Interactions between Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals and Surfaces: An Ellipsometric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CTAB-Modified CNCs (CTAB-CNCs)
2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Wide-Angle X-ray Diffraction (WAXD)
2.5. Dynamic Light Scattering (DLS)
2.6. Transmission Electron Microscopy (TEM)
2.7. Scanning Electrical Microscopy (SEM)
2.8. Spin Coating of the CNC and CTAB-CNC Dispersions
2.9. Wettability and Surface Energy
2.10. Immersion Coating of CNC and CTAB-CNC Dispersions
2.11. Ellipsometry
3. Results
3.1. Adsorption of CTAB Molecules on CNCs
3.2. Effects of CTAB Adsorption on CNCs
3.3. Ellipsometric Study and Adsorption of CNCs and CTAB-CNCs onto Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjbar, D.; Raeiszadeh, M.; Lewis, L.; MacLachlan, M.J.; Hatzikiriakos, S.G. Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: A kinetic, equilibrium, and mechanistic investigation. Cellulose 2020, 27, 3211–3232. [Google Scholar] [CrossRef]
- Gong, X.; Wang, Y.; Tian, Z.; Zheng, X.; Chen, L. Controlled production of spruce cellulose gels using an environmentally “green” system. Cellulose 2014, 21, 1667–1678. [Google Scholar] [CrossRef]
- Boluk, Y.; Lahiji, R.; Zhao, L.; McDermott, M.T. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf. A Physicochem. Eng. Asp. 2011, 377, 297–303. [Google Scholar] [CrossRef]
- Grishkewich, N.; Mohammed, N.; Tang, J.; Tam, K.C. Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interface Sci. 2017, 29, 32–45. [Google Scholar] [CrossRef]
- Elanthikkal, S.; Francis, T.; Sangeetha, C.; Unnikrishnan, G. Cellulose Whisker-Based Green Polymer Composites. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 461–494. [Google Scholar]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Shopsowitz, K.E.; Qi, H.; Hamad, W.Y.; MacLachlan, M.J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422–425. [Google Scholar] [CrossRef]
- Lin, N.; Huang, J.; Dufresne, A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale 2012, 4, 3274–3294. [Google Scholar] [CrossRef]
- Roman, M.; Gray, D.G. Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. Langmuir 2005, 21, 5555–5561. [Google Scholar] [CrossRef]
- Sunasee, R.; Hemraz, U.D.; Ckless, K. Cellulose nanocrystals: A versatile nanoplatform for emerging biomedical applications. Expert Opin. Drug Deliv. 2016, 13, 1243–1256. [Google Scholar] [CrossRef]
- Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291–296. [Google Scholar] [CrossRef]
- Gong, X.; Liu, T.; Zhang, H.; Liu, Y.; Boluk, Y. Release of cellulose nanocrystal particles from natural rubber latex composites into immersed aqueous media. ACS Appl. Bio Mater. 2021, 4, 1413–1423. [Google Scholar] [CrossRef]
- Jahan, Z.; Niazi, M.B.K.; Gregersen, Ø.W. Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J. Ind. Eng. Chem. 2018, 57, 113–124. [Google Scholar] [CrossRef]
- Surov, O.V.; Voronova, M.I.; Afineevskii, A.V.; Zakharov, A.G. Polyethylene oxide films reinforced by cellulose nanocrystals: Microstructure-properties relationship. Carbohydr. Polym. 2018, 181, 489–498. [Google Scholar] [CrossRef]
- Nessi, V.; Falourd, X.; Maigret, J.-E.; Cahier, K.; D’orlando, A.; Descamps, N.; Gaucher, V.; Chevigny, C.; Lourdin, D. Cellulose nanocrystals-starch nanocomposites produced by extrusion: Structure and behavior in physiological conditions. Carbohydr. Polym. 2019, 225, 115123. [Google Scholar] [CrossRef]
- Fortunati, E.; Armentano, I.; Zhou, Q.; Iannoni, A.; Saino, E.; Visai, L.; Berglund, L.A.; Kenny, J.M. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 2012, 87, 1596–1605. [Google Scholar] [CrossRef]
