A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibuprofen Tin Complexes against Ultraviolet Radiation
Abstract
:1. Introduction
2. Experiment Section
2.1. Chemicals and Instruments
2.2. Synthesis of Ph3SnL Complex (1)
2.3. Synthesis of Bu2SnL2 Complex (2)
2.4. Synthesis of Bu2SnOHL Complex (3)
2.5. Preparation of PVC Films
2.6. Utilizing the FTIR Technique to Investigate the Photo-Degradation of PVC
2.7. Utilizing the Weight Loss Technique to Investigate the Photo-Degradation of PVC
2.8. Calculation of the Average Molecular Weight ( of PVC
3. Results and Discussion
3.1. Characterization of Synthesized Complexes
3.2. Utilizing FTIR Technique to Examine the Photo-Stability of PVC Films
3.3. Utilizing Weight Loss to Examine the Photo-Stability of PVC Films
3.4. Calculation of the Average Molecular Weight () by Utilizing Viscosity
3.5. Utilizing Energy Dispersive X-ray (EDX) to Examine the Photo-Stability of PVC Films
3.6. Morphological Analysis of PVC Films
3.7. Photo-Stabilization Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olushola Sunday, A.; Abdullahi Alafara, B.; Godwin Oladele, O. Toxicity and speciation analysis of organotin compounds. Chem. Spec. Bioavailab. 2012, 24, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Pellerito, L.; Nagy, L. Organotin (IV)n+ complexes formed with biologically active ligands: Equilibrium and structural studies, and some biological aspects. Coord. Chem. Rev. 2002, 224, 111–150. [Google Scholar] [CrossRef]
- Marzorati, S.; Verotta, L.; Trasatti, S.P. Green corrosion inhibitors from natural sources and biomass wastes. Molecules 2019, 24, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umoren, S.A.; Solomon, M.M. Recent developments on the use of polymers as corrosion inhibitors—A review. Open Mater. Sci. J. 2014, 8, 39–54. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Al-Mashhadani, M.H.; Hashim, H.; Ahmed, D.S.; Yousif, E. Morphological, Color Impact and Spectroscopic Studies of New Schiff Base Derived from 1,2,4-Triazole Ring. Prog. Color Colorants Coat. 2021, 14, 27–34. [Google Scholar]
- Makhdoomi, A.; Ahamed, M.B.; Deshmukh, K.; Faisal, M. Electromagnetic interference shielding properties of polyvinylchloride (PVC), barium titanate (BaTiO3) and nickel oxide (NiO) based nanocomposites. Polym. Test. 2019, 77, 105925. [Google Scholar] [CrossRef]
- Taha, T.A.; Azab, A.A. Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J. Mol. Struct. 2019, 1178, 39–44. [Google Scholar] [CrossRef]
- Elashmawi, I.S.; Hakeem, N.A.; Marei, L.K.; Hanna, F.F. Structure and performance of ZnO/PVC nanocomposites. Phys. B Phys. Condens. Matter. 2010, 405, 4163–4169. [Google Scholar] [CrossRef]
- Allsopp, M.W.; Vianello, G. Poly(Vinyl Chloride) in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Liu, T.; Jiang, P.; Liu, H.; Li, M.; Dong, Y.; Wang, R.; Wang, Y. Performance testing of a green plasticizer based on lactic acid for PVC. Polym. Test. 2017, 61, 205–213. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Lucki, J.; Rabek, J.F.; Rånby, B.; Qu, B.J.; Sustic, A.; Vogl, O. Surface photografting of polymerizable 2-(2-hydroxyphenyl) 2H-benzotriazoles as ultra-violet stabilizers. Polymer 1990, 31, 1772–1781. [Google Scholar] [CrossRef]
- Moraczewski, K.; Stepczyńska, M.; Malinowski, R.; Karasiewicz, T.; Jagodziński, B.; Rytlewski, P. The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers 2019, 11, 575. [Google Scholar] [CrossRef] [Green Version]
