Catalytically Active Materials Visualized by Scanning Photoelectron Spectro-Microscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Oxygen-Containing Functional Groups on Carbon Electrodes and ORR Processes
3.2. Size and Support Effects Examined by Correlative Microscopy on Catalytically Active Metal Particles
3.3. Correlative Microscopy for Nanoscale Exploration of Structure-Function Relationships in Catalytic Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlögl, R. Heterogeneous Catalysis. Angew. Chemie Int. Ed. 2015, 54, 3465–3520. [Google Scholar] [CrossRef] [PubMed]
- Rupprechter, G. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates. Small 2021, 17, 2004289. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Chen, D.; Zafeiratos, S. A mini review of in situ near-ambient pressure XPS studies on non-noble, late transition metal catalysts. Catal. Sci. Technol. 2019, 9, 3851–3867. [Google Scholar] [CrossRef]
- Roy, K.; Artiglia, L.; Van Bokhoven, J.A. Ambient Pressure Photoelectron Spectroscopy: Opportunities in Catalysis from Solids to Liquids and Introducing Time Resolution. ChemCatChem 2018, 10, 666–682. [Google Scholar] [CrossRef]
- Meirer, F.; Weckhuysen, B.M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 2018, 3, 324–340. [Google Scholar] [CrossRef]
- Sheng, B.; Cao, D.; Liu, C.; Chen, S.; Song, L. Support Effects in Electrocatalysis and Their Synchrotron Radiation-Based Characterizations. J. Phys. Chem. Lett. 2021, 12, 11543–11554. [Google Scholar] [CrossRef]
- Somorjai, G.A.; Rupprechter, G. The Flexible Surface: Molecular Studies Explain the Extraordinary Diversity of Surface Chemical Properties. J. Chem. Educ. 1998, 75, 161. [Google Scholar] [CrossRef]
- Ade, H.; Kirz, J.; Hulbert, S.; Johnson, E.; Anderson, E.; Kern, D. Scanning photoelectron microscope with a zone plate generated microprobe. Nucl. Instrum. Methods Phys. Res. Sect. A 1990, 291, 126–131. [Google Scholar] [CrossRef]
- Ade, H.; Smith, A.; Zhang, H.; Zhuang, G.; Kirz, J.; Rightor, E.; Hitchcock, A. X-ray spectromicroscopy of polymers and tribological surfaces at beamline X1A at the NSLS. J. Electron Spectros. Relat. Phenomena 1997, 84, 53–72. [Google Scholar] [CrossRef]
- Hayes Griffith, O.; Engel, W. Historical perspective and current trends in emission microscopy, mirror electron microscopy and low-energy electron microscopy. Ultramicroscopy 1991, 36, 1–28. [Google Scholar] [CrossRef]
- Horiba, K.; Nakamura, Y.; Nagamura, N.; Toyoda, S.; Kumigashira, H.; Oshima, M.; Amemiya, K.; Senba, Y.; Ohashi, H. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis. Rev. Sci. Instrum. 2011, 82, 113701. [Google Scholar] [CrossRef] [PubMed]
- Dudin, P.; Lacovig, P.; Fava, C.; Nicolini, E.; Bianco, A.; Cautero, G.; Barinov, A. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra. J. Synchrotron Radiat. 2010, 17, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Sezen, H.; Alemán, B.; Amati, M.; Dalmiglio, M.; Gregoratti, L. Spatially resolved chemical characterization with scanning photoemission spectromicroscopy: Towards near-ambient-pressure experiments. ChemCatChem 2015, 7, 3665–3673. [Google Scholar] [CrossRef]
- Kaulich, B.; Thibault, P.; Gianoncelli, A.; Kiskinova, M. Transmission and emission X-ray microscopy: Operation modes, contrast mechanisms and applications. J. Phys. Condens. Matter. 2011, 23, 083002. [Google Scholar] [CrossRef] [PubMed]
