J. Build. Pathol. Rehabil. 2022, 7, 60. [Google Scholar] [CrossRef]
- Gu, X.; Michaels, C.A.; Drzal, P.L.; Jasmin, J.; Martin, D.; Nguyen, T.; Martin, J.W. Probing Photodegradation beneath the Surface: A Depth Profiling Study of UV-Degraded Polymeric Coatings with Microchemical Imaging and Nanoindentation. J. Coat. Technol. Res. 2007, 4, 389–399. [Google Scholar] [CrossRef]
- El Hadri, H.; Gigault, J.; Maxit, B.; Grassl, B.; Reynaud, S. Nanoplastic from Mechanically Degraded Primary and Secondary Microplastics for Environmental Assessments. NanoImpact 2020, 17, 100206. [Google Scholar] [CrossRef]
- Arinstein, A.; Zussman, E. Electrospun Polymer Nanofibers: Mechanical and Thermodynamic Perspectives. J. Polym. Sci. B Polym. Phys. 2011, 49, 691–707. [Google Scholar] [CrossRef]
- Wohlleben, W.; Bossa, N.; Mitrano, D.M.; Scott, K. Everything Falls Apart: How Solids Degrade and Release Nanomaterials, Composite Fragments, and Microplastics. NanoImpact 2024, 34, 100510. [Google Scholar] [CrossRef]
- Mourad, A.-H.I. Impact of Blending Ratio and Thermal Treatment on the Mechanical Behaviour of Polyethylene/Polypropylene Blends. In Volume 6: Materials and Fabrication, Parts A and B, Proceedings of the ASME 2008 Pressure Vessels and Piping Conference, Chicago, IL, USA, 27–31 July 2008; ASMEDC: New York, NY, USA, 2008; pp. 145–155. [Google Scholar]
- Mourad, A.-H.I. Thermo-Mechanical Characteristics of Thermally Aged Polyethylene/Polypropylene Blends. Mater. Des. 2010, 31, 918–929. [Google Scholar] [CrossRef]
- Bermúdez, M.D.; Brostow, W.; Carrión-Vilches, F.J.; Cervantes, J.J.; Pietkiewicz, D. Wear of Thermoplastics Determined by Multiple Scratching. e-Polymers 2005, 5, 1–9. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Knez, E.; Gierszewska, M.; Olewnik-Kruszkowska, E.; Grembecka, M. Microplastics Derived from Food Packaging Waste—Their Origin and Health Risks. Materials 2023, 16, 674. [Google Scholar] [CrossRef]
- Mattsson, K.; Björkroth, F.; Karlsson, T.; Hassellöv, M. Nanofragmentation of Expanded Polystyrene Under Simulated Environmental Weathering (Thermooxidative Degradation and Hydrodynamic Turbulence). Front. Mar. Sci. 2021, 7, 578178. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Corrections to “Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type”. Environ. Sci. Technol. 2018, 52, 3831–3832. [Google Scholar] [CrossRef] [PubMed]
- Kierkels, J.T.A.; Dona, C.-L.; Tervoort, T.A.; Govaert, L.E. Kinetics of Re-embrittlement of (Anti)Plasticized Glassy Polymers after Mechanical Rejuvenation. J. Polym. Sci. B Polym. Phys. 2008, 46, 134–147. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, H.; Xiang, H.; Fan, J.; Jiang, H. The Surface Degradation and Release of Microplastics from Plastic Films Studied by UV Radiation and Mechanical Abrasion. Sci. Total Environ. 2022, 838, 156369. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liang, H.; Jiang, L.; Qian, L. Effect of Nanoscale Surface Roughness on Sliding Friction and Wear in Mixed Lubrication. Wear 2023, 530–531, 204995. [Google Scholar] [CrossRef]
- Chelliah, N.; Kailas, S.V. Synergy between Tribo-Oxidation and Strain Rate Response on Governing the Dry Sliding Wear Behavior of Titanium. Wear 2009, 266, 704–712. [Google Scholar] [CrossRef]
