Low-Temperature Synthesis Strategy for MoS2 Slabs Supported on TiO2(110)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS 2 Monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120. [Google Scholar] [CrossRef] [Green Version]
- Silambarasan, K.; Archana, J.; Harish, S.; Navaneethan, M.; Ganesh, R.S.; Ponnusamy, S.; Muthamizhchelvan, C.; Hara, K. One-Step Fabrication of Ultrathin Layered 1T@2H Phase MoS2 with High Catalytic Activity Based Counter Electrode for Photovoltaic Devices. J. Mater. Sci. Technol. 2020, 51, 94–101. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Qu, J.; Li, J. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Clausen, B.S.; Topsøe, H.; Lægsgaard, E.; Lauritsen, J.V.; Besenbacher, F. Scanning tunneling microscopy studies of TiO2-supported hydrotreating catalysts: Anisotropic particle shapes by edge-specific MoS2-support bonding. J. Catal. 2009, 263, 98–103. [Google Scholar] [CrossRef]
- Brunet, S.; Mey, D.; Pérot, G.; Bouchy, C.; Diehl, F. On the hydrodesulfurization of FCC gasoline: A review. Appl. Catal. A Gen. 2005, 278, 143–172. [Google Scholar] [CrossRef]
- Song, C.; Ma, X. New Design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B Environ. 2003, 41, 207–238. [Google Scholar] [CrossRef]
- Somorjai, G.A.; De Beer, V.H.J. Structure and Function of The Catalyst and The Promoter In Co—Mo Hydrodesuifurization Catalysts. Catal. Rev. 1989, 31, 1–41. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Tang, Y.; Luo, S.; Liu, Y.; Zhang, S.; Zeng, Y.; Xu, Y. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 Nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2015, 164, 1–9. [Google Scholar] [CrossRef]
- Kooyman, P.J.; Hensen, E.J.M.; De Jong, A.M.; Niemantsverdriet, J.W.; Van Veen, J.A.R. The observation of nanometer-sized entities in sulphided mo-based catalysts on various supports. Catal. Lett. 2001, 74, 49–53. [Google Scholar] [CrossRef]
- Shido, T.; Prins, R. Why EXAFS Underestimated the size of small supported MoS2 particles. J. Phys. Chem. B 1998, 102, 8426–8435. [Google Scholar] [CrossRef]
- Galhenage, R.P.; Yan, H.; Rawal, T.B.; Le, D.; Brandt, A.J.; Maddumapatabandi, T.D.; Nguyen, N.; Rahman, T.S.; Chen, D.A. MoS2 nanoclusters grown on TiO2: Evidence for new adsorption sites at edges and sulfur vacancies. J. Phys. Chem. C 2019, 123, 7185–7201. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Xiang, M.; Zeng, H.; Shao, X. Single-layered MoS2 directly grown on rutile TiO2(110) for enhanced interfacial charge transfer. ACS Nano 2019, 13, 6083–6089. [Google Scholar] [CrossRef]
- Coulier, L.; De Beer, V.H.J.; Van Veen, J.A.R.; Niemantsverdriet, J.W. On the formation of cobalt-molybdenum sulfides in silica-supported hydrotreating model catalysts. Top. Catal. 2000, 13, 99–108. [Google Scholar] [CrossRef]
- Sanders, A.F.H.; De Jong, A.M.; De Beer, V.H.J.; Van Veen, J.A.R.; Niemantsverdriet, J.W. Formation of cobalt-molybdenum sulfides in hydrotreating catalysts: A surface science approach. Appl. Surf. Sci. 1999, 144, 380–384. [Google Scholar] [CrossRef]
- Escobar, J.; Toledo, J.A.; Cortés, M.A.; Mosqueira, M.L.; Pérez, V.; Ferrat, G.; López-Salinas, E.; Torres-García, E. Highly active sulfided CoMo catalyst on nano-structured TiO2. Catal. Today 2005, 106, 222–226. [Google Scholar] [CrossRef]
