Digital Documentation and Analysis of Palladian Microarchitectures: From 3D Models to Knowledge-Based Information Systems
Abstract
1. Introduction
- systematic digital acquisition of microarchitectural elements through photogrammetric smartphone-based techniques;
- computational processing of acquired data to generate geometrically accurate three-dimensional digital replicas;
- development of visualization systems to facilitate accessibility and interpretation of the digital models; and
- creation of a dedicated knowledge-based IS designed to systematically collect, organize, and analyze geometric and material data, thereby enabling comprehensive comparative analysis. This final phase represents the principal contribution of the present work, establishing a novel framework for the systematic documentation and analytical investigation of architectural heritage elements at the microarchitectural scale.
The Microarchitectures by Andrea Palladio
2. Materials and Methods
2.1. Digital Acquisition of the Microarchitectures
- Resolution: Constant 12 MegaPixels across all devices (many different smartphones were used).
- Equivalent focal length: Approximately 24 mm across all shooting networks.
- Shooting distance: Kept constant at approximately one meter from the surfaces to be digitally documented.
- Ground Sample Distance (GSD): 0.2 mm/pixel, ensuring geometric uniformity across different surveys and proper level of detail.
- Theoretical accuracy: 0.4 mm (1σ), inferred from the adopted GSD.
2.2. Production of the 3D Models for the Informative System
2.3. Design of the IS for Extensive Analysis
- Web-based access interface for multi-user remote consultations,
- Use of open-source technologies,
- Granular organization of information,
- Cross-links between different thematic areas,
- Ability to provide statistics on the recurrence of different typologies and case studies of chimneypieces.
- Buildings,
- Microarchitectures,
- Artists (when not attributed to Palladio),
- Stone materials.
- Location information
- ○
- Building reference,
- ○
- Floor reference,
- ○
- Room dimensions.
- Dimensional information on the chimneypiece (Figure 5),
- ○
- Total width (distance between jambs) [defined as A],
- ○
- Total height (excluding any hood) [defined as B],
- ○
- Width [defined as C] and height [defined as D] of the firebox opening,
- ○
- Jamb thickness [defined as E].
- Formal information on the chimneypiece,
- ○
- General typology,
- ○
- Typological elements,
- ○
- Decorative apparatus.
- Artistic information on the chimneypiece,
- ○
- Artists involved,
- ○
- Stone materials used.
- Bracket jambs (trilithic chimneypieces),
- Lion’s paws (trilithic chimneypieces),
- Jambs with caryatids/telamons (trilithic chimneypieces),
- Jambs with capitals (trilithic chimneypieces),
- Side, upper and lobed brackets,
- Abstract band with/without pulvinus,
- Sculptural decoration on the hood (trilithic chimneypieces),
- Pictorial decoration on the hood (trilithic chimneypieces).
- Room typology (large, small, square),
- Flat/vaulted ceiling,
- Cardinal orientation of the wall where the chimneypiece is placed,
- Perimeter/internal wall,
- Length of the chimneypiece wall,
- Depth of the other wall,
- Room height.
- Are recurring formal typologies recognizable?
- How many times are certain decorative solutions used?
- Are there preferences in the choice of chimneypiece location with respect to room exposure and wall selection?
- Do proportional relationships exist between the parts of the chimneypiece in relation to the room in which it is placed?
3. Results
3.1. Outcomes from the Digital Acquisition
3.2. Outcomes from the IS
- typology: chimneypiece (abstract band type, traditional trilithic, or sculptural), washbasin, sink, well-head;
- presence of morphological characteristics: corbel jambs, lion paws, jambs with caryatids/telamons, jambs with architectural order, lateral or upper brackets, bands with ears, sculptural decoration, pictorial decoration;
- main dimensions: overall width and height, width and height of the chimneypiece opening, jamb width;
- room information: dimensions, ceiling type (flat, vaulted), chimneypiece wall (long or short, perimeter or internal, orientation).