- Rusin, C.J.; El Bakkari, M.; Du, R.; Boluk, Y.; McDermott, M.T. Plasmonic cellulose nanofibers as water-dispersible surface-enhanced Raman scattering substrates. ACS Appl. Nano Mater. 2020, 3, 6584–6597. [Google Scholar] [CrossRef]
- Salajková, M.; Berglund, L.A.; Zhou, Q. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J. Mater. Chem. 2012, 22, 19798–19805. [Google Scholar] [CrossRef]
- Gong, X.; Wang, Y.; Chen, L. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohydr. Polym. 2017, 169, 295–303. [Google Scholar] [CrossRef]
- Kaboorani, A.; Riedl, B. Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind. Crops Prod. 2015, 65, 45–55. [Google Scholar] [CrossRef]
- Abitbol, T.; Marway, H.; Cranston, E.D. Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord. Pulp Pap. Res. J. 2014, 29, 46–57. [Google Scholar] [CrossRef]
- Prathapan, R.; Thapa, R.; Garnier, G.; Tabor, R.F. Modulating the zeta potential of cellulose nanocrystals using salts and surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 11–18. [Google Scholar] [CrossRef]
- An, X.; Long, Y.; Ni, Y. Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. Carbohydr. Polym. 2017, 156, 253–258. [Google Scholar] [CrossRef]
- Habibi, Y.; Foulon, L.; Aguié-Béghin, V.; Molinari, M.; Douillard, R. Langmuir–Blodgett films of cellulose nanocrystals: Preparation and characterization. J. Colloid Interface Sci. 2007, 316, 388–397. [Google Scholar] [CrossRef]
- Podsiadlo, P.; Choi, S.-Y.; Shim, B.; Lee, J.; Cuddihy, M.; Kotov, N.A. Molecularly engineered nanocomposites: Layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 2005, 6, 2914–2918. [Google Scholar] [CrossRef]
- Esparza, Y.; Ngo, T.-D.; Fraschini, C.; Boluk, Y. Aggregate morphology and aqueous dispersibility of spray-dried powders of cellulose nanocrystals. Ind. Eng. Chem. Res. 2019, 58, 19926–19936. [Google Scholar] [CrossRef]
- Neugebauer, J.M. [18] Detergents: An overview. Methods Enzymol. 1990, 182, 239–253. [Google Scholar]
- Habibi, Y.; Hoeger, I.; Kelley, S.S.; Rojas, O.J. Development of Langmuir−Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors. Langmuir 2010, 26, 990–1001. [Google Scholar] [CrossRef]
- Nam, S.; French, A.D.; Condon, B.D.; Concha, M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 2016, 135, 1–9. [Google Scholar] [CrossRef]
- Gong, X.; Kalantari, M.; Aslanzadeh, S.; Boluk, Y. Interfacial interactions and electrospinning of cellulose nanocrystals dispersions in polymer solutions: A review. J. Dispers. Sci. Technol. 2022, 43, 945–977. [Google Scholar] [CrossRef]
- Humlíček, J. Polarized light and ellipsometry. In Handbook of Ellipsometry; Springer: Berlin/Heidelberg, Germany, 2005; pp. 3–91. [Google Scholar]
- Li, W.; Xiao, F.; Su, H.; Wang, D.; Yang, X. Investigation of adsorption and photocatalytic activities of in situ cetyltrimethylammonium bromide-modified Bi/BiOCl heterojunction photocatalyst for organic contaminants removal. RSC Adv. 2016, 6, 93309–93317. [Google Scholar] [CrossRef]
- Pirich, C.L.; Picheth, G.F.; Machado, J.P.E.; Sakakibara, C.N.; Martin, A.A.; de Freitas, R.A.; Sierakowski, M.R. Influence of mechanical pretreatment to isolate cellulose nanocrystals by sulfuric acid hydrolysis. Int. J. Biol. Macromol. 2019, 130, 622–626. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Wang, L.-J.; Li, S.-J.; Adhikari, B. Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydr. Polym. 2010, 81, 128–133. [Google Scholar] [CrossRef]