- Martins, L.M.; Hazra, S.; da Silva, M.F.C.; Pombeiro, A.J.L. A sulfonated Schiff base dimethyltin (IV) coordination polymer: Synthesis, characterization and application as a catalyst for ultrasound-or microwave-assisted Baeyer–Villiger oxidation under solvent-free conditions. RSC Adv. 2016, 6, 78225–78233. [Google Scholar] [CrossRef]
- González-Falcón, E.; Arellano, M.; Sanchez-Peña, M.J.; González-Ortiz, L.J. A Quantitative Spectroscopic Study of the Bleaching Phenomena in Plasticized Formulations Containing PVC Exposed to Outdoor Conditions. Polymers 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Sabaa, M.W.; Oraby, E.H.; Naby, A.S.A.; Mohamed, R.R. Anthraquinone derivatives as organic stabilizers for rigid poly (vinyl chloride) against photo-degradation. Eur. Polym. J. 2005, 1, 2530–2543. [Google Scholar] [CrossRef]
- Bufaroosha, M.; Salih, N.; Hadi, A.G.; Ahmed, D.S.; Al-mashhadani, M.H.; Yousif, E. The Effect of UV Aging on the Structure of PVC in the Presence of Organotin (IV) Compounds. Al-Nahrain J. Sci. 2020, 23, 57–61. [Google Scholar] [CrossRef]
- Zhang, X.; Pi, H.; Guo, S. Photostabilizing efficiency of ultraviolet light stabilizers for rigid poly(vinyl chloride) against photo-oxidation. Polym. Eng. Sci. 2013, 53, 378–388. [Google Scholar] [CrossRef]
- Huang, Z.; Ding, A.; Guo, H.; Lu, G.; Huang, X. Construction of nontoxic polymeric UV-absorber with great resistance to UV-photoaging. Sci. Rep. 2016, 6, 25508. [Google Scholar] [CrossRef] [Green Version]
- Yousif, E.; Bakir, E.; Salimon, J.; Salih, N. Evaluation of Schiff bases of 2,5-dimercapto-1,3,4-thiadiazole as photostabilizer for poly (methyl methacrylate). J. Saudi Chem. Soc. 2012, 16, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Dong, L.; Xie, H.; Wan, L.; Liu, Z.; Xiong, C. Ultraviolet light aging properties of PVC/CaCO3 composites. J. Appl. Polym. Sci. 2013, 127, 2749–2756. [Google Scholar] [CrossRef]
- Ahmed, D.S.; El-Hiti, G.A.; Hameed, A.S.; Yousif, E.; Ahmed, A. New tetra-Schiff bases as efficient photostabilizers for poly(vinyl chloride). Molecules 2017, 22, 1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, R.; El-Hiti, G.A.; Ahmed, A.; Yousif, E. Poly (vinyl chloride) doped by 2-(4-isobutylphenyl) propanoate metal complexes: Enhanced resistance to UV irradiation. Arab. J. Sci. Eng. 2017, 42, 4307–4315. [Google Scholar] [CrossRef]
- Kadhom, M.; Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 2018, 11, 219–230. [Google Scholar] [CrossRef]
- Deanin, R.D.; Reynolds, H.H.; Ozcayir, Y. Thermal stabilization of polyvinyl chloride by group II metal laurates1, 2. J. Appl. Polym. Sci. 1969, 13, 1247–1252. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Zhang, L.; Xu, S.; Zhou, Q.; Zhu, Y.; Qu, X. Main factors in preparation of antibacterial particles/PVC composite. China Particuology 2004, 2, 226–229. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, C.; Pavlinek, V.; Saha, P.; Wang, H. Surface modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl. Surf. Sci. 2006, 252, 4154–4160. [Google Scholar] [CrossRef]
- Birmingham, J.N. The effect of surface oxidation and titanium dioxide on exterior PVC color retention. J. Vinyl. Addit. Technol. 1995, 1, 84–87. [Google Scholar] [CrossRef]
- Beltrán, M.; García, J.C.; Marcilla, A. Infrared spectral changes in PVC and plasticized PVC during gelation and fusion. Eur. Polym. J. 1997, 33, 453–462. [Google Scholar] [CrossRef]
- Rabek, J.; Ranby, B. Photodegradation, Photooxidation and Photostabilization of Polymers; John Wiley: New York, NY, USA, 1975. [Google Scholar]
- Yousif, E.; Haddad, R.; Yusop, R.M. Ultra Violet Spectra Studies of Polystyrene Films in Presence of Some Transition Metal Complexes with 4-amino-5-(pyridyl)-4h-1,2,4-triazole-3-thiol. Orient. J. Chem. 2015, 31, 591–596. [Google Scholar]