- overall width and height, with relative horizontal or vertical orientation (A:B)
- width and height of the chimneypiece opening (C:D)
- overall height and opening height (B:D)
- jamb width and chimneypiece and opening height (E:B, E:D)
- chimneypiece width and length of the wall on which it is placed (A:L).
- Abstract band chimneypieces,
- Traditional trilithic chimneypieces,
- Sculptural chimneypieces.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltramini, G.; Gaiani, M. (Eds.) Palladio Designer. Camini, Lavamani e Vere da Pozzo; Officina Libraria: Milan, Italy, 2024. [Google Scholar]
- Scamozzi, V. Dell’Idea dell’Architettura Universale; Part Two, Book Six, Chapter XXXV; Giovanni Battista Pulciani: Venice, Italy, 1615. [Google Scholar]
- Palladio, A. I Quattro Libri dell’Architettura; Book One, Chapter XXVII; Domenico de’ Franceschi: Venice, Italy, 1570. [Google Scholar]
- Serlio, S. Regole Generali di Architettura Sopra le Cinque Maniere degli Edifici, Cioe Thoscano, Dorico, Ionico, Corinthio, et Composito; Book IV; Francesco Marcolini: Venice, Italy, 1537. [Google Scholar]
- Vignola, J.B. Regola delli Cinque Ordini d’Architettura; Plate XXXVI; Camera Apostolica: Rome, Italy, 1563. [Google Scholar]
- Alberti, L.B. De re Aedificatoria; i, 9; Portoghesi, P., Ed.; Edizioni il Polifilo: Milan, Italy, 1966; pp. 96–97. [Google Scholar]
- Akboy-İlk, S. The Nature of Drawing in the Changing Culture of Architectural Documentation. J. Archit. Plan. Res. 2016, 33, 29–44. Available online: http://www.jstor.org/stable/44113126 (accessed on 21 August 2025).
- Warden, R.; Woodcock, D. Historic documentation: A model of project based learning for architectural education. Landsc. Urban Plan. 2005, 73, 110–119. [Google Scholar] [CrossRef]
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Apollonio, F.I.; Fantini, F.; Garagnani, S.; Gaiani, M. A Photogrammetry-Based Workflow for the Accurate 3D Construction and Visualization of Museums Assets. Remote Sens. 2021, 13, 486. [Google Scholar] [CrossRef]
- Mayer, I.; Mitterecker, T. Surveying for architectural students: As simple as possible—As much as necessary. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, IV-2/W2, 135–141. [Google Scholar] [CrossRef]
- McCarter, R. Foreword: We Only Know What We Draw. In Drawing from Practice: Architects and the Meaning of Freehand; Welton, J.M., Ed.; Routledge: London, UK, 2015; pp. 11–12. [Google Scholar] [CrossRef]
- Burggraaff, O.; Werther, M.; Boss, E.S.; Simis, S.G.; Snik, F. Accuracy and reproducibility of above-water radiometry with calibrated smartphone cameras using RAW data. Front. Remote Sens. 2022, 3, 940096. [Google Scholar] [CrossRef]
- Tuno, N.; Marinković, G.; Mulahusić, A.; Topoljak, J.; Kogoj, D.; Savšek, S. Smartphone-based digitization of historical built heritage documentation. J. Cult. Herit. 2025, 73, 409–418. [Google Scholar] [CrossRef]
- Patonis, P. A Comparative Study on the Use of Smartphone Cameras in Photogrammetry Applications. Sensors 2024, 24, 7311. [Google Scholar] [CrossRef] [PubMed]
- Ramón, D. Camera Sensor Size in Photography—Does it Really Matter? Capture the Atlas. Available online: https://capturetheatlas.com/camera-sensor-size/ (accessed on 21 August 2025).
