Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Film Preparation
2.1.1. ZnO Thin Film Preparation
2.1.2. In2O3 Thin Film Preparation
2.1.3. SnO2 Thin Film Preparation
2.1.4. ZnO/α-Fe2O3, In2O3/α-Fe2O3, and SnO2/α-Fe2O3 Thin Film Preparation
2.2. Characterization Techniques
3. Results and Discussions
3.1. Structural Properties
3.2. Raman Measurements
3.3. Morphological Properties
3.4. EDX Measurments
3.5. Hall Effect Study
3.6. Photocatalytic Test
3.7. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rzaij, J.M. A novel room-temperature nitrogen dioxide gas sensor based on silver-doped cerium oxide thin film. Sens. Actuatots A Phys. 2023, 363, 114748. [Google Scholar] [CrossRef]
- Rathod, A.P.S.; Mishra, P.K.; Mishra, A. Fast-response/recovery In2O3 thin-film transistor-type NO2 gas sensor with floating-gate at low temperature. Sens. Actuators B Chem. 2023, 394, 134477. [Google Scholar]
- Zhao, T.; Ye, Y.; Guo, K.; Cui, R.; Zhang, M.; Wang, X.; Zhang, B.; Zhang, J.; Deng, C. High energy storage properties of calcium-doped barium titanate thin films with high breakdown field strength. J. Alloys Compd. 2024, 970, 172487. [Google Scholar] [CrossRef]
- Song, H.; Son, J.Y. Energy storage and mutiferroic properties of La-doped epitaxial BiFeO3 thin films according to La doping concentration. J. Energy Storage 2023, 68, 107729. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Hu, S.; Yu, K.; Yang, F.; Shi, Y.; Li, J.; Hou, M.; Liu, A.; Zheng, M.; et al. Enhanced energy storage properties in PbZrO3 thin films via the incorporation of NiO. Curr. Appl. Phys. 2023, 52, 24. [Google Scholar] [CrossRef]
- Cantos, A.; Gundogan, S.H.; Turkoglu, F.; Koseoglu, H.; Aygun, G.; Ozyuzer, L. Photovoltaic performance of magnetron sputtered antimony selenide thin film solar cells buffered by cadmium sulfide and cadmium sulfide/zinc sulfide. Thin Solid Films 2023, 784, 140070. [Google Scholar] [CrossRef]
- Franco, M.A.M.; Castaneda, C.A.R.; Romero, P.M.M.; Barragan, J.J.P.; Quintero, O.A.J.; Hu, H. A direct correlation between structural and morphological defects of TiO2 thin films on FTO substrates and photovoltaic performance of planar perovskite solar cells. Mater. Sci. Semicond. Process. 2023, 161, 107452. [Google Scholar] [CrossRef]
- Akcay, N.; Gremenok, V.F.; Ozen, Y.; Buskis, K.P.; Zaretskaya, E.P.; Ozcelik, S. Investigation on photovoltaic performance of Cu2SnS3 thin films solar cells fabricated by PF-sputtered In2S3 buffer layer. J. Alloys Compd. 2023, 949, 169874. [Google Scholar] [CrossRef]
- Yang, F.; Wang, P.; Hao, J.; Qu, J.; Cai, Y.; Yang, X.; Li, C.M.; Hu, J. Ultrasound-assisted piezoelectric photocatalysis: An effective strategy for enhancing hydrogen evolution from water splitting. Nano Energy 2023, 118, 108993. [Google Scholar] [CrossRef]
- Sarma, M.; Jaiswal, M.K.; Podder, S.; Bora, J.; Karmakar, S.; Choudhury, B.; Pal, A.R. A study on the applicability of thin film over powder for visible light photocatalysis. Phys. B Condens. Matter 2023, 670, 415354. [Google Scholar] [CrossRef]
- Li, A.; Zhang, P.; Kan, E.; Gong, J. Wettability adjustment to enhance mass transfer for heterogeneous electrocatalysis and photocatlysis. eScience 2023, 4, 100157. [Google Scholar] [CrossRef]
- Muffer, H.J.; Fischer, C.H.; Diesner, K.; Steiner, M.C.L. ILGAR- A novel film technology for sulfides. Sol. Energy Mater. Sol. Cells 2001, 67, 121–127. [Google Scholar] [CrossRef]
- Sati, D.C.; Dahshan, A.; Hegazy, H.H.; Aly, K.A.; Sharma, P. Optical and optoelectronic properties of (Ge2S8)100-xTex thin films for IR optical device fabrication. Surf. Interfaces 2023, 39, 102995. [Google Scholar] [CrossRef]
- Timoumi, A.; Alameer, O.; Alamri, S. Intensive study of coating multilayer TiO2 nanoparticles thin films used for optoelectronics devices. Results Mater. 2023, 18, 100390. [Google Scholar] [CrossRef]
- Ahmed, M.; Bakry, A.; Shaaban, E.R. Optical characteristics with high accuracy of diluted Cr doped In2O3 thin films using spectroscopic ellipsometry for optoelectronic devices. Opt. Mater. 2022, 133, 113039. [Google Scholar] [CrossRef]
- Prakash, P.; Janarthanan, B. Enhancement of sensitization and electron transfer by kumkum dye in dye in dye sensitized solar cell applications. Optik 2023, 287, 171093. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Ono, T. Magnetostriction of electroplated TbFeCo thin films. J. Magn. Magn. Mater. 2023, 577, 170799. [Google Scholar] [CrossRef]
