Water Sowing and Harvesting (WS&H) for Sustainable Management in Ecuador: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage I: Evolutionary Analysis of WS&H Studies in Ecuador
2.2. Stage II: WS&H Techniques in Ecuador
2.3. Stage III: WS&H Contribution with the SDGs and SWOTs Analysis
3. Results
3.1. Evolution WS&H Studies in Ecuador
3.2. WS&H Techniques in Ecuador
- Tapes (dykes) are an ancestral technique for water care through an artificial recharge that dams the water in certain areas of the riverbed to recover the subsoil water level. The dam or tape consists of a wall of rock and sediment accumulation in preferential sections along the river that allows water to be dammed to meet the population’s needs in times of scarcity [80] (Figure 5a). With the inclusion of the technical knowledge of this type of structure, in the country, there are areas in which the construction of dykes is made of concrete, called a technical–artisanal dyke.
- Waru-Waru/camellones/acequias (complex channel systems) prepare the land (undulations, platforms, and mounds) with earthy materials to grow the ground level and reach an ideal height above the natural surface to improve cultivation conditions and control excess soil water in the winter [81] (Figure 5b). Archaeological studies of the raised fields show that their initial construction is reported since 1000 BC [82].
- Albarradas/cochas/jagüeyes (artificial wetlands) are circular or semicircular structures built for collecting and storing water in areas with scarce water resources or droughts [83]. The system consists of an earth wall that contains the water, constituted by manual or mechanized compaction and foundation; a glass that retains and collects rainwater; a water inlet area that directs the surface water towards the glass; and a vent area that helps release excess water and avoid impact on the wall [84] (Figure 5c). This structure fills with water through the slow accumulation of precipitation or water from nearby elevations. In Ecuador, they constitute a technological, ecological, and cultural heritage of high economic and symbolic value [85]. These hydraulic structures began to be built approximately from 2000 BC [86].
- Pishku Chaqui (an irrigation system forming an inverted “Y” or Pata de pájaro in Spanish) is an artificial water source that forms a bird’s foot through conductors (acequias), which leads to the main conduction, so that the water covers the entire plot, allowing water to be provided to the crops. This technique was adopted by farmers who did not have water for irrigation, in which the water is distributed from a higher flow to a lower one, thus covering all the crops with minimal erosion risks (Figure 5d).
- Tajamares (stream dams) consist of joining two approaching slopes through a well-tamped curtain of the terrain to stop rainwater runoffs, forming lagoons. These contain a spillway, a channel that eliminates excess water and that can extract it [87].
- Pilancones (water reservoirs) are reservoirs or ponds arranged on a horizontal surface exposed to meteorological agents, aiming to capture water in small irregularities in rocks. Once the water is retained, chemical weathering begins, in which the anomalies are deeper and wider. In this way, a feedback system is possible, in which the larger the irregularities, the more water retained and the greater chemical weathering. During the winter, the water fills the system (subsoil saturation due to infiltration), taking advantage of it in the dry months (the volume of the springs increases) [88], mainly for agriculture and human consumption.
- Canterones (simple channel systems) are a pre-Hispanic technology related to terraces for agricultural production, used especially on surfaces with less terrain (slopes and valleys), in which it is difficult to ensure the flow of water covers the entire structure. Nevertheless, this system has some advantages, such as the uniformity of irrigation on the ground and the control of the water speed due to the shape that the furrow takes, also avoiding water erosion of the soil [89].
- Reservorio semitechado (semi-roofed reservoir) is a rainwater harvesting technique on flat terrains used in other countries and replicated in Ecuador. It comprises two galvanized sheet roofs supported by wooden supports and located oppositely on a plastic canvas. The roofs have a found drop (30–45° slope) and low height to prevent the evaporation of water from the reservoir. The larger the roof area, the greater the collection of rainwater in a short time [90].
- Pozos de recolección de agua lluvia (rainwater-collection wells) consider the construction of wells to capture rainwater. They are a “green” infiltration infrastructure that allows for the recovery of a non-agricultural area for agriculture, avoiding further soil erosion. These wells are formed particularly by a depth of 10 m and a diameter of 1 m, allowing for their extraction through a geomembrane, which is impermeable material for rainwater collection [91].
3.2.1. Case Study in Coastal Region: Manglaralto River–Watershed System (MRWS)
3.2.2. WS&H Applications in Manglaralto
- Consider a channel morphology that favours damming (e.g., riverbanks with slopes and terraces on the flanks), with alluvial material from the river to favour infiltration.
- Large areas allow for excellent water damming and favour the aquifer’s recharge.
- Closed areas for the technical dyke (tape) location, with good river channelling and the optimisation of construction resources.
- Political axis: The rural communities associated to the MRWS do not have water distribution by the state organisations. Therefore, the Manglaralto Potable Water Management Board (JAAPMAN, an acronym in Spanish) was created, and it is in charge of the water supply system for 90% of the population through the exploitation of 15 water wells (Figure 7b) [97,98].
- Educational axis: The support of academia through ESPOL University in the evidence of water management through guidance in the generation of the geometric model of the aquifer, monitoring water quality using national norms and the construction of a technical–artisanal tape (dyke), as shown in Figure 7a.
- Economic axis: This shows the groundwater exploitation, including the water volumes stored and invoiced for services during the JAAPMAN management from 2013 to 2021, indicating an increase in the volume exploited from water wells. However, during 2020–2021, the water volume decreased due to the La Niña climatic phenomenon and COVID-19 restrictions, which did not allow for the correct maintenance of wells and the water distribution network (Figure 7c).
- Natural axis (cultural and environmental perspective): This includes the construction of dykes (tapes) based on the recovery of ancestral knowledge that favours the artificial recharge of water during the rainy season to maintain surface water for longer (dry season), helping to control saline intrusion and supply the water demand. Additionally, it considers the presence of the Chongón Colonche Protected Forest in the northern area and the recent recognition of the Manglaralto geosite (Figure 7d).
3.3. The Contribution of WS&H Techniques with the SDGs
3.4. SWOTs Analysis
4. Interpretation of Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westall, F.; Brack, A. The Importance of Water for Life. Space Sci. Rev. 2018, 214, 50. [Google Scholar] [CrossRef]
- Betancourt, J.; Salcedo, D.; Díaz, W.; Betancourt, A.; Betancourt, J.; Salcedo, D.; Diaz, W.; Betancourt, A. Desarrollo sostenible: Desafíos medioambientales frente a los retos de la cuarta revolución industrial Sustainable development: Environmental challenges facing the issues of the fourth industrial revolution. “Desarrollo sostenible: Desafíos medioambiental. Prospectiva 2021, 19, 15. [Google Scholar]
- UN Desafíos globales: Agua. Available online: https://www.un.org/es/global-issues/water#:~:text=Los desafíos del agua&text=Todavía hay alrededor de 2.000,potable (Banco Mundial 2023) (accessed on 15 April 2023).
- Larrea, A.; Guzmán, U. El derecho humano de acceso al agua: Una revisión desde el Foro Mundial del Agua y la gestión de los recursos hídricos en Latinoamérica. Invurnus 2018, 13, 12–20. [Google Scholar]
- Wei, C.; Dong, X.; Yu, D.; Liu, J.; Reta, G.; Zhao, W.; Kuriqi, A.; Su, B. An alternative to the Grain for Green Program for soil and water conservation in the upper Huaihe River basin, China. J. Hydrol. Reg. Stud. 2022, 43, 101180. [Google Scholar] [CrossRef]
- Passioura, J.B.; Angus, J.F. Improving Productivity of Crops in Water-Limited Environments. Adv. Agron. 2010, 106, 37–75. [Google