- Randhawa, K.S.; Patel, A. The Effect of Environmental Humidity/Water Absorption on Tribo-Mechanical Performance of Polymers and Polymer Composites—A Review. Ind. Lubr. Tribol. 2021, 73, 1146–1158. [Google Scholar] [CrossRef]
- Kalin, M.; Kupec, A. The Dominant Effect of Temperature on the Fatigue Behaviour of Polymer Gears. Wear 2017, 376–377, 1339–1346. [Google Scholar] [CrossRef]
- Korku, M.; İlhan, R.; Feyzullahoğlu, E. Investigation of Effects of Environmental Conditions on Wear Behaviors of Glass Fiber Reinforced Polyester Composite Materials. Polym. Compos. 2025, 46, 355–371. [Google Scholar] [CrossRef]
- Lai, Y.; Zhou, X.; Liu, J. Separation and Enrichment of Nanoplastics from Samples. In Analysis of Microplastics and Nanoplastics; Elsevier: Amsterdam, The Netherlands, 2025; pp. 281–293. [Google Scholar]
- Shere, L.; Zhang, Z.J.; Preece, J.A. Application of Atomic Force Microscopy in Formulation Engineering. Johns. Matthey Technol. Rev. 2018, 62, 438–452. [Google Scholar] [CrossRef]
- Ishida, N. Atomic Force Microscopy. In Non-Destructive Material Characterization Methods; Elsevier: Amsterdam, The Netherlands, 2024; pp. 89–125. [Google Scholar]
- Kammoun, M.; Dupres, V.; Landoulsi, J.; Subramaniam, M.; Hawse, J.; Bensamoun, S.F. Transversal Elasticity of TIEG1 KO Muscle and Tendon Fibers Probed by Atomic Force Microscopy. Comput. Methods Biomech. Biomed. Eng. 2019, 22, S308–S310. [Google Scholar] [CrossRef]
- Lv, S.; Wang, Q.; Li, Y.; Gu, L.; Hu, R.; Chen, Z.; Shao, Z. Biodegradation of Polystyrene (PS) and Polypropylene (PP) by Deep-Sea Psychrophilic Bacteria of Pseudoalteromonas in Accompany with Simultaneous Release of Microplastics and Nanoplastics. Sci. Total Environ. 2024, 948, 174857. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Feigenbaum, E.; Suratwala, T.; Steele, W.; Wong, L.; Feit, M.D.; Miller, P.E. Nanoplastic Removal Function and the Mechanical Nature of Colloidal Silica Slurry Polishing. J. Am. Ceram. Soc. 2019, 102, 3141–3151. [Google Scholar] [CrossRef]
- Pöhl, F.; Hardes, C.; Theisen, W. Deformation Behavior and Dominant Abrasion Micro Mechanisms of Tempering Steel with Varying Carbon Content under Controlled Scratch Testing. Wear 2019, 422–423, 212–222. [Google Scholar] [CrossRef]
- Soon, Z.Y.; Tamburri, M.N.; Kim, T.; Kim, M. Estimating Total Microplastic Loads to the Marine Environment as a Result of Ship Biofouling In-Water Cleaning. Front. Mar. Sci. 2024, 11, 1502000. [Google Scholar] [CrossRef]
- Modica, F.; Basile, V.; Surace, R.; Fassi, I. Replication Study of Molded Micro-Textured Samples Made of Ultra-High Molecular Weight Polyethylene for Medical Applications. Micromachines 2023, 14, 523. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Wang, S.; Lv, G.; Gao, Y.; Chen, K.; Yang, H. Research Status and Prospect of Wear and Aging on Hydraulic Rubber Sealing Materials. Plast. Rubber Compos. 2023, 52, 249–266. [Google Scholar] [CrossRef]
- He, Y.; Yan, Y.; Geng, Y.; Hu, Z. Fabrication of None-Ridge Nanogrooves with Large-Radius Probe on PMMA Thin-Film Using AFM Tip-Based Dynamic Plowing Lithography Approach. J. Manuf. Process. 2017, 29, 204–210. [Google Scholar] [CrossRef]
- Colaço, R. An AFM Study of Single-Contact Abrasive Wear: The Rabinowicz Wear Equation Revisited. Wear 2009, 267, 1772–1776. [Google Scholar] [CrossRef]
- Reichelt, M.; Cappella, B. Wear Volume of Self-Mated Steel at the Submicron-Scale: An Atomic Force Microscopy Study. J. Tribol. 2022, 144, 061702. [Google Scholar] [CrossRef]
