Direct Visualization of Organometallic Intermediates on Cu(111) with Bond-Resolving Non-Contact Atomic Force Microscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, L.; Liu, P.N.; Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 2015, 48, 2765–2774. [Google Scholar] [CrossRef] [PubMed]
- Björk, J.; Hanke, F. Towards design rules for covalent nanostructures on metal surfaces. Chem. A Eur. J. 2014, 20, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Hla, S.-W.; Bartels, L.; Meyer, G.; Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Phys. Rev. Lett. 2000, 85, 2777. [Google Scholar] [CrossRef] [PubMed]
- Franc, G.; Gourdon, A. Covalent networks through on-surface chemistry in ultra-high vacuum: State-of-the-art and recent developments. Phys. Chem. Chem. Phys. 2011, 13, 14283–14292. [Google Scholar] [CrossRef] [PubMed]
- Klappenberger, F.; Zhang, Y.-Q.; Björk, J.; Klyatskaya, S.; Ruben, M.; Barth, J.V. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc. Chem. Res. 2015, 48, 2140–2150. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D.G.; Fischer, F.R.; Louie, S.G.; Crommie, M.F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol 2015, 10, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.A.; Song, F.; Nguyen, M.T.; Li, Z.; Studener, F.; Stöhr, M. Comparing Ullmann coupling on noble metal surfaces: On-surface polymerization of 1, 3, 6, 8-tetrabromopyrene on Cu (111) and Au (111). Chem. A Eur. J. 2016, 22, 5937–5944. [Google Scholar] [CrossRef] [PubMed]
- Bjork, J.; Hanke, F.; Stafstrom, S. Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 2013, 135, 5768–5775. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S. Recent advancement of Ullmann-type coupling reactions in the formation of C–C bond. ChemTexts 2016, 2, 17. [Google Scholar] [CrossRef]
- Judd, C.J.; Haddow, S.L.; Champness, N.R.; Saywell, A. Ullmann coupling reactions on Ag (111) and Ag (110); substrate influence on the formation of covalently coupled products and intermediate metal-organic structures. Sci. Rep. 2017, 7, 14541. [Google Scholar] [CrossRef]
- Sperotto, E.; van Klink, G.P.; van Koten, G.; de Vries, J.G. The mechanism of the modified Ullmann reaction. Dalton Trans. 2010, 39, 10338–10351. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl− aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359–1470. [Google Scholar] [CrossRef] [PubMed]
- Cohen, T.; Cristea, I. Kinetics and mechanism of the copper (I)-induced homogeneous Ullmann coupling of o-bromonitrobenzene. J. Am. Chem. Soc. 1976, 98, 748–753. [Google Scholar] [CrossRef]
- Wang, W.; Shi, X.; Wang, S.; Van Hove, M.A.; Lin, N. Single-molecule resolution of an organometallic intermediate in a surface-supported Ullmann coupling reaction. J. Am. Chem. Soc. 2011, 133, 13264–13267. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-H.; Koo, B.-G.; Kim, H.; Yoon, J.K.; Kim, J.-H.; Kwon, Y.-K.; Kahng, S.-J. Electronic structures of one-dimensional metal–molecule hybrid chains studied using scanning tunneling microscopy and density functional theory. Phys. Chem. Chem. Phys. 2012, 14, 7304–7308. [Google Scholar] [CrossRef] [PubMed]
- Lipton-Duffin, J.A.; Ivasenko, O.; Perepichka, D.F.; Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 2009, 5, 592–597. [Google Scholar] [CrossRef]
- Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. On-surface Ullmann polymerization via intermediate organometallic networks on Ag (111). Chem. Commun. 2014, 50, 7680–7682. [Google Scholar] [CrossRef]
- Lothrop, W.C. Biphenylene. J. Am. Chem. Soc. 1941, 63, 1187–1191. [Google Scholar] [CrossRef]
- Fan, Q.; Yan, L.; Tripp, M.W.; Krejčí, O.; Dimosthenous, S.; Kachel, S.R.; Chen, M.; Foster, A.S.; Koert, U.; Liljeroth, P. Biphenylene network: A nonbenzenoid carbon allotrope. Science 2021, 372, 852–856. [Google Scholar] [CrossRef]