- Patonis, P. Comparative Evaluation of the Performance of a Mobile Device Camera and a Full-Frame Mirrorless Camera in Close-Range Photogrammetry Applications. Sensors 2024, 24, 4925. [Google Scholar] [CrossRef] [PubMed]
- Jasińska, A.; Pyka, K.; Pastucha, E.; Midtiby, H.S. A Simple Way to Reduce 3D Model Deformation in Smartphone Photogrammetry. Sensors 2023, 23, 728. [Google Scholar] [CrossRef]
- Butler, R. The Effect of Pixel Size on Noise. Digital Photography Review. Available online: https://www.dpreview.com/articles/5365920428/the-effect-of-pixel-and-sensor-sizes-on-noise/2 (accessed on 21 August 2025).
- Honkavaara, E.; Arbiol, R.; Markelin, L.; Martinez, L.; Cramer, M.; Bovet, S.; Chandelier, L.; Ilves, R.; Klonus, S.; Marshal, P.; et al. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images. Remote Sens. 2009, 1, 577–605. [Google Scholar] [CrossRef]
- Hernández López, D.; Felipe Garcia, B.; González-Piqueras, J.; Villa Alcàzar, G. An approach to the radiometric aerotriangulation of photogrammetric images. ISPRS J. Photogramm. Remote Sens. 2011, 66, 883–893. [Google Scholar] [CrossRef]
- Markelin, L.; Honkavaara, E.; Hakala, T.; Suomalainen, J.; Peltoniemi, J. Radiometric stability assessment of an airborne photogrammetric sensor in a test field. ISPRS J. Photogramm. Remote Sens. 2010, 65, 409–421. [Google Scholar] [CrossRef]
- Nocerino, E.; Lago, F.; Morabito, D.; Remondino, F.; Porzi, L.; Poiesi, F.; Rota Bulo, S.; Chippendale, P.; Locher, A.; Havlena, M.; et al. A Smartphone-Based 3D Pipeline for the Creative Industry—The Replicate EU Project. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W3, 535–541. [Google Scholar] [CrossRef]
- Attardi, L. Il Camino Veneto del Cinquecento. Struttura Architettonica e Decorazione Scultorea; Angelo Colla Editore: Vicenza, Italy, 2002. [Google Scholar]
- ASPRS (The American Society for Photogrammetry and Remote Sensing). Available online: https://www.asprs.org/wp-content/uploads/pers/1989journal/jul/1989_jul_979-984.pdf (accessed on 21 August 2025).
- Abergel, V.; Jacquot, K.; De Luca, L.; Véron, P. Combining on-site and off-site Analysis: Towards a New Paradigm for Cultural Heritage Surveys. DisegnareCon 2021, 14, 13.1–13.14. [Google Scholar] [CrossRef]
- Beltramini, G.; Baldissini, S.; Gaiani, M.; Garagnani, S. Training Students in Getting Architectural Knowledge from Smartphone-Based Photogrammetry: The Chimneypieces by Andrea Palladio. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, XLVIII-M-2-2023, 195–202. [Google Scholar] [CrossRef]
- Gaiani, M. See, Touch, Feel: A Cognitive and Educational Journey through Maquettes. Disegno 2024, 14, 31–44. [Google Scholar] [CrossRef]
- Gaiani, M.; Ballabeni, A. SHAFT (SAT & HUE Adaptive Fine Tuning), a New Automated Solution for Target-Based Color Correction. In Colour and Colorimetry Multidisciplinary Contributions; Marchiafava, V., Luzzatto, L., Eds.; Gruppo del Colore—Associazione Italiana Colore: Milan, Italy, 2018; Volume XIVB, pp. 69–80. [Google Scholar]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (SGP ‘06), Cagliari, Italy, 26–28 June 2006; pp. 61–70. [Google Scholar]
- Dore, C.; Murphy, M. Current state of the art historic building information modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 185–192. [Google Scholar] [CrossRef]
- Baldissini, S.; Gaiani, M. Interacting with the Andrea Palladio Works: The History of Palladian Information System Interfaces. J. Comput. Cult. Herit. 2014, 7, 1–26. [Google Scholar] [CrossRef]
