Sustainable Production of Biosurfactant Grown in Medium with Industrial Waste and Use for Removal of Oil from Soil and Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganism
2.3. Preparation of Inoculum
2.4. Production of Biosurfactant
2.5. Determination of Emulsification Activity
2.6. Growth Curve
2.7. Assessment of Stability of Biosurfactant (Effects of PH, NaCl and Temperature)
2.8. Determination of Surface Tension and Critical Micelle Concentration
2.9. Isolation of Biosurfactant
2.10. Fourier-Transform Infrared Spectroscopy
2.11. Nuclear Magnetic Resonance Spectroscopy
2.12. Toxicity of Biosurfactant to Brine Shrimp, Artemia Salina
2.13. Phytotoxicity Test
2.14. Motor Oil Dispersion Test in Water
2.15. Assessment of Biosurfactant and Chemical Surfactants for Removal of Motor Oil from Sand-Kinetic Test
2.16. Removal of Hydrophobic Contaminant from Sand by Surfactants in Static Test
2.17. Analysis of Contaminants on Sand
3. Results and Discussion
3.1. Growth Curve and Biosurfactant Production
3.2. Stability of Biosurfactant Based on Emulsification Index
3.3. Stability of Biosurfactant Related to Surface Tension
3.4. Critical Micelle Concentration
3.5. Ionic Charge of Biosurfactant
3.6. Structural Characterization of Biosurfactant
3.7. Phytotoxicity Test
3.8. Toxicity of Biosurfactant to Brine Shrimp, Artemia Salina
3.9. Motor Oil Dispersion Test in Water
3.10. Experiments of Washing Hydrophobic Compounds Adsorbed to Rock
3.11. Removal of Hydrophobic Contaminant on Sand by Surfactants in Kinetic Test
3.12. Removal of Hydrophobic Contaminant on Sand by Surfactants in Static Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, I.I.; Nawawi, M.G.M.; Mohd, Z.J.; Farah, B.S. Environmental effects from petroleum product transportation spillage in Nigeria: A critical review. Environ. Sci. Pollut. Res. 2024, 31, 1719–1747. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, V.; Singh, S.; Dhanjal, D.S.; Datta, S.; Sharma, D.; Singh, N.K.; Singh, J. Biosurfactant-based bioremediation. In Bioremediation of Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 333–358. [Google Scholar] [CrossRef]
- Singh, V.; Waris, Z.; Saha, S.; Singh, J.; Padmanabhan, P. Role of Biosurfactants on Microbial Degradation of Oil-Contaminated Soils. In Microbes and Microbial Biotechnology for Green Remediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 423–441. [Google Scholar] [CrossRef]
- Eras-Muñoz, E.; Farré, A.; Sánchez, A.; Font, X.; Gea, T. Microbial biosurfactants: A review of recent environmental applications. Bioengineered 2022, 13, 12365–12391. [Google Scholar] [CrossRef] [PubMed]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef] [PubMed]
- Moutinho, L.F.; Moura, F.R.; Silvestre, R.C.; Romão-Dumaresq, A.S. Microbial biosurfactants: A broad analysis of properties, applications, biosynthesis, and techno-economical assessment of rhamnolipid production. Biotechnol. Prog. 2021, 37, e3093. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Patil, Y.; Rale, V. Biosurfactant production: Emerging trends and promising strategies. J. Appl. Microbiol. 2019, 126, 2–13. [Google Scholar] [CrossRef]
- Sodhi, A.S.; Sharma, N.; Bhatia, S.; Verma, A.; Soni, S.; Batra, N. Insights on sustainable approaches for production and applications of value added products. Chemosphere 2022, 286, 131623. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.I.; Olaniran, A.O. Production and potential biotechnological applications of microbial surfactants: An overview. Saudi J. Biol. Sci. 2021, 28, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Sun, Y.; Cao, M.; Wang, J.; Lu, J.R.; Xu, H. Rational design, properties, and applications of biosurfactants: A short review of recent advances. Curr. Opin. Colloid Interface Sci. 2020, 45, 57–67. [Google Scholar] [CrossRef]
- Cooper, D.G.; Goldenberg, B.G. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef]
- Pele, M.A.; Ribeaux, D.R.; Vieira, E.R.; Souza, A.F.; Luna, M.A.; Rodríguez, D.M.; Campos-Takaki, G.M. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron. J. Biotechnol. 2019, 38, 40–48. [Google Scholar] [CrossRef]
- Pinto, M.I.S.; Guerra, J.M.C.; Meira, H.M.; Sarubbo, L.A.; Luna, J.M. A Biosurfactant from Candida bombicola: Its Synthesis, Characterization, and its Application as a Food Emulsions. Foods 2022, 11, 561. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.; Rodríguez, D.M.; Ferreira, I.N.S.; de Almeida, S.M.; Takaki, G.M.C.; de Lima, M.A.B. Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environ. Technol. 2021, 43, 2956–2967. [Google Scholar] [CrossRef] [PubMed]
- Tiquia, S.M.; Tam, N.F.Y.; Hodgkiss, I.J. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 1996, 93, 249–256. [Google Scholar] [CrossRef] [PubMed]
- ABNT NBR 7214; Areia Normal Para Ensaio de Cimento—Especificação. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2015; p. 8.
- Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Iqbal, H.M. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Sci. Total Environ. 2020, 704, 135391. [Google Scholar] [CrossRef] [PubMed]
- López-Prieto, A.; Rodríguez-López, L.; Rincón-Fontán, M.; Cruz, J.M.; Moldes, A.B. Characterization of extracellular and cell bound biosurfactants produced by Aneurinibacillus aneurinilyticus isolated from commercial corn steep liquor. Microbiol. Res. 2021, 242, 126614. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.K.; Regar, R.K.; Dhiman, N.; Gautam, K.; Srivastava, J.K.; Patnaik, S.; Manickam, N. Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp. Appl. Food Emuls. Antibact. Agent. Bioresour. Technol. 2019, 285, 121314. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F.; Alara, O.R. Biosurfactants—A new frontier for social and environmental safety: A mini review. Biotechnol. Res. Innov. 2018, 2, 81–90. [Google Scholar] [CrossRef]
- Asgher, M.; Afzal, M.; Qamar, S.A.; Khalid, N. Optimization of biosurfactant production from chemically mutated strain of Bacillus subtilis using waste automobile oil as low-cost substrate. Environ. Sustain. 2020, 3, 405–413. [Google Scholar] [CrossRef]
- Silva, A.F.; Banat, I.M.; Giachini, A.J.; Robl, D. Fungal biosurfactants, from nature to biotechnological product: Bioprospection, production and potential applications. Bioprocess. Biosyst. Eng. 2021, 44, 2003–2034. [Google Scholar] [CrossRef] [PubMed]
- Somoza-Coutiño, G.; Wong-Villarreal, A.; Blanco-González, C.; Pérez-Sariñana, B.; Mora-Herrera, M.; Mora-Herrera, S.I.; Rivas-Caceres, R.R.; Portilla-López, N.; Lugo, J.; Vaca-Paulín, R.; et al. A Bacterial Strain of Pseudomonas aeruginosa B0406 pathogen opportunistic, produce a biosurfactant with tolerance to changes of pH, salinity and temperature. Microb. Pathog. 2020, 139, 103869. [Google Scholar] [CrossRef] [PubMed]
- Alvionita, M.; Hertadi, R.; Fazli, R.R.; Dewi, A.A.R.F.; Rose, T.O. The Study of Biosurfactant Stability and The Effect on Lipase Activity. Biol. Med. Nat. Prod. Chem. 2024, 13, 235–238. Available online: https://10.14421/biomedich.2024.131.235-238 (accessed on 20 May 2024). [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; Mcdougall, T.J. A composição da água do mar padrão e a definição da escala de salinidade da composição de referência. Deep Sea Res. Parte I Doc. Pesqui. Ocean ográfica 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Ayachit, T.; Parate, M.; Sahasrabuddhe, S.; Sansarode, D. Comparative study between surfactant and biosurfactant (sophorolipid) with characterization. World J. Pharm. Res. 2020, 9, 926. [Google Scholar]
- Radha, P.; Suhazsini, P.; Prabhu, K.; Jayakumar, A.; Kandasamy, R. Chicken tallow, a renewable source for the production of biosurfactant by Yarrowia lipolytica MTCC9520, and its application in silver nanoparticle synthesis. J. Surfactants Deterg. 2020, 23, 119–135. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.K.; Kant, C.; Verma, H.; Kumar, D.; Singh, P.P.; Modi, A.; Droby, S.; Kesawat, M.S.; Alavilli, H.; et al. Microbial biosurfactant: A new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants 2021, 10, 1472. [Google Scholar] [CrossRef] [PubMed]
- Twigg, M.S.; Baccile, N.; Banat, I.M.; Déziel, E.; Marchant, R.; Roelants, S.; Van Bogaert, I.N. Microbial biosurfactant research: Time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb. Biotechnol. 2021, 14, 147–170. [Google Scholar] [CrossRef] [PubMed]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Oladi, M.; Shokri, M.R. Multiple Benthic Indicators are Efficient for Health Assessment of Coral Reefs Subjected to Petroleum Hydrocarbons Contamination: A Case Study in the Persian Gulf. J. Hazard. Mater. 2021, 409, 124993. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf. Environ. Prot. 2016, 102, 558–566. [Google Scholar] [CrossRef]