- Takano, H.; Ito, T.; Kanyiva, K.S.; Shibata, T. Recent advances of biphenylene: Synthesis, reactions and uses. Eur. J. Org. Chem. 2019, 2019, 2871–2883. [Google Scholar] [CrossRef]
- Toda, F.; Garratt, P. Four-membered ring compounds containing bis (methylene) cyclobutene or tetrakis (methylene) cyclobutane moieties. Benzocyclobutadiene, benzodicyclobutadiene, biphenylene, and related compounds. Chem. Rev. 1992, 92, 1685–1707. [Google Scholar] [CrossRef]
- Perthuisot, C.; Edelbach, B.L.; Zubris, D.L.; Simhai, N.; Iverson, C.N.; Müller, C.; Satoh, T.; Jones, W.D. Cleavage of the carbon–carbon bond in biphenylene using transition metals. J. Mol. Catal. A Chem. 2002, 189, 157–168. [Google Scholar] [CrossRef]
- Miljanić, O.Š.; Vollhardt, K.P.C. [n] phenylenes: A novel class of cyclohexatrienoid hydrocarbon. In Carbon-Rich Compounds: From Molecules to Materials; Wiley: Hoboken, NJ, USA, 2006; pp. 140–197. [Google Scholar]
- Zhang, T.; Grazioli, C.; Yang, H.; Jiang, K.; Brumboiu, I.E.; Jia, L.; Liu, L.; Puglia, C.; Zhuang, X.; Wang, Y. Spectroscopic evidence of new low-dimensional planar carbon allotropes based on biphenylene via on-surface Ullmann coupling. Chemistry 2021, 3, 1057–1062. [Google Scholar] [CrossRef]
- Jones, W.D. Mechanistic studies of transition metal-mediated C–C bond activation. CC Bond Act. 2014, 346, 1–31. [Google Scholar]
- Greulich, T.W.; Suzuki, N.; Daniliuc, C.G.; Fukazawa, A.; Yamaguchi, E.; Studer, A.; Yamaguchi, S. A biphenyl containing two electron-donating and two electron-accepting moieties: A rigid and small donor–acceptor–donor ladder system. Chem. Commun. 2016, 52, 2374–2377. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.; Rong, H.-T.; Heister, K.; Yang, Y.-J.; Buck, M.; Zharnikov, M. Response of biphenyl-substituted alkanethiol self-assembled monolayers to electron irradiation: Damage suppression and odd− even effects. Langmuir 2002, 18, 3142–3150. [Google Scholar] [CrossRef]
- Seth, S.; Savitha, G.; Moorthy, J.N. Metal-Mediated Self-Assembly of a Twisted Biphenyl-Tetraacid Linker with Semi-rigid Core and Peripheral Flexibility: Concomitant Formation of Compositionally Distinct MOFs. Cryst. Growth Des. 2018, 18, 2129–2137. [Google Scholar] [CrossRef]
- Seth, S.; Jhulki, S. Porous flexible frameworks: Origins of flexibility and applications. Mater. Horiz. 2021, 8, 700–727. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chen, T.; Dong, X.; Liu, G.; Li, H.; Yang, N.; Liu, D.; Xiao, X. A comparative study of the electronic transport and gas-sensitive properties of Graphene+, T-graphene, Net-graphene, and biphenylene-based two-dimensional devices. ACS Sens. 2023, 8, 3510–3519. [Google Scholar] [CrossRef]
- Houtsma, R.K.; van Zuilen, J.; Stöhr, M. On-Surface Ullmann-Type Coupling: Reaction Intermediates and Organometallic Polymer Growth. Adv. Mater. Interfaces 2024, 11, 2300728. [Google Scholar] [CrossRef]
- Barton, D.; Gao, H.Y.; Held, P.A.; Studer, A.; Fuchs, H.; Doltsinis, N.L.; Neugebauer, J. Formation of Organometallic Intermediate States in On-Surface Ullmann Couplings. Chem. –A Eur. J. 2017, 23, 6190–6197. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, G.; Di Giovannantonio, M.; Cupo, A.; Xing, S.; Lipton-Duffin, J.; Ebrahimi, M.; Vasseur, G.; Kierren, B.; Fagot-Revurat, Y.; Tristant, D. An unexpected organometallic intermediate in surface-confined Ullmann coupling. Nanoscale 2019, 11, 7682–7689. [Google Scholar] [CrossRef]
- Fan, Q.; Zhu, J.; Gottfried, J. Organometallic Structures and Intermediates in Surface Ullmann Coupling. In Encyclopedia of Interfacial Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 343–353. [Google Scholar]
- Zhang, T.; Li, R.; Hao, X.; Zhang, Q.; Yang, H.; Hou, Y.; Hou, B.; Jia, L.; Jiang, K.; Zhang, Y. Ullmann-Like Covalent Bond Coupling without Participation of Metal Atoms. ACS Nano 2023, 17, 4387–4395. [Google Scholar] [CrossRef] [PubMed]