- Yu, C.-H.; Groza, T.; Hunter, J. Reasoning on Crowd-Sourced Semantic Annotations to Facilitate Cataloguing of 3D Artefacts in the Cultural Heritage Domain. In Proceedings of the International Semantic Web Conference, Sydney, Australia, 21–25 October 2013; Volume 8219, pp. 228–243. [Google Scholar] [CrossRef]
- Niang, C.; Marinica, C.; Markhoff, B.; Leboucher, E.; Malavergne, O.; Bouiller, L.; Darrieumerlou, C.; Laissus, F. Supporting Semantic Interoperability in Conservation-Restoration Domain: The PARCOURS Project. J. Comput. Cult. Herit. 2017, 10, 1–20. [Google Scholar] [CrossRef]
- Fai, S.; Sydor, M. Building Information Modelling and the documentation of architectural heritage: Between the ‘typical’ and the ‘specific’. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; pp. 731–734. [Google Scholar] [CrossRef]
- Soler, F.; Melero, F.J.; Luzón, M.V. A complete 3D information system for cultural heritage documentation. J. Cult. Herit. 2017, 23, 49–57. [Google Scholar] [CrossRef]
- Bochenska, A.; Kot, P.; Muradov, M.; Markiewicz, J.; Zawieska, D.; Hess, M.; Antoniou, A. Critical evaluation of cultural heritage architectual standard documentation methods across different european countries. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2, 251–258. [Google Scholar] [CrossRef]
- Poulopoulos, V.; Wallace, M. Digital Technologies and the Role of Data in Cultural Heritage: The Past, the Present, and the Future. Big Data Cogn. Comput. 2022, 6, 73. [Google Scholar] [CrossRef]
- Nieto-Julián, J.E.; Moyano, J.; Rico, F.; Antón, D. Management of built heritage via the HBIM project: A case study of flooring and wall tiling. Virtual Archaeol. Rev. 2016, 7, 1–12. [Google Scholar] [CrossRef]
- Thivet, M.; Verriez, Q.; Vurpillot, D. Aspectus: Développement d’une plateforme collaborative en ligne d’analyse des données 3D pour l’archéologie et le patrimoine. In Situ 2019, 39, 1–19. [Google Scholar] [CrossRef][Green Version]
- Rozier, F. Nuovo Corso Completo d’Agricoltura Teorica e Pratica, ossia Dizionario Ragionato ed Universale d’Agricoltura; Tipografia di Valentino Crescini: Padua, Italy, 1817; Volume V, p. 196. [Google Scholar][Green Version]
- The Getty Research Institute Vocabularies. Available online: https://www.getty.edu/research/tools/vocabularies/ (accessed on 9 September 2025).[Green Version]
- The CIDOC Conceptual Reference Model (CRM). Available online: https://cidoc-crm.org/ (accessed on 9 September 2025).[Green Version]
- MIDAS-Heritage, A British cultural heritage standard for recording information on buildings, archaeological sites, shipwrecks, parks and gardens, battlefields, areas of interest and artefacts. Available online: https://rdamsc.bath.ac.uk/msc/m24 (accessed on 9 September 2025).[Green Version]
- Five Star Open Data. Available online: http://5stardata.info/en/ (accessed on 9 September 2025).[Green Version]
- The FAIR Guiding Principles for scientific data management and stewardship. Available online: https://www.go-fair.org/fair-principles/ (accessed on 9 September 2025).[Green Version]
Step | Process Stage | Stage Goal |
---|---|---|
1 | Photographic Capture In Situ | Acquisition of images with camera network 1 based on the features of individual chimneypieces. |
2 | Image Format Conversion | Transformation of images into computer-processable format, starting from photographs minimally or not at all influenced by smartphone software. |