- Uetsuka, H.; Onishi, H.; Harada, Y.; Sakama, H.; Sakashita, Y. Microscope observation of MoS2 nanoparticles synthesized on rutile TiO2 single crystals. e-J. Surf. Sci. Nanotechnol. 2004, 2, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Uetsuka, H.; Onishi, H.; Ikeda, S.; Harada, Y.; Sakama, H.; Sakashita, Y. Atomic force microscope observation of MoS2 particles synthesized on mica, MoS2, and graphite. e-J. Surf. Sci. Nanotechnol. 2003, 1, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Leliveld, R.G.; Van Dillen, A.J.; Geus, J.W.; Koningsberger, D.C. A Mo-K edge XAFS study of the metal sulfide-support interaction in (Co)Mo supported alumina and titania catalysts. J. Catal. 1997, 165, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Leliveld, R.G.; Van Dillen, A.J.; Geus, J.W.; Koningsberger, D.C. The sulfidation of γ-Alumina and titania supported (cobalt)molybdenum oxide catalysts monitored by EXAFS. J. Catal. 1997, 171, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Hebenstreit, E.L.D.; Hebenstreit, W.; Diebold, U. Structures of sulfur on TiO2(1 1 0) determined by scanning tunneling microscopy, X-ray photoelectron spectroscopy and low-energy electron diffraction. Surf. Sci. 2001, 470, 347–360. [Google Scholar] [CrossRef]
- Hebenstreit, E.L.; Hebenstreit, W.; Geisler, H.; Thornburg, S.N.; Ventrice, C.A.; Hite, D.A.; Sprunger, P.T. Sulfur on TiO2(110) studied with resonant photoemission. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 461, 87–97. [Google Scholar]
- Hebenstreit, E.L.D.; Hebenstreit, W.; Diebold, U. Adsorption of sulfur on TiO2(110) studied with STM, LEED and XPS: Temperature-dependent change of adsorption site combined with O-S exchange. Surf. Sci. 2000, 461, 87–97. [Google Scholar] [CrossRef]
- Hrbek, J.; Rodriguez, J.A.; Dvorak, J.; Jirsak, T. Sulfur adsorption and reaction with a Tio2(110) surface: O↔s exchange and sulfide formation. Collect. Czechoslov. Chem. Commun. 2001, 66, 1149–1163. [Google Scholar] [CrossRef]
- Herbschleb, C.T.; Van Der Tuijn, P.C.; Roobol, S.B.; Navarro, V.; Bakker, J.W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M.E.; Verdoes, G.; Van Spronsen, M.A.; et al. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions. Rev. Sci. Instrum. 2014, 85, 83703. [Google Scholar] [CrossRef]
- Wagner, C.D. Sensitivity factors for XPS analysis of surface atoms. J. Electron Spectros. Relat. Phenom. 1983, 32, 99–102. [Google Scholar] [CrossRef]
- Rost, M.J.; Crama, L.; Schakel, P.; Van Tol, E.; Van Velzen-Williams, G.B.E.M.; Overgauw, C.F.; Ter Horst, H.; Dekker, H.; Okhuijsen, B.; Seynen, M.; et al. Scanning probe microscopes go video rate and beyond. Rev. Sci. Instrum. 2005, 76, 053710. [Google Scholar] [CrossRef] [Green Version]
- Rost, M.J.; van Baarle, G.J.C.; Katan, A.J.; van Spengen, W.M.; Schakel, P.; van Loo, W.A.; Oosterkamp, T.H.; Frenken, J.W.M. Video-rate scanning probe control challenges: Setting the stage for a microscopy revolution. Asian J. Control 2009, 11, 110–129. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Kesler, V.G.; Pervukhina, N.V.; Zhang, Z. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J. Electron Spectros. Relat. Phenom. 2006, 152, 18–24. [Google Scholar] [CrossRef]
- Domenichini, B.; Pétigny, S.; Blondeau-Patissier, V.; Steinbrunn, A.; Bourgeois, S. Effect of the surface stoichiometry on the interaction of Mo with TiO2 (110). Surf. Sci. 2000, 468, 192–202. [Google Scholar] [CrossRef]
- Blondeau-Patissier, V.; Lian, G.D.; Domenichini, B.; Steinbrunn, A.; Bourgeois, S.; Dickey, E.C. Molybdenum thin-film growth on rutile titanium dioxide (1 1 0). Surf. Sci. 2002, 506, 119–128. [Google Scholar] [CrossRef]
- Prunier, J.; Domenichini, B.; Li, Z.; Møller, P.J.; Bourgeois, S. A photoemission study of molybdenum hexacarbonyl adsorption and decomposition on TiO2(1 1 0) surface. Surf. Sci. 2007, 601, 1144–1152. [Google Scholar] [CrossRef]