- Yusop, R.; Shalan, N.; Ahmed, A.; Derawi, D.; Al-Amiery, A.; Kadhum, A.; Haddad, R.; Yousif, E. Photochemical and Physical Study of PVC-Amines Polymers. Aust. J. Basic Appl. Sci. 2014, 8, 394–401. [Google Scholar]
- Mark, J.E. Physical Properties of Polymers Handbook; Springer: New York, NY, USA, 2007. [Google Scholar]
- Mohammed, A.; El-Hiti, G.A.; Yousif, E.; Ahmed, A.A.; Ahmed, D.S.; Alotaibi, M.H. Protection of Poly(Vinyl Chloride) Films against Photodegradation using Various Valsartan Tin Complexes. Polymers 2020, 12, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, R.; Banerjee, S.; Roy, P.; Nath, M. Organotin (IV) complexes of NSAID, ibuprofen, X-ray structure of Ph3Sn (IBF), binding and cleavage interaction with DNA and in vitro cytotoxic studies of several organotin complexes of drugs. Appl. Organomet. Chem. 2020, 34, e5283. [Google Scholar] [CrossRef]
- Refat, M.S.; Mohamed, G.G.; El-Sayed, M.Y.; Killa, H.; Fetooh, H.; Al-Omar, M.A.; Naglah, A.M. Preparation, Spectroscopic, Theoretical Thermodynamic and Antimicrobial Discussions of Zr (IV), Ce (III) and Th (IV) Ibuprofen Drug Complexes. J. Comput. Theor. Nanosci. 2016, 13, 5269–5276. [Google Scholar] [CrossRef]
- Shahid, K.; Ali, S.; Shahzadi, S.; Badshah, A.; Khan, K.M.; Maharvi, G.M. Organotin(IV) complexes of aniline derivatives. I. Synthesis, spectral and antibacterial studies of di- and triorganotin(IV) derivatives of 4-bromomaleanilic acid. Synth. React. Inorg. Met-Org. Chem. 2003, 33, 1221–1235. [Google Scholar] [CrossRef]
- Andrady, A.; Searle, N. Photodegradation of rigid PVC formulations. II. Spectral sensitivity to light-induced yellowing by polychromatic light. J. Appl. Polym. Sci. 1989, 37, 2789–2802. [Google Scholar]
- Rasheed, R.; Mansoor, H.; Yousif, E.; Hameed, A.; Farina, Y.; Graisa, A. Photostabilizing of PVC films by 2-(aryl)-5-[4-(aryloxy)-phenyl]-1,3,4-oxadiazole compounds. Eur. J. Res. 2009, 30, 464–477. [Google Scholar]
- Allcock, H.; Lampe, F.; Mark, J.E. Contemporary Polymer Chemistry, 3rd ed.; Pearson Prentice-Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Blanco Jerez, L.M.; Rangel Oyervides, L.D.; Gómez, A.; Jiménez-Pérez, V.M.; Muñoz-Flores, B.M. Electrochemical metallization with Sn of (E)-4-((4-nitrobenzylidene)amino)phenol in non-aqueous media: Characterization and biological activity of the organotin compound. Int. J. Electrochem. Sci. 2016, 11, 45–53. [Google Scholar]
- Farjamia, M.; Vatanpourb, V.; Moghadassi, A. Fabrication of a new emulsion polyvinyl chloride (EPVC) nanocomposite ultrafiltration membrane modified by para-hydroxybenzoate alumoxane (PHBA) additive to improve permeability and antifouling performance. Chem. Eng. Res. Des. 2020, 153, 8–20. [Google Scholar] [CrossRef]
- Alotaibi, M.H.; El-Hiti, G.A.; Yousif, E.; Ahmed, D.S.; Hashim, H.; Hameed, A.S.; Ahmed, A. Evaluation of the use of polyphosphates as photostabilizers and in the formation of ball-like polystyrene materials. J. Polym. Res. 2019, 26, 161. [Google Scholar]
- Shi, W.; Zhang, J.; Shi, X.-M.; Jiang, G.-D. Different photodegradation processes of PVC with different average degrees of polymerization. J. Appl. Polym. Sci. 2008, 107, 528–540. [Google Scholar] [CrossRef]
- Folarin, O.M.; Sadiku, E.R. Thermal stabilizers for poly(vinyl chloride): A review. Int. J. Phys. Sci. 2011, 6, 4323–4330. [Google Scholar]
- Pospíšil, J.; Klemchuk, P.P. Oxidation Inhibition in Organic Materials; CRC Press: Boca Raton, FL, USA, 1989; Volume 1, pp. 48–49. [Google Scholar]