- Amati, M.; Barinov, A.; Gregoratti, L.; Sezen, H.; Kiskinova, M. Scanning Photoelectron Microscopy: Past, Present and Future. In Springer Handbook of Surface Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 427–448. [Google Scholar] [CrossRef]
- Abyaneh, M.K.M.K.; Gregoratti, L.; Amati, M.; Dalmiglio, M.; Kiskinova, M. Scanning Photoelectron Microscopy: A Powerful Technique for Probing Micro and Nano-Structures. E-J. Surf. Sci. Nanotechnol. 2011, 9, 158–162. [Google Scholar] [CrossRef]
- Amati, M.; Susi, T.; Jovičević-Klug, P.; Jovičević-Klug, M.; Kosmala, T.; Granozzi, G.; Agnoli, S.; Yang, P.; Zhang, Y.; Scardamaglia, M.; et al. Scanning photoelectron spectromicroscopy: From static to operando studies of functional materials. J. Electron Spectros. Relat. Phenomena. 2023, 265, 147336. [Google Scholar] [CrossRef]
- Attwood, D. Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautsro, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mähl, S.; et al. 48-Channel electron detector for photoemission spectroscopy and microscopy. Rev. Sci. Instrum. 2004, 75, 64–68. [Google Scholar] [CrossRef]
- Carrette, L.; Friedrich, K.A.; Stimming, U. Fuel Cells-Fundamentals and Applications. Fuel Cells 2001, 1, 5–39. [Google Scholar] [CrossRef]
- Cheng, F.; Chen, J. Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172. [Google Scholar] [CrossRef]
- Padbury, R.; Zhang, X. Lithium–oxygen batteries—Limiting factors that affect performance. J. Power Sources 2011, 196, 4436–4444. [Google Scholar] [CrossRef]
- Inozemtseva, A.I.; Kataev, E.Y.; Frolov, A.S.; Amati, M.; Gregoratti, L.; Beranová, K.; Dieste, V.P.; Escudero, C.; Fedorov, A.; Tarasov, A.V.; et al. On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR. Carbon N. Y. 2021, 175, 632–641. [Google Scholar] [CrossRef]
- Chang, Z.; Xu, J.; Zhang, X. Recent Progress in Electrocatalyst for Li-O2 Batteries. Adv. Energy Mater. 2017, 7, 1700875. [Google Scholar] [CrossRef]
- Šljukić, B.; Banks, C.E.; Compton, R.G. An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. J. Iran. Chem. Soc. 2005, 2, 1–25. [Google Scholar] [CrossRef]
- Cline, K.K.; McDermott, M.T.; McCreery, R.L. Anomalously Slow Electron Transfer at Ordered Graphite Electrodes: Influence of Electronic Factors and Reactive Sites. J. Phys. Chem. 1994, 98, 5314–5319. [Google Scholar] [CrossRef]
- Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Antonietti, M.; García, H. Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 2017, 46, 4501–4529. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, Z.; Dai, L. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564. [Google Scholar] [CrossRef]
- Chai, G.-L.; Hou, Z.; Ikeda, T.; Terakura, K. Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites. J. Phys. Chem. C 2017, 121, 14524–14533. [Google Scholar] [CrossRef]
- Xu, Y.; Shelton, W.A. Oxygen Reduction by Lithium on Model Carbon and Oxidized Carbon Structures. J. Electrochem. Soc. 2011, 158, A1177. [Google Scholar] [CrossRef]
- Dobrota, A.S.; Pašti, I.A.; Mentus, S.V.; Skorodumova, N.V. A DFT study of the interplay between dopants and oxygen functional groups over the graphene basal plane–implications in energy-related applications. Phys. Chem. Chem. Phys. 2017, 19, 8530–8540. [Google Scholar] [CrossRef]