- Gross, L.; Mohn, F.; Moll, N.; Schuler, B.; Criado, A.; Guitián, E.; Peña, D.; Gourdon, A.; Meyer, G. Bond-Order Discrimination by Atomic Force Microscopy. Science 2012, 337, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Bartels, L.; Meyer, G.; Rieder, K.H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 1997, 71, 213–215. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Becke, A. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys 1993, 98, 5648. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Totani, R.; Grazioli, C.; Zhang, T.; Bidermane, I.; Lüder, J.; De Simone, M.; Coreno, M.; Brena, B.; Lozzi, L.; Puglia, C. Electronic structure investigation of biphenylene films. J. Chem. Phys. 2017, 146, 054705. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Wang, B.; Deng, K.; Feng, X.; Wagner, M.; Gale, J.D.; Müllen, K.; Zhi, L. Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. J. Mater. Chem. C 2013, 1, 38–41. [Google Scholar] [CrossRef]
- Zeng, Z.; Guo, D.; Wang, T.; Chen, Q.; Matèj, A.; Huang, J.; Han, D.; Xu, Q.; Zhao, A.; Jelínek, P. Chemisorption-induced formation of biphenylene dimer on Ag (111). J. Am. Chem. Soc. 2021, 144, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Gross, L.; Mohn, F.; Moll, N.; Meyer, G.; Ebel, R.; Abdel-Mageed, W.M.; Jaspars, M. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2010, 2, 821–825. [Google Scholar] [CrossRef] [PubMed]
- de Oteyza, D.G.; Gorman, P.; Chen, Y.-C.; Wickenburg, S.; Riss, A.; Mowbray, D.J.; Etkin, G.; Pedramrazi, Z.; Tsai, H.-Z.; Rubio, A. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 2013, 340, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Haapasilta, V.; Lindner, B.D.; Tahara, K.; Spijker, P.; Buitendijk, J.A.; Pawlak, R.; Meier, T.; Tobe, Y.; Foster, A.S. Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface. Nat. Commun. 2016, 7, 12711. [Google Scholar] [CrossRef] [PubMed]
- Pavliček, N.; Schuler, B.; Collazos, S.; Moll, N.; Pérez, D.; Guitián, E.; Meyer, G.; Peña, D.; Gross, L. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 2015, 7, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Pavliček, N.; Mistry, A.; Majzik, Z.; Moll, N.; Meyer, G.; Fox, D.J.; Gross, L. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017, 12, 308–311. [Google Scholar] [CrossRef]
- Jarvis, S.P.; Rashid, M.A.; Sweetman, A.; Leaf, J.; Taylor, S.; Moriarty, P.; Dunn, J. Intermolecular artifacts in probe microscope images of c 60 assemblies. Phys. Rev. B 2015, 92, 241405. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Li, Y.; Ji, H.; Wang, T.; Fan, H.; Zhang, Q.; Yang, H.; Liu, L.; Zhang, T.; Wang, Y. Direct Visualization of Organometallic Intermediates on Cu(111) with Bond-Resolving Non-Contact Atomic Force Microscopy. Surfaces 2024, 7, 529-536. https://doi.org/10.3390/surfaces7030035
Hao X, Li Y, Ji H, Wang T, Fan H, Zhang Q, Yang H, Liu L, Zhang T, Wang Y. Direct Visualization of Organometallic Intermediates on Cu(111) with Bond-Resolving Non-Contact Atomic Force Microscopy. Surfaces. 2024; 7(3):529-536. https://doi.org/10.3390/surfaces7030035
Chicago/Turabian StyleHao, Xiaoyu, Yan Li, Hongyan Ji, Tingting Wang, Haolong Fan, Quanzhen Zhang, Huixia Yang, Liwei Liu, Teng Zhang, and Yeliang Wang. 2024. "Direct Visualization of Organometallic Intermediates on Cu(111) with Bond-Resolving Non-Contact Atomic Force Microscopy" Surfaces 7, no. 3: 529-536. https://doi.org/10.3390/surfaces7030035
APA StyleHao, X., Li, Y., Ji, H., Wang, T., Fan, H., Zhang, Q., Yang, H., Liu, L., Zhang, T., & Wang, Y. (2024). Direct Visualization of Organometallic Intermediates on Cu(111) with Bond-Resolving Non-Contact Atomic Force Microscopy. Surfaces, 7(3), 529-536. https://doi.org/10.3390/surfaces7030035