- Jellinek, H. Aspects of Degradation and Stabilization of Polyolefines; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Li, D.; Zhou, M.; Xie, L.; Yu, X.; Yu, Y.; Ai, H.; Tang, S. Synergism of pentaerythritol-zinc with β-diketone and calcium stearate in poly(vinyl chloride) thermal stability. Polym. J. 2013, 45, 775–782. [Google Scholar]
- Shyichuk, A.V.; White, J.R. Analysis of chain-scission and crosslinking rates on the photooxidation of polystyrene. J. Appl. Polym. Sci. 2000, 77, 3015–3023. [Google Scholar]
- Balakit, A.A.; Ahmed, A.; El-Hiti, G.A.; Smith, K.; Yousif, E. Synthesis of new thiophene derivatives and their use as photostabilizers for rigid poly(vinyl chloride). Int. J. Polym. Sci. 2015, 2015, 510390. [Google Scholar]
Complex | Code | Colour | Melting Point (°C) | Yield (%) | Found (Calculated) (%) | ||
---|---|---|---|---|---|---|---|
C | H | Sn | |||||
Ibuprofen | L | white | 75–78 | - | (75.69) | (8.80) | - |
Ph3SnL | 1 | white | 210–212 | 97 | 66.98 (67.05) | 5.75 (5.81) | 21.25 (21.38) |
Bu2SnL2 | 2 | white | 190–192 | 72 | 63.47 (63.46) | 8.20 (8.15) | 18.47 (18.45) |
Bu2SnOHL | 3 | white | 233–235 | 92 | 55.35 (55.41) | 7.88 (7.97) | 26.01 (26.08) |
Compounds | vs (OH) | vas (COO) | vs (COO) | Δν (COO) | ν (Sn-C) | ν (Sn-O) |
---|---|---|---|---|---|---|
L | 3300 | 1720 | 1419 | 301 | _ | _ |
Ph3SnL | _ | 1716 | 1423 | 293 | 551 | 443 |
Bu2SnL2 | _ | 1716 | 1419 | 297 | 555 | 482 |
Bu2SnOL | _ | 1627 | 1404 | 223 | 543 | 478 |
Compound | NMR (DMSO-d6) Chemical Shifts ppm | |
---|---|---|
1H (500 MHz) | 119Sn (107 MHz) | |
L | 12.27 (s, 1H, COOH), 7.20 (d, J = 8.0, 2H, CH aromatic ring), 7.10 (d, J = 7.6, 2H, CH aromatic ring), 3.46 (q, 1H, CH), 2.41 (d, J = 8.0, 2H, CH2), 1.82 (m, 1H, CH), 1.78 (d, 3H, CH3), 0.86 (d, 6H, 2CH3). | – |
1 | 8.01–7.66 (br m, 15H, CH aromatic ring), 7.21–7.48 (m, 4H, CH aromatic ring), 3.77 (q, 1H, CH), 2.43 (d, 2H, CH2), 1.84 (m, 1H, CH), 1.75 (d, 3H, CH3), 0.88 (d, 6H, 2CH3). | −171.4 |
2 | 7.08–7.19 (d, 8H, CH aromatic ring), 3.64 (q, 2H, 2CH), 2.42 (d, 4H, 2CH2), 1.83 (m, 2H, 2CH), 1.77 (d, 2CH3, 6H), 1.33–1.63 (m, propyl of dibut, 12H), 0.82–0.86 (m, 18H, 6CH3). | −255.2 |
3 | 6.85–7.17 (d, 4H, CH aromatic ring), 3.74 (q, 1H, CH), 2.46 (d, 2H, CH2), 2.08 (s, OH), 1.78 (m, 1H, CH), 1.46 (d, 3H, CH3), 1.23–1.37 (m, propyl of dibut, 12H), 0.85–0.98 (m, 4CH3, 12H). | −226.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watheq, B.; Yousif, E.; Al-Mashhadani, M.H.; Mohammed, A.; Ahmed, D.S.; Kadhom, M.; Jawad, A.H. A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibuprofen Tin Complexes against Ultraviolet Radiation. Surfaces 2020, 3, 579-593. https://doi.org/10.3390/surfaces3040039
Watheq B, Yousif E, Al-Mashhadani MH, Mohammed A, Ahmed DS, Kadhom M, Jawad AH. A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibuprofen Tin Complexes against Ultraviolet Radiation. Surfaces. 2020; 3(4):579-593. https://doi.org/10.3390/surfaces3040039
Chicago/Turabian StyleWatheq, Baraa, Emad Yousif, Mohammed H. Al-Mashhadani, Alaa Mohammed, Dina S. Ahmed, Mohammed Kadhom, and Ali H. Jawad. 2020. "A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibuprofen Tin Complexes against Ultraviolet Radiation" Surfaces 3, no. 4: 579-593. https://doi.org/10.3390/surfaces3040039
APA StyleWatheq, B., Yousif, E., Al-Mashhadani, M. H., Mohammed, A., Ahmed, D. S., Kadhom, M., & Jawad, A. H. (2020). A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibuprofen Tin Complexes against Ultraviolet Radiation. Surfaces, 3(4), 579-593. https://doi.org/10.3390/surfaces3040039