- Allouche, A.; Ferro, Y. Dissociative adsorption of atmospheric molecules at vacancies on the graphite (0001) surface of samples exposed to plasma. J. Nucl. Mater. 2007, 363–365, 117–121. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, Y.H.; Hwang, Y.G.; Hahn, J.R.; Kang, H. Defect-Induced Oxidation of Graphite. Phys. Rev. Lett. 1999, 82, 217–220. [Google Scholar] [CrossRef]
- Orudzhev, F.; Sobola, D.; Ramazanov, S.; Částková, K.; Papež, N.; Selimov, D.A.; Abdurakhmanov, M.; Shuaibov, A.; Rabadanova, A.; Gulakhmedov, R.; et al. Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane. Polymers 2023, 15, 246. [Google Scholar] [CrossRef]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Kaspar, P.; Trčka, T.; Částková, K.; Kastyl, J.; Zvereva, I.; Wang, C.; Selimov, D.; et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy 2021, 90, 106586. [Google Scholar] [CrossRef]
- Itkis, D.M.; Semenenko, D.A.; Kataev, E.Y.; Belova, A.I.; Neudachina, V.S.; Sirotina, A.P.; Havecker, M.; Teschner, D.; Knop-Gericke, A.; Dudin, P.; et al. Reactivity of Carbon in Lithium–Oxygen Battery Positive Electrodes. Nano Lett. 2013, 13, 4697–4701. [Google Scholar] [CrossRef]
- Kapitanova, O.O.; Kataev, E.Y.; Usachov, D.Y.; Sirotina, A.P.; Belova, A.I.; Sezen, H.; Amati, M.; Al-Hada, M.; Gregoratti, L.; Barinov, A.; et al. Laterally Selective Oxidation of Large-Scale Graphene with Atomic Oxygen. J. Phys. Chem. C 2017, 121, 27915–27922. [Google Scholar] [CrossRef]
- Inozemtseva, A.; Rulev, A.; Zakharchenko, T.; Isaev, V.; Yashina, L.; Itkis, D. Chemistry of Li-air batteries. J. Electrochem. Soc. 2023, 159, 324–362. [Google Scholar] [CrossRef]
- Zakharchenko, T.K.; Belova, A.I.; Frolov, A.S.; Kapitanova, O.O.; Velasco-Velez, J.-J.; Knop-Gericke, A.; Vyalikh, D.; Itkis, D.M.; Yashina, L.V. Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge. Top. Catal. 2018, 61, 2114–2122. [Google Scholar] [CrossRef]
- Boudart, M. Catalysis by Supported Metals. Adv. Catal. 1969, 20, 153–166. [Google Scholar] [CrossRef]
- Hayek, K.; Kramer, R.; Paál, Z. Metal-support boundary sites in catalysis. Appl. Catal. A Gen. 1997, 162, 1–15. [Google Scholar] [CrossRef]
- Tuxen, A.; Carenco, S.; Chintapalli, M.; Chuang, C.H.; Escudero, C.; Pach, E.; Jiang, P.; Borondics, F.; Beberwyck, B.; Alivisatos, A.P.; et al. Size-Dependent Dissociation of Carbon Monoxide on Cobalt Nanoparticles. J. Am. Chem. Soc. 2013, 135, 2273–2278. [Google Scholar] [CrossRef]
- Besenbacher, F.; Lauritsen, J.V.; Wendt, S. STM studies of model catalysts. Nano Today 2007, 2, 30–39. [Google Scholar] [CrossRef]
- Liu, J. Advanced Electron Microscopy of Metal–Support Interactions in Supported Metal Catalysts. ChemCatChem 2011, 3, 934–948. [Google Scholar] [CrossRef]
- Silvestre-Albero, J.; Rupprechter, G.; Freund, H.J. Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts: Effect of Pd particle size. J. Catal. 2006, 240, 58–65. [Google Scholar] [CrossRef]
- Jørgensen, M.; Grönbeck, H. Scaling Relations and Kinetic Monte Carlo Simulations to Bridge the Materials Gap in Heterogeneous Catalysis. ACS Catal. 2017, 7, 5054–5061. [Google Scholar] [CrossRef]
- Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C.J.; Berben, P.H.; Meirer, F.; Weckhuysen, B.M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127–134. [Google Scholar] [CrossRef]
- Zeininger, J.; Raab, M.; Suchorski, Y.; Buhr, S.; Stöger-Pollach, M.; Bernardi, J.; Rupprechter, G. Reaction Modes on a Single Catalytic Particle: Nanoscale Imaging and Micro-Kinetic Modeling. ACS Catal. 2022, 12, 12774–12785. [Google Scholar] [CrossRef]