- Singh, V.P.; Kumar, A.; Kumar, D.; Kuriachen, B. Effect of Welding Speed on Microstructure, Nano-Mechanical and Nano-Tribological Characteristics of Dissimilar Friction Stir Welded AA6061-T6 and AZ31 Alloy. J. Adhes. Sci. Technol. 2024, 38, 2295–2317. [Google Scholar] [CrossRef]
- Stan, G.; King, S.W. Atomic Force Microscopy for Nanoscale Mechanical Property Characterization. J. Vac. Sci. Technol. B 2020, 38, 060801. [Google Scholar] [CrossRef]
- Lin, C.-T.; Liao, W.-C.; Chen, J.-Y.; Su, H.-C.; Chiang, K.-N. Design and Analysis of a Nano-Probe of the AFM Based on the Small/Large Deflection Theory. In Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology, Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; ASMEDC: New York, NY, USA, 2004; pp. 337–344. [Google Scholar]
- Krasnoborodko, S.Y.; Vysokikh, Y.E.; Bulatov, M.F.; Churikov, D.V.; Smagulova, S.A.; Shevyakov, V.I. Defocused Ion Beam Etching of the Silicon Probes for High Resolution Atomic-Force Microscopy. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; IEEE: New York, NY, USA, 2019; pp. 1063–1066. [Google Scholar]
- Xu, K.; Sun, W.; Shao, Y.; Wei, F.; Zhang, X.; Wang, W.; Li, P. Recent Development of PeakForce Tapping Mode Atomic Force Microscopy and Its Applications on Nanoscience. Nanotechnol. Rev. 2018, 7, 605–621. [Google Scholar] [CrossRef]
- Pittenger, B.; Erina, N.; Su, C. Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique. In Nanomechanical Analysis of High Performance Materials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 31–51. [Google Scholar]
- Kochan, K.; Peleg, A.Y.; Heraud, P.; Wood, B.R. Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe Single Bacterium Chemistry. J. Vis. Exp. 2020, 163, e61728. [Google Scholar] [CrossRef]
- Cho, H.; Felts, J.R.; Yu, M.-F.; Bergman, L.A.; Vakakis, A.F.; King, W.P. Improved Atomic Force Microscope Infrared Spectroscopy for Rapid Nanometer-Scale Chemical Identification. Nanotechnology 2013, 24, 444007. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Cai, M.; Tong, T.; Wang, H. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy. Sensors 2017, 17, 938. [Google Scholar] [CrossRef]
- Vladár, A.E.; Hodoroaba, V.-D. Characterization of Nanoparticles by Scanning Electron Microscopy. In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 7–27. [Google Scholar]
- Konomi, B.A.; Dhavala, S.S.; Huang, J.Z.; Kundu, S.; Huitink, D.; Liang, H.; Ding, Y.; Mallick, B.K. Bayesian Object Classification of Gold Nanoparticles. Ann. Appl. Stat. 2013, 7, 640–668. [Google Scholar] [CrossRef]
- Tsiper, S.; Dicker, O.; Kaizerman, I.; Zohar, Z.; Segev, M.; Eldar, Y.C. Sparsity-Based Super Resolution for SEM Images. Nano Lett. 2017, 17, 5437–5445. [Google Scholar] [CrossRef] [PubMed]
- John Mardinly, A. Electron Tomography and Three-Dimensional Aspects of Transmission Electron Microscopy. EDFA Tech. Artic. 2005, 7, 6–12. [Google Scholar] [CrossRef]
- Girão, A.V.; Caputo, G.; Ferro, M.C. Application of Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS). Compr. Anal. Chem. 2017, 75, 153–168. [Google Scholar]
- Hodoroaba, V.-D.; Rades, S.; Salge, T.; Mielke, J.; Ortel, E.; Schmidt, R. Characterisation of Nanoparticles by Means of High-Resolution SEM/EDS in Transmission Mode. IOP Conf. Ser. Mater. Sci. Eng. 2016, 109, 012006. [Google Scholar] [CrossRef]
