Analysis of the Interfacial Adhesion between a Stainless-Steel Fiber and an Epoxy Resin by the Single Fiber Microdroplet Test
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Treatment
2.3. Characterization
3. Results and Discussion
3.1. Surface Morphology
3.2. Mechanical Properties of a Single Fiber
3.3. Interfacial Properties of a Single Fiber
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miyahara, Y.; Kako, K. Initiation behavior of stress corrosion cracking for type 316L stainless steel with controlled distribution of surface work hardened layer in high temperature water. Denryoku Chu-ou Kenkyu-jo Houkoku 2010, 42, 1–4. [Google Scholar]
- Chen, L.J.; Chen, M.; Zhou, H.-D.; Chen, J.M. Preparation of super-hydrophobic surface on stainless steel. Appl. Surf. Sci. 2008, 255, 3459–3462. [Google Scholar] [CrossRef]
- Niemi, R.; Mahiout, A.; Siivinen, J.; Mahlberg, R.; Likonen, J.; Nikkola, J.; Mannila, J.; Vuorio, T.; Johansson, L.-S.; Söderberg, O.; et al. Surface pretreatment of austenitic stainless steel and copper by chemical, plasma electrolytic or CO2 cryoblasting techniques for sol–gel coating. Surf. Coat. Technol. 2010, 204, 2424–2431. [Google Scholar] [CrossRef]
- Johnson, A.C.; Hayes, S.A.; Jones, F. The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test. Compos. Part A Appl. Sci. Manuf. 2012, 43, 65–72. [Google Scholar] [CrossRef]
- Kim, B.W.; Nairn, J.A. Observations of Fiber Fracture and Interfacial Debonding Phenomena Using the Fragmentation Test in Single Fiber Composites. J. Compos. Mater. 2002, 36, 1825–1858. [Google Scholar] [CrossRef]
- McCarthy, E.D.; Soutis, C. Determination of interfacial shear strength in continuous fibre composites by multi-fibre fragmentation: A review. Compos. Part A Appl. Sci. Manuf. 2019, 118, 281–292. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Lilholt, H. Fiber pull-out test and single fiber fragmentation test-analysis and modelling. IOP Conf. Series Mater. Sci. Eng. 2016, 139, 012009. [Google Scholar] [CrossRef]
- Seghini, M.C.; Touchard, F.; Sarasini, F.; Chocinski-Arnault, L.; Mellier, D.; Tirillò, J. Interfacial adhesion assessment in flax/epoxy and in flax/vinylester composites by single yarn fragmentation test: Correlation with micro-CT analysis. Compos. Part A Appl. Sci. Manuf. 2018, 113, 66–75. [Google Scholar] [CrossRef]
- Zarges, J.; Kaufhold, C.; Feldmann, M.; Heim, H.-P. Single fiber pull-out test of regenerated cellulose fibers in polypropylene: An energetic evaluation. Compos. Part A Appl. Sci. Manuf. 2018, 105, 19–27. [Google Scholar] [CrossRef]
- Kelly, A.; Tyson, W. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 1965, 13, 329–350. [Google Scholar] [CrossRef]
- Wang, D.; Bai, T.; Cheng, W.; Xu, C.; Wang, G.; Cheng, H.; Han, G. Surface Modification of Bamboo Fibers to Enhance the Interfacial Adhesion of Epoxy Resin-Based Composites Prepared by Resin Transfer Molding. Polymers 2019, 11, 2107. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.A.; Soufen, C.A.; Orlandi, M.O. Carbon Fiber Reinforced Polymer and Epoxy Adhesive Tensile Test Failure Analysis Using Scanning Electron Microscopy. Mater. Res. 2017, 20, 951–961. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Drzal, L. Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 1992, 23, 2–27. [Google Scholar] [CrossRef]
- Graupner, N.; Rößler, J.; Ziegmann, G.; Müssig, J. Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: A critical review of pull-out test, microbond test and single fibre fragmentation test results. Compos. Part A Appl. Sci. Manuf. 2014, 63, 133–148. [Google Scholar] [CrossRef]
- Awal, A.; Cescutti, G.; Ghosh, S.B.; Müssig, J. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos. Part A Appl. Sci. Manuf. 2011, 42, 50–56. [Google Scholar] [CrossRef]
- Dilsiz, N.; Wightman, J. Effect of acid–base properties of unsized and sized carbon fibers on fiber/epoxy matrix adhesion. Colloids Surf. A Physicochem. Eng. Asp. 2000, 164, 325–336. [Google Scholar] [CrossRef]
- Craven, J.; Cripps, R.; Viney, C. Evaluating the silk/epoxy interface by means of the Microbond Test. Compos. Part A Appl. Sci. Manuf. 2000, 31, 653–660. [Google Scholar] [CrossRef]
- Rashkovan, I.; Korabel’Nikov, Y. The effect of fiber surface treatment on its strength and adhesion to the matrix. Compos. Sci. Technol. 1997, 57, 1017–1022. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Ni | Cr | |
---|---|---|---|---|---|---|---|
SUS 304 | ≤0.08 % | ≤1.00% | ≤2.00% | ≤0.04% | ≤0.03% | 8–10% | 18–20% |
Equivalent Weight | Viscosity (cps at 25 °C) | Specific Gravity (20 °C) | |
---|---|---|---|
Epoxy resin | 180–190 g/eq | ~700–1100 | 1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, M.; Lee, S.G. Analysis of the Interfacial Adhesion between a Stainless-Steel Fiber and an Epoxy Resin by the Single Fiber Microdroplet Test. Surfaces 2020, 3, 594-604. https://doi.org/10.3390/surfaces3040040
Kwon M, Lee SG. Analysis of the Interfacial Adhesion between a Stainless-Steel Fiber and an Epoxy Resin by the Single Fiber Microdroplet Test. Surfaces. 2020; 3(4):594-604. https://doi.org/10.3390/surfaces3040040
Chicago/Turabian StyleKwon, MiYeon, and Seung Goo Lee. 2020. "Analysis of the Interfacial Adhesion between a Stainless-Steel Fiber and an Epoxy Resin by the Single Fiber Microdroplet Test" Surfaces 3, no. 4: 594-604. https://doi.org/10.3390/surfaces3040040
APA StyleKwon, M., & Lee, S. G. (2020). Analysis of the Interfacial Adhesion between a Stainless-Steel Fiber and an Epoxy Resin by the Single Fiber Microdroplet Test. Surfaces, 3(4), 594-604. https://doi.org/10.3390/surfaces3040040