- Winkler, P.; Zeininger, J.; Suchorski, Y.; Stöger-Pollach, M.; Zeller, P.; Amati, M.; Gregoratti, L.; Rupprechter, G. How the anisotropy of surface oxide formation influences the transient activity of a surface reaction. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Zeininger, J.; Winkler, P.; Raab, M.; Suchorski, Y.; Prieto, M.J.; Tanase, L.C.; de Souza Caldas, L.; Tiwari, A.; Schmidt, T.; Stoger-Pollach, M. Pattern Formation in Catalytic H2 Oxidation on Rh: Zooming in by Correlative Microscopy. ACS Catal. 2022, 12, 11974–11983. [Google Scholar] [CrossRef]
- Schaak, A.; Imbihl, R. Bistability and formation of low work function areas in the O2+H2 reaction on a Rh(111) surface. J. Chem. Phys. 2000, 113, 9822–9829. [Google Scholar] [CrossRef]
- Visart de Bocarmé, T.; Bär, T.; Kruse, N. In situ dynamic study of hydrogen oxidation on rhodium. Ultramicroscopy 2001, 89, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Suchorski, Y.; Datler, M.; Bespalov, I.; Freytag, C.; Zeininger, J.; Rupprechter, G. Transmitting metal–oxide interaction by solitary chemical waves: H2 oxidation on ZrO2 supported Rh. Surf. Sci. 2019, 679, 163–168. [Google Scholar] [CrossRef]
- Suchorski, Y.; Datler, M.; Bespalov, I.; Zeininger, J.; Stöger-Pollach, M.; Bernardi, J.; Grönbeck, H.; Rupprechter, G. Visualizing catalyst heterogeneity by a multifrequential oscillating reaction. Nat. Commun. 2018, 9, 600. [Google Scholar] [CrossRef]
- Winkler, P.; Zeininger, J.; Raab, M.; Suchorski, Y.; Steiger-Thirsfeld, A.; Stöger-Pollach, M.; Amati, M.; Gregoratti, L.; Grönbeck, H.; Rupprechter, G. Coexisting multi-states in catalytic hydrogen oxidation on rhodium. Nat. Commun. 2021, 12, 6517. [Google Scholar] [CrossRef]
- Winkler, P.; Raab, M.; Zeininger, J.; Rois, L.M.; Suchorski, Y.; Stöger-Pollach, M.; Amati, M.; Parmar, R.; Gregoratti, L.; Rupprechter, G. Imaging Interface and Particle Size Effects by In Situ Correlative Microscopy of a Catalytic Reaction. ACS Catal. 2023, 13, 7650–7660. [Google Scholar] [CrossRef] [PubMed]
- Dahl, S.; Logadottir, A.; Egeberg, R.C.; Larsen, J.H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J.K. Role of Steps in N2 Activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817. [Google Scholar] [CrossRef]
- Santos, J.L.; Reina, T.R.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A. Gold promoted Cu/ZnO/Al2O3 catalysts prepared from hydrotalcite precursors: Advanced materials for the WGS reaction. Appl. Catal. B Environ. 2017, 201, 310–317. [Google Scholar] [CrossRef]
- Besenbacher, F.; Chorkendorff, I.; Clausen, B.S.; Hammer, B.; Molenbroek, A.M.; Nørskov, J.K.; Stensgaard, I. Design of a Surface Alloy Catalyst for Steam Reforming. Science 1998, 279, 1913–1915. [Google Scholar] [CrossRef]
- Frey, H.; Beck, A.; Huang, X.; van Bokhoven, J.A.; Willinger, M.G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022, 376, 982–987. [Google Scholar] [CrossRef]
- Boffa, A.; Lin, C.; Bell, A.T.; Somorjai, G.A. Promotion of CO and CO2 Hydrogenation over Rh by Metal Oxides: The Influence of Oxide Lewis Acidity and Reducibility. J. Catal. 1994, 149, 149–158. [Google Scholar] [CrossRef]
- Igarashi, A.; Ohtaka, T.; Honnma, T.; Fukuhara, C. The Role of Zirconium Dioxide in the Activation of Water and as the Catalytic Site for Low-Temperature Steam Reforming Over Rh/ZrO2. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1993; pp. 2083–2086. [Google Scholar] [CrossRef]