- Buhr, E.; Senftleben, N.; Klein, T.; Bergmann, D.; Gnieser, D.; Frase, C.G.; Bosse, H. Characterization of Nanoparticles by Scanning Electron Microscopy in Transmission Mode. Meas. Sci. Technol. 2009, 20, 084025. [Google Scholar] [CrossRef]
- Pretorius, E. Influence of Acceleration Voltage on Scanning Electron Microscopy of Human Blood Platelets. Microsc. Res. Tech. 2010, 73, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Albalak, R.J. (Ed.) Polymer Devolatilization; Routledge: Oxfordshire, UK, 2017; ISBN 9780203742914. [Google Scholar]
- Bell, D.C.; Mankin, M.; Day, R.W.; Erdman, N. Successful Application of Low Voltage Electron Microscopy to Practical Materials Problems. Ultramicroscopy 2014, 145, 56–65. [Google Scholar] [CrossRef]
- Zheng, K.; Gao, Y.; Bai, X.; Che, R.; Zhang, Z.; Han, X.; Bando, Y.; Yang, S.; Wang, E.; Cao, Q. In Situ TEM: Theory and Applications. In Progress in Nanoscale Characterization and Manipulation; Springer: Berlin/Heidelberg, Germany, 2018; pp. 381–477. [Google Scholar]
- Slater, T.J.A.; Lewis, E.A.; Haigh, S.J. Energy Dispersive X-Ray Tomography for 3D Elemental Mapping of Individual Nanoparticles. J. Vis. Exp. 2016, 113, e52815. [Google Scholar] [CrossRef]
- Kotula, A.P.; Orski, S.V.; Brignac, K.C.; Lynch, J.M.; Heilala, B.M.J. Time-Gated Raman Spectroscopy of Recovered Plastics. Mar. Pollut. Bull. 2022, 181, 113894. [Google Scholar] [CrossRef] [PubMed]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.-J.; Voit, B. Analysis of Environmental Microplastics by Vibrational Microspectroscopy: FTIR, Raman or Both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.; Manikandan, P.; Manikandan, D.; Umapathy, S.; Padhy, H.M.; Maaza, M.; Elayaperumal, M. Noble Metal Ion Embedded Nanocomposite Glass Materials for Optical Functionality of UV–Visible Surface Plasmon Resonance (SPR) Surface-Enhanced Raman Scattering (SERS) X-Ray and Electron Microscopic Studies: An Overview. Plasmonics 2021, 16, 1461–1493. [Google Scholar] [CrossRef]
- Sobhani, Z.; Zhang, X.; Gibson, C.; Naidu, R.; Megharaj, M.; Fang, C. Identification and Visualisation of Microplastics/Nanoplastics by Raman Imaging (i): Down to 100 Nm. Water Res. 2020, 174, 115658. [Google Scholar] [CrossRef]
- Jurkschat, L.; Gill, A.J.; Milner, R.; Holzinger, R.; Evangeliou, N.; Eckhardt, S.; Materić, D. Using a Citizen Science Approach to Assess Nanoplastics Pollution in Remote High-Altitude Glaciers. Sci. Rep. 2025, 15, 1864. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Der, O.; Khaksar, H.; Gnecco, E. On the Formation and Characterization of Nanoplastics During Surface Wear Processes. Surfaces 2025, 8, 27. https://doi.org/10.3390/surfaces8020027
Der O, Khaksar H, Gnecco E. On the Formation and Characterization of Nanoplastics During Surface Wear Processes. Surfaces. 2025; 8(2):27. https://doi.org/10.3390/surfaces8020027
Chicago/Turabian StyleDer, Oguzhan, Hesam Khaksar, and Enrico Gnecco. 2025. "On the Formation and Characterization of Nanoplastics During Surface Wear Processes" Surfaces 8, no. 2: 27. https://doi.org/10.3390/surfaces8020027
APA StyleDer, O., Khaksar, H., & Gnecco, E. (2025). On the Formation and Characterization of Nanoplastics During Surface Wear Processes. Surfaces, 8(2), 27. https://doi.org/10.3390/surfaces8020027