- Sobrinho, H.B.S.; Luna, J.M.; Rufino, R.D.; Porto, A.L.F.; Sarubbo, L.A. Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Electron. J. Biotechnol. 2013, 16, 4. [Google Scholar] [CrossRef]
- Santos, E.F.; Teixeira, M.F.S.; Converti, A.; Porto, A.L.F.; Sarubbo, L.A. Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatal. Agric. Biotechnol. 2019, 17, 142–150. [Google Scholar] [CrossRef]
- Rufino, R.D.; Luna, J.M.; Marinho, P.H.C.; Farias, C.B.B.; Ferreira, S.R.M.; Sarubbo, L.A. Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. J. Pet. Sci. Eng. 2013, 109, 117–122. [Google Scholar] [CrossRef]
NaCl (%) | Engine Oil Emulsification (%) | Temperature (°C) | Engine Oil Emulsification (%) | PH | Engine Oil Emulsification (%) |
---|---|---|---|---|---|
0 | 92 ± 1.4 | 0 | 88 ± 1.5 | 2 | 90 ± 1.1 |
2 | 92 ± 1.3 | 5 | 88 ± 1.1 | 4 | 91 ± 1.1 |
4 | 90 ± 1.8 | 28 | 90 ± 1.8 | 6 | 90 ± 1.7 |
6 | 90 ± 1.2 | 70 | 90 ± 2.0 | 8 | 90 ± 1.2 |
8 | 90 ± 1.4 | 100 | 90 ± 1.2 | 10 | 90 ± 1.5 |
10 | 90 ± 1.1 | 120 | 90 ± 1.3 | 12 | 90 ± 1.2 |
NaCl (%) | Surface Tension (mN/m) | Temperature (°C) | Surface Tension (mN/m) | PH | Surface Tension (mN/m) |
---|---|---|---|---|---|
2 | 25 ± 0.3 | 0 | 28 ± 0.5 | 2 | 32 ± 0.1 |
4 | 25 ± 0.8 | 5 | 29 ± 0.1 | 4 | 33 ± 0.1 |
6 | 26 ± 0.2 | 28 | 29 ± 0.8 | 6 | 33 ± 0.2 |
8 | 26 ± 0.4 | 70 | 29 ± 0.1 | 8 | 33 ± 0.7 |
10 | 26 ± 0.1 | 100 | 30 ± 0.2 | 10 | 33 ± 0.5 |
12 | 26 ± 0.1 | 120 | 30 ± 0.3 | 12 | 33 ± 0.2 |
Removal Agent | Oil Removal (%) |
---|---|
Control (distilled water) | 10.0% ± 0.3 |
Tween 20 | 8.0% ± 0.8 |
Tween 80 | 14.0% ± 0.5 |
Crude biosurfactant | 50.0% ± 0.7 |
Isolated biosurfactant solution at ½ CMC (0.25 g/L) | 50.0% ± 0.3 |
Isolated biosurfactant solution at CMC (0.5 g/L) | 61.0% ± 0.2 |
Isolated biosurfactant solution at 2 × CMC (1.0 g/L) | 70.0% ± 0.3 |
Removal Agent. | Oil Removal (%) |
---|---|
Control (distilled water) | 10% ± 0.3 |
Tween 20 | 10% ± 0.4 |
Tween 80 | 18% ± 0.5 |
Crude biosurfactant | 17% ± 0.2 |
Isolated biosurfactant solution at ½ CMC (0.25 g/L) | 20% ± 0.2 |
Isolated biosurfactant solution at CMC (0.5 g/L) | 38% ± 0.4 |
Isolated biosurfactant solution at 2 × CMC (1.0 g/L) | 85% ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, B.G.A.; Santos, J.C.V.; Silva, R.R.; Caldas, M.C.F.; Meira, H.M.; Rufino, R.D.; Sarubbo, L.A.; Luna, J.M. Sustainable Production of Biosurfactant Grown in Medium with Industrial Waste and Use for Removal of Oil from Soil and Seawater. Surfaces 2024, 7, 537-549. https://doi.org/10.3390/surfaces7030036
Lima BGA, Santos JCV, Silva RR, Caldas MCF, Meira HM, Rufino RD, Sarubbo LA, Luna JM. Sustainable Production of Biosurfactant Grown in Medium with Industrial Waste and Use for Removal of Oil from Soil and Seawater. Surfaces. 2024; 7(3):537-549. https://doi.org/10.3390/surfaces7030036
Chicago/Turabian StyleLima, Bruna G. A., Júlio C. V. Santos, Renata R. Silva, Maria Catarina F. Caldas, Hugo M. Meira, Raquel D. Rufino, Leonie A. Sarubbo, and Juliana M. Luna. 2024. "Sustainable Production of Biosurfactant Grown in Medium with Industrial Waste and Use for Removal of Oil from Soil and Seawater" Surfaces 7, no. 3: 537-549. https://doi.org/10.3390/surfaces7030036
APA StyleLima, B. G. A., Santos, J. C. V., Silva, R. R., Caldas, M. C. F., Meira, H. M., Rufino, R. D., Sarubbo, L. A., & Luna, J. M. (2024). Sustainable Production of Biosurfactant Grown in Medium with Industrial Waste and Use for Removal of Oil from Soil and Seawater. Surfaces, 7(3), 537-549. https://doi.org/10.3390/surfaces7030036