3 | Color Correction (CC) and Image Sharpening | Colorimetric correction for accurate color reproduction and increased sharpness for details. |
4 | Camera Orientation | Digital evaluation of point positions in object space (actual chimneypiece) in relation to the shooting center of image space (photograph). |
5 | 3D Mesh Reconstruction | Interpolation of points from depth maps to generate 3D polygonal surfaces (meshes). |
6 | Texture Generation and Application | Production of maps to represent materials and colors, then applied to the 3D meshes. |
7 | Model Scaling | Final 3D models’ scaling to get canonical vector views properly dimensioned. |
Location | Facade | Microarchitectures | Positions | Attribution |
---|---|---|---|---|
Palazzo Barbarano in Vicenza | N-E | 2 | N-W | Andrea Palladio |
Palazzo Ducale in Venice | S-W | 2 | S-W | 1: Andrea Palladio; 2: Vincenza Scamozzi |
Palazzo Thiene in Vicenza | N-E | 2 | N-W | Bartolomeo Ridolfi |
Refettorio S. Giorgio Maggiore in Venice | S-W | 2 | S-W | Andrea Palladio |
Villa Almerico Capra, known as “la Rotonda”, in Vicenza | - | 4 | N-E, S-W | Andrea Palladio |
Villa Arnaldi in Meledo di Sarego (VI) | S-E | 2 | N-E, N-W | Andrea Palladio |
Villa Barbaro in Maser (TV) | S-E | 4 | N-E, S-E, S-W | Paolo Veronese (?) |
Villa Chiericati in Vancimuglio (VI) | S-W | 4 | N-E, S-E, S-W | 1: Domenico Groppino (?); 2–4: Andrea Palladio |
Villa Cornaro in Piombino Dese (PD) | N | 9 | N, E, S, W | 1–3, 5, 8, 9: unknown; 4, 6, 7: Francesco Muttoni (?) |
Villa Emo in Fanzolo di Vedelago (TV) | S | 4 | E, W | Andrea Palladio |
Villa Foscari, known as “la Malcontenta”, in Mira (VE) | N-E | 2 | N-E | Andrea Palladio |
Villa Garzoni in Pontecasale (PD) | S | 2 | E, W | Iacopo Sansovino |
Villa Godi in Lonedo di Lugo (VI) | W | 10 | E, N, W, S | 1–6, 8–10 Andrea Palladio; 7: unknown |
Villa Pisani in Bagnolo di Lonigo (VI) | S-E | 3 | N-E, N-W | 1: Vincenzo Scamozzi; 2: unknown; 3: Andrea Palladio |
Villa Pisani in Montagnana (PD) | S-W | 1 | N-E | Andrea Palladio |
Villa Poiana in Poiana Maggiore (VI) | N-W | 4 | N-E, N-W | 1: Francesco Muttoni; 2–4: Andrea Palladio |
Villa Porto Colleoni in Thiene (VI) | S-E | 1 | S-E | Andrea Palladio |
Villa Repeta in Campiglia dei Berici (VI) | S | 1 | N | Andrea Palladio |
Villa Trissino in Cricoli (VI) | S-W | 2 | N-E, S-W | unknown |
Villa Trissino in Meledo di Sarego (VI) | S-W | 1 | E | Andrea Palladio (?) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldissini, S.; Garagnani, S. Digital Documentation and Analysis of Palladian Microarchitectures: From 3D Models to Knowledge-Based Information Systems. Heritage 2025, 8, 388. https://doi.org/10.3390/heritage8090388
Baldissini S, Garagnani S. Digital Documentation and Analysis of Palladian Microarchitectures: From 3D Models to Knowledge-Based Information Systems. Heritage. 2025; 8(9):388. https://doi.org/10.3390/heritage8090388
Chicago/Turabian StyleBaldissini, Simone, and Simone Garagnani. 2025. "Digital Documentation and Analysis of Palladian Microarchitectures: From 3D Models to Knowledge-Based Information Systems" Heritage 8, no. 9: 388. https://doi.org/10.3390/heritage8090388
APA StyleBaldissini, S., & Garagnani, S. (2025). Digital Documentation and Analysis of Palladian Microarchitectures: From 3D Models to Knowledge-Based Information Systems. Heritage, 8(9), 388. https://doi.org/10.3390/heritage8090388