- Domenichini, B.; Petukhov, M.; Rizzi, G.A.; Sambi, M.; Bourgeois, S.; Granozzi, G. Epitaxial growth of molybdenum on TiO2(1 1 0). Surf. Sci. 2003, 544, 135–146. [Google Scholar] [CrossRef]
- Bruix, A.; Füchtbauer, H.G.; Tuxen, A.K.; Walton, A.S.; Andersen, M.; Porsgaard, S.; Besenbacher, F.; Hammer, B.; Lauritsen, J.V. In situ detection of active edge sites in single-layer MoS2 catalysts. ACS Nano 2015, 9, 9322–9330. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Muijsers, J.C.; Van Wolput, J.H.M.C.; Verhagen, C.P.J.; Niemantsverdriet, J.W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem. 1996, 100, 14144–14150. [Google Scholar] [CrossRef] [Green Version]
- Bremmer, G.M.; Van Haandel, L.; Hensen, E.J.M.; Frenken, J.W.M.; Kooyman, P.J. Instability of NiMoS2 and CoMoS2 Hydrodesulfurization catalysts at ambient conditions: A Quasi in situ high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy study. J. Phys. Chem. C 2016, 120, 19204–19211. [Google Scholar] [CrossRef] [Green Version]
- Bremmer, G.M.; van Haandel, L.; Hensen, E.J.M.; Frenken, J.W.M.; Kooyman, P.J. The effect of oxidation and resulfidation on (Ni/Co)MoS2 hydrodesulfurisation catalysts. Appl. Catal. B Environ. 2019, 243, 145–150. [Google Scholar] [CrossRef]
- Diebold, U. Structure and properties of TiO2 Surfaces: A brief review. Appl. Phys. A Mater. Sci. Process. 2003, 76, 681–687. [Google Scholar] [CrossRef]
- Diebold, U.; Li, M.; Dulub, O.; Hebenstreit, E.L.D.; Hebenstreit, W. The relationship between bulk and surface properties of rutile TiO2(110). Surf. Rev. Lett. 2000, 7, 613–617. [Google Scholar] [CrossRef]
- Diebold, U.; Lehman, J.; Mahmoud, T.; Kuhn, M.; Leonardelli, G.; Hebenstreit, W.; Schmid, M.; Varga, P. Intrinsic defects on a TiO2(110)(1 × 1) surface and their reaction with oxygen: A scanning tunneling microscopy study. Surf. Sci. 1998, 411, 137–153. [Google Scholar] [CrossRef]
- Diebold, U.; Anderson, J.F.; Ng, K.O.; Vanderbilt, D. Evidence for the Tunneling site on transition-metal oxides: TiO2(110). Phys. Rev. Lett. 1996, 77, 1322–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Hebenstreit, W.; Diebold, U.; Tyryshkin, A.M.; Bowman, M.K.; Dunham, G.G.; Henderson, M.A. The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals. J. Phys. Chem. B 2000, 104, 4944–4950. [Google Scholar] [CrossRef]
- Berkó, A.; Magony, A.; Szökõ, J. Characterization of Mo deposited on a TiO2(110) surface by scanning tunneling microscopy and auger electron spectroscopy. Langmuir 2005, 21, 4562–4570. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Barteau, M.A.; Chen, J.G. A comparison of gold and molybdenum nanoparticles on TiO2(1 1 0) 1 × 2 reconstructed single crystal surfaces. Surf. Sci. 2003, 526, 323–331. [Google Scholar] [CrossRef]
- Campbell, C.T. Metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. J. Chem. Soc. Faraday Trans. 1996, 92, 1435–1445. [Google Scholar] [CrossRef]
- Diebold, U.; Pan, J.M.; Madey, T.E. Ultrathin metal films on TiO2(110): Metal overlayer spreading and surface reactivity. Surf. Sci. 1993, 287, 896–900. [Google Scholar] [CrossRef]
- Diebold, U.; Pan, J.M.; Madey, T.E. Ultrathin metal film growth on TiO2(110): An overview. Surf. Sci. 1995, 331, 845–854. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Hrbek, J.; Chang, Z.; Dvorak, J.; Jirsak, T.; Maiti, A. Importance of O vacancies in the behavior of oxide surfaces: Adsorption of sulfur on (formula presented). Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65. [Google Scholar] [CrossRef]