- Lackner, P.; Choi, J.I.J.; Diebold, U.; Schmid, M. Substoichiometric ultrathin zirconia films cause strong metal–support interaction. J. Mater. Chem. A 2019, 7, 24837–24846. [Google Scholar] [CrossRef]
- Bernal, S.; Calvino, J.; Cauqui, M.; Gatica, J.; Larese, C.; Omil, J.P.; Pintado, J. Some recent results on metal/support interaction effects in NM/CeO2 (NM: Noble metal) catalysts. Catal. Today 1999, 50, 175–206. [Google Scholar] [CrossRef]
- Fu, Q.; Wagner, T.; Olliges, S.; Carstanjen, H.-D. Metal−Oxide Interfacial Reactions: Encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 2005, 109, 944–951. [Google Scholar] [CrossRef]
- Willinger, M.G.; Zhang, W.; Bondarchuk, O.; Shaikhutdinov, S.; Freund, H.; Schlögl, R. A Case of Strong Metal–Support Interactions: Combining Advanced Microscopy and Model Systems to Elucidate the Atomic Structure of Interfaces. Angew. Chemie Int. Ed. 2014, 53, 5998–6001. [Google Scholar] [CrossRef]
- Liu, Z.; Grinter, D.C.; Lustemberg, P.G.; Nguyen-Phan, T.D.; Zhou, Y.; Luo, S.; Waluyo, I.; Crumlin, E.J.; Stacchiola, D.J.; Zhou, J.; et al. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C−H Bond Breaking. Angew. Chemie Int. Ed. 2016, 55, 7455–7459. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Qian, K.; Huang, W. Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts. ACS Catal. 2022, 12, 1268–1287. [Google Scholar] [CrossRef]
- Yates, J.T.; Thiel, P.A.; Weinberg, W.H. The catalytic reaction between adsorbed oxygen and hydrogen on Rh(111). Surf. Sci. 1979, 82, 45–68. [Google Scholar] [CrossRef]
- Sault, A.G.; Madix, R.J.; Campbell, C.T. Adsorption of oxygen and hydrogen on Au(110)-(1 × 2). Surf. Sci. 1986, 169, 347–356. [Google Scholar] [CrossRef]
- Óvári, L.; Berkó, A.; Vári, G.; Gubó, R.; Farkas, A.P.; Kónya, Z. The growth and thermal properties of Au deposited on Rh(111): Formation of an ordered surface alloy. Phys. Chem. Chem. Phys. 2016, 18, 25230–25240. [Google Scholar] [CrossRef]
- Africh, C.; Esch, F.; Li, W.X.; Corso, M.; Hammer, B.; Rosei, R.; Comelli, G. Two-Step Reaction on a Strained, Nanoscale Segmented Surface. Phys. Rev. Lett. 2004, 93, 126104. [Google Scholar] [CrossRef] [PubMed]
- Bespalov, I.; Datler, M.; Buhr, S.; Rachael, W.; Rupprechter, G.; Suchorski, Y. Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study. Ultramicroscopy 2015, 159, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Herbert, F.W.; Senanayake, S.D.; Yildiz, B. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation. Appl. Phys. Lett. 2015, 106, 101603. [Google Scholar] [CrossRef]
- Hoang, D.-L.; Berndt, H.; Lieske, H. Hydrogen spillover phenomena on Pt/ZrO2. Catal. Lett. 1995, 31, 165–172. [Google Scholar] [CrossRef]
- Suchorski, Y.; Kozlov, S.M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K.M.; Rupprechter, G. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 2018, 17, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Schweinar, K.; Beeg, S.; Hartwig, C.; Rajamathi, C.R.; Kasian, O.; Piccinin, S.; Prieto, M.J.; Tanase, L.C.; Gottlob, D.M.; Schmidt, T.; et al. Formation of a 2D Meta-stable Oxide by Differential Oxidation of AgCu Alloys. ACS Appl. Mater. Interfaces. 2020, 12, 23595–23605. [Google Scholar] [CrossRef] [PubMed]