- Silvério, H.A.; Neto, W.P.F.; Dantas, N.O.; Pasquini, D. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind. Crops Prod. 2013, 44, 427–436. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, C.; Zhang, L. Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/PVA sponges. Macromol. Mater. Eng. 2010, 295, 137–145. [Google Scholar] [CrossRef]
- Zainuddin, N.; Ahmad, I.; Kargarzadeh, H.; Ramli, S. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr. Polym. 2017, 163, 261–269. [Google Scholar] [CrossRef]
- Sun, C.; Berg, J.C. A review of the different techniques for solid surface acid–base characterization. Adv. Colloid Interface Sci. 2003, 105, 151–175. [Google Scholar] [CrossRef]
- Good, R.J.; Chaudhury, M.K.; van Oss, C.J. Theory of Adhesive Forces Across Interfaces: 2. Interfacial Hydrogen Bonds as Acid—Base Phenomena and as Factors Enhancing Adhesion. In Fundamentals of Adhesion; Springer: Berlin/Heidelberg, Germany, 1991; pp. 153–172. [Google Scholar]
- Gassan, J.; Gutowski, V.S. Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos. Sci. Technol. 2000, 60, 2857–2863. [Google Scholar] [CrossRef]
- Bi, Z.; Liao, W.; Qi, L. Wettability alteration by CTAB adsorption at surfaces of SiO2 film or silica gel powder and mimic oil recovery. Appl. Surf. Sci. 2004, 221, 25–31. [Google Scholar] [CrossRef]
- Boluk, Y.; Zhao, L.; Incani, V. Dispersions of nanocrystalline cellulose in aqueous polymer solutions: Structure formation of colloidal rods. Langmuir 2012, 28, 6114–6123. [Google Scholar] [CrossRef]
Solvent | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) |
---|---|---|---|---|
DI water | 72.80 | 21.80 | 25.50 | 25.50 |
Formamide | 58.00 | 39.00 | 2.28 | 39.60 |
Diiodomethane | 50.80 | 50.80 | 0.00 | 0.00 |
Sample | θ°water | θ°diiodomethane | θ°formamide |
---|---|---|---|
Glass | 12 ± 2 | 18 ± 2.5 | 8 ± 1 |
CNCs | 16 ± 2 | 22 ± 3 | 11 ± 2 |
CTAB-CNCs-2 | 56 ± 1.5 | 45 ± 1 | 38 ± 2 |
Sample | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | |
---|---|---|---|---|---|
Glass | 40.2 | 31.71 | 8.38 | 29.99 | 71.91 |
CNCs | 39.42 | 31.34 | 8.4 | 29.23 | 70.76 |
CTAB-CNCs-2 | 34.22 | 16.16 | 5.97 | 11.0 | 50.38 |
Direct Immersion Coating | |
---|---|
Layer | Thickness (nm) |
CNCs | 19.5 nm ± 3 |
CTAB-CNCs | 39.67 nm ± 5 |
Polymer-Based Immersion Coating | |
---|---|
Layer | Thickness (nm) |
Si | 2000 |
SiO2 | 508 nm ± 5 |
PEI (100 ppm) | 90 nm ± 12 |
CNCs (0.05 w/w%) | 54.5 nm ± 14 |
CNCs (0.5 w/w%) | 103.5 nm ± 13 |
Polymer Coating (nm) Thickness (nm) | CNCs (nm) | CTAB-CNCs (nm) |
---|---|---|
CMC: 40 ± 4 | 60 ± 5 | 105 ± 8 |
HEC: 70 ± 8 | 140 ± 10 | 206 ± 8 |
PEI: 120 ± 7 | 160 ± 14 | 70 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Ismail, M.F.; Boluk, Y. Interactions between Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals and Surfaces: An Ellipsometric Study. Surfaces 2024, 7, 428-441. https://doi.org/10.3390/surfaces7020027
Gong X, Ismail MF, Boluk Y. Interactions between Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals and Surfaces: An Ellipsometric Study. Surfaces. 2024; 7(2):428-441. https://doi.org/10.3390/surfaces7020027
Chicago/Turabian StyleGong, Xiaoyu, Md Farhad Ismail, and Yaman Boluk. 2024. "Interactions between Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals and Surfaces: An Ellipsometric Study" Surfaces 7, no. 2: 428-441. https://doi.org/10.3390/surfaces7020027
APA StyleGong, X., Ismail, M. F., & Boluk, Y. (2024). Interactions between Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals and Surfaces: An Ellipsometric Study. Surfaces, 7(2), 428-441. https://doi.org/10.3390/surfaces7020027