- Helveg, S.; Lauritsen, J.V.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J.K.; Clausen, B.S.; Topsøe, H.; Besenbacher, F. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 2000, 84, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Lauritsen, J.V.; Kibsgaard, J.; Olesen, G.H.; Moses, P.G.; Hinnemann, B.; Helveg, S.; Nørskov, J.K.; Clausen, B.S.; Topsøe, H.; Lægsgaard, E.; et al. Location and Coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 2007, 249, 220–233. [Google Scholar] [CrossRef]
- Han, X.; Tong, X.; Liu, X.; Chen, A.; Wen, X.; Yang, N.; Guo, X.Y. Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal. 2018, 8, 1828–1836. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Chaturvedi, S.; Kuhn, M.; Hrbek, J. Reaction of H2S and S2 with metal/oxide surfaces: Band-gap size and chemical reactivity. J. Phys. Chem. B 1998, 102, 5511–5519. [Google Scholar] [CrossRef]
- Hartmann, N.; Biener, J.; Madix, R.J. Monitoring the interaction of sulfur dioxide with a TiO2(110) surface at 300 K by scanning tunneling microscopy. Surf. Sci. 2002, 505, 81–92. [Google Scholar] [CrossRef]
- Le, D.; Sun, D.; Lu, W.; Aminpour, M.; Wang, C.; Ma, Q.; Rahman, T.S.; Bartels, L. Growth of aligned Mo6S6 nanowires on Cu(111). Surf. Sci. 2013, 611, 1–4. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Yang, J.; Saeys, M.; Joachim, C. Surface Reconstruction of MoS2 to Mo2S3. Surf. Sci. 2008, 602, 2628–2633. [Google Scholar] [CrossRef]
- Sun, D.; Lu, W.; Le, D.; Ma, Q.; Aminpour, M.; Alcántara Ortigoza, M.; Bobek, S.; Mann, J.; Wyrick, J.; Rahman, T.S.; et al. An MoS x structure with high affinity for adsorbate interaction. Angew. Chem. Int. Ed. 2012, 51, 10284–10288. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Tuxen, A.; Levisen, M.; Lægsgaard, E.; Gemming, S.; Seifert, G.; Lauritsen, J.V.; Besenbacher, F. Atomic-scale structure of Mo6S6 nanowires. Nano Lett. 2008, 8, 3928–3931. [Google Scholar] [CrossRef]
- Bao, Y.; Yang, M.; Tan, S.J.R.; Liu, Y.P.; Xu, H.; Liu, W.; Nai, C.T.; Feng, Y.P.; Lu, J.; Loh, K.P. Substoichiometric molybdenum sulfide phases with catalytically active basal planes. J. Am. Chem. Soc. 2016, 138, 14121–14128. [Google Scholar] [CrossRef]
- Chen, G.; Song, X.; Guan, L.; Cha, J.; Zhang, H.; Wang, S.; Pan, J.; Tao, J. Defect assisted coupling of a MoS2/TiO2 interface and tuning of its electronic structure. Nanotechnology 2016, 27, 355203. [Google Scholar] [CrossRef]
Components | Mo Metal | MoOx | MoO2 | MoS2 |
---|---|---|---|---|
Binding energy (eV) | 228.0 | 228.7 | 229.8 | 229.2 |
ΔBE * (eV) | 3.15 | 3.15 | 3.15 | 3.15 |
Components | MoSx | S 2s | S2− 2p | S22− 2p |
Binding energy (eV) | 228.3, 228.8 | 226.2 | 161.8 | 163.1 |
ΔBE * (eV) | 3.15 | 1.16 | 1.16 |
Mo Coverage (ML) | Mo:S | MoS2:MoSx | S2−:S22− |
---|---|---|---|
0.25 | 1:2.31 | 1:0.241 | 1:0.329 |
0.49 | 1:2.22 | 1:0.096 | 1:0.056 |
0.61 | 1:2.24 | 1:0.093 | 1:0.062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabhu, M.K.; Groot, I.M.N. Low-Temperature Synthesis Strategy for MoS2 Slabs Supported on TiO2(110). Surfaces 2020, 3, 605-621. https://doi.org/10.3390/surfaces3040041
Prabhu MK, Groot IMN. Low-Temperature Synthesis Strategy for MoS2 Slabs Supported on TiO2(110). Surfaces. 2020; 3(4):605-621. https://doi.org/10.3390/surfaces3040041
Chicago/Turabian StylePrabhu, Mahesh K., and Irene M. N. Groot. 2020. "Low-Temperature Synthesis Strategy for MoS2 Slabs Supported on TiO2(110)" Surfaces 3, no. 4: 605-621. https://doi.org/10.3390/surfaces3040041
APA StylePrabhu, M. K., & Groot, I. M. N. (2020). Low-Temperature Synthesis Strategy for MoS2 Slabs Supported on TiO2(110). Surfaces, 3(4), 605-621. https://doi.org/10.3390/surfaces3040041