- Amati, M.; Gregoratti, L.; Zeller, P.; Greiner, M.; Scardamaglia, M.; Junker, B.; Ruß, T.; Weimar, U.; Barsan, N.; Favaro, M.; et al. Near ambient pressure photoelectron spectro-microscopy: From gas-solid interface to operando devices. J. Phys. D. Appl. Phys. 2021, 54, 204004. [Google Scholar] [CrossRef]
- Kasian, O.; Geiger, S.; Stock, P.; Polymeros, G.; Breitbach, B.; Savan, A.; Ludwig, A.; Cherevko, S.; Mayrhofer, K.J.J. On the Origin of the Improved Ruthenium Stability in RuO2–IrO2 Mixed Oxides. J. Electrochem. Soc. 2016, 163, F3099–F3104. [Google Scholar] [CrossRef]
- Lahn, L.; Mingers, A.M.; Savan, A.; Ludwig, A.; Kasian, O. Low Ti Additions to Stabilize Ru-Ir Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem 2024, 11, e202300399. [Google Scholar] [CrossRef]
- Saveleva, V.A.; Wang, L.; Luo, W.; Zafeiratos, S.; Ulhaq-Bouillet, C.; Gago, A.S.; Friedrich, K.A.; Savinova, E.R. Uncovering the Stabilization Mechanism in Bimetallic Ruthenium–Iridium Anodes for Proton Exchange Membrane Electrolyzers. J. Phys. Chem. Lett. 2016, 7, 3240–3245. [Google Scholar] [CrossRef]
- Danilovic, N.; Subbaraman, R.; Chang, K.C.; Chang, S.H.; Kang, Y.; Snyder, J.; Paulikas, A.P.; Strmcnik, D.; Kim, Y.T.; Myers, D.; et al. Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments. Angew. Chemie Int. Ed. 2014, 53, 14016–14021. [Google Scholar] [CrossRef]
- Roller, J.M.; Arellano-Jiménez, M.J.; Jain, R.; Yu, H.; Carter, C.B.; Maric, R. Oxygen Evolution during Water Electrolysis from Thin Films Using Bimetallic Oxides of Ir-Pt and Ir-Ru. J. Electrochem. Soc. 2013, 160, F716–F730. [Google Scholar] [CrossRef]
- Siracusano, S.; Hodnik, N.; Jovanovic, P.; Ruiz-Zepeda, F.; Šala, M.; Baglio, V.; Aricò, A.S. New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis. Nano Energy 2017, 40, 618–632. [Google Scholar] [CrossRef]
- Thompson, K.; Larson, D.J.; Ulfig, R.M. Pre-sharpened and Flat-top Microtip Coupons: A Quantitative Comparison for Atom-Probe Analysis Studies. Microsc. Microanal. 2005, 11, 882–883. [Google Scholar] [CrossRef]
- Schweinar, K.; Nicholls, R.L.R.L.; Rajamathi, C.R.C.R.; Zeller, P.; Amati, M.; Gregoratti, L.; Raabe, D.; Greiner, M.; Gault, B.; Kasian, O. Probing catalytic surfaces by correlative scanning photoemission electron microscopy and atom probe tomography. J. Mater. Chem. A. 2020, 8, 388–400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amati, M.; Yashina, L.V.; Winkler, P.; Sparwasser, K.; Milosz, Z.; Rupprechter, G.; Gregoratti, L. Catalytically Active Materials Visualized by Scanning Photoelectron Spectro-Microscopy. Surfaces 2024, 7, 442-459. https://doi.org/10.3390/surfaces7030028
Amati M, Yashina LV, Winkler P, Sparwasser K, Milosz Z, Rupprechter G, Gregoratti L. Catalytically Active Materials Visualized by Scanning Photoelectron Spectro-Microscopy. Surfaces. 2024; 7(3):442-459. https://doi.org/10.3390/surfaces7030028
Chicago/Turabian StyleAmati, Matteo, Lada V. Yashina, Philipp Winkler, Kevin Sparwasser, Zygmunt Milosz, Günther Rupprechter, and Luca Gregoratti. 2024. "Catalytically Active Materials Visualized by Scanning Photoelectron Spectro-Microscopy" Surfaces 7, no. 3: 442-459. https://doi.org/10.3390/surfaces7030028
APA StyleAmati, M., Yashina, L. V., Winkler, P., Sparwasser, K., Milosz, Z., Rupprechter, G., & Gregoratti, L. (2024). Catalytically Active Materials Visualized by Scanning Photoelectron Spectro-Microscopy. Surfaces, 7(3), 442-459. https://doi.org/10.3390/surfaces7030028