- Semnani, S.Z.M.; Youselpour, M.; Zareidoost, A. Enhancing the biocompatibility of ZrO2 thin film on Zr-2.5Nb alloy by anodizing treatment using an electrolyte containing biofunctional groups. Thin Solid Films 2022, 753, 139279. [Google Scholar] [CrossRef]
- Nishii, H.; Iida, S.; Yamasaki, A.; Ikenoue, T.; Miyake, M.; Doi, T.; Hirato, T. Fabrication of epitaxial V2O3 thin films on Al2O3 substrates via mist chemical vapor deposition. J. Cryst. Growth 2024, 626, 127484. [Google Scholar] [CrossRef]
- Lin, B.; Cai, Y.; Wang, Y.; Zou, Y.; Gao, C.; Liu, Y.; Liu, W.; Guo, S.; Sun, C. Effects of growth temperature and reactor pressure on AlN thin film grown by metal-organic chemical vapor deposition. Thin Solid Films 2023, 783, 140037. [Google Scholar] [CrossRef]
- Khan, R.; Ali-Löytty, H.; Tukiainen, A.; Tkachenko, N.V. Comparison of the heat-treatment effect on carrier dynamics in TiO2 thin films deposited by different methods. Phys. Chem. Chem. Phys. 2021, 23, 17672. [Google Scholar] [CrossRef] [PubMed]
- Saari, J.; Ali-Loytty, H.; Kauppinen, M.M.; Hannula, M.; Khan, R.; Lahtonen, K.; Palmolahti, L.; Tukiainen, A.; Gronbeck, H.; Tkachenko, N.V.; et al. Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO2. J. Phys. Chem. C 2022, 126, 4542–4554. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, X.; Sun, Q.; Gao, W.; Yang, X.; Wang, X. Optical, electrical and thermal stability properties of Al and F co-doped ZnO thin films prepared by sol-gel spin-coating. Thin Solid Films 2023, 776, 139889. [Google Scholar] [CrossRef]
- Alofi, S.; O’Rourke, C.; Mills, A. Photocatalytic destruction of stearic acid by TiO2 films: Evidence of highly efficient transport of photogenerated electrons and holes. J. Photochem. Photobiol. A Chem. 2023, 435, 114273. [Google Scholar] [CrossRef]
- Singh, J.; Rathi, A.; Rawat, M.; Kumar, V.; Kim, K.H. The effect of manganese doping on structural, optical, and photocatalytic activity of zinc oxide nanoparticles. Compos. Parts B Eng. 2019, 166, 361–370. [Google Scholar] [CrossRef]
- Rana, S.; Kumar, A.; Dhiman, P.; Sharma, G.; Amirian, J.; Stadler, F.J. Progress in graphdiyne and phosphorene based composites and heterostructures as new age materials for photocatalytic hydrogen evolution. Fuel 2024, 356, 129630. [Google Scholar] [CrossRef]
- Mhamdi, A.; Alkhalifah, M.S.; Rajeh, S.; Labidi, A.; Amlouk, M.; Belgacem, S. Electrical and gas sensing investigations on the sprayed ZnO:Cu thin films. Phys. B 2017, 521, 178. [Google Scholar] [CrossRef]
- Noukelag, S.K.; Gummings, F.; Arendse, C.J.; Maaza, M. Physical and magnetic properties of biosynthesized ZnO/Fe2O3, ZnO/ZnFe2O4 and ZnFe2O4 nanoparticles. Results Surf. Interfaces 2023, 10, 100092. [Google Scholar] [CrossRef]
- Ivanovskaya, M.; Kotsikau, D.; Faglia, G.; Nelli, P. Influence of chemical composition factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sens. Actuators B 2003, 96, 498–503. [Google Scholar] [CrossRef]
- Yuan, T.; Jiang, Y.; Li, Y.; Zhang, D.; Yan, M. Enhanced lithium storage performance in three-dimensional porous SnO2-Fe2O3 composite anode films. Electrochimica Acta 2014, 136, 27–32. [Google Scholar] [CrossRef]
Conductivity Type | Carrier Concentration (cm−3) | Resistivity ρ (Ω.cm) | Mobility μ (cm2/V.S) | |
---|---|---|---|---|
In2O3/α-Fe2O3 | n | −1.87 × 1021 | 5.71 × 10−4 | 5.82 |
SnO2/α-Fe2O3 | n | −1.88 × 1020 | 1.49 × 10−3 | 22.20 |
Pseudomonas Aeruginosa | Bacillus Subtilis | ||||
---|---|---|---|---|---|
% Viability | % Viability | ||||
Bacteria without sample | 2 × 108 | -- | 4 × 107 | -- | |
Bacteria in the presence of | In2O3/α-Fe2O3 | 106 | 0.5 | 7.5 × 104 | 0.187 |
SnO2/α-Fe2O3 | 2 × 106 | 0.65 | 2.5 × 105 | 0.625 | |
ZnO/α-Fe2O3 | 1.3 × 106 | 1 | 4 × 106 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfaoui, A.; Mhamdi, A. Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications. Surfaces 2025, 8, 8. https://doi.org/10.3390/surfaces8010008
Arfaoui A, Mhamdi A. Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications. Surfaces. 2025; 8(1):8. https://doi.org/10.3390/surfaces8010008
Chicago/Turabian StyleArfaoui, Asma, and Ammar Mhamdi. 2025. "Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications" Surfaces 8, no. 1: 8. https://doi.org/10.3390/surfaces8010008
APA StyleArfaoui, A., & Mhamdi, A. (2025). Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications. Surfaces, 8(1), 8. https://doi.org/10.3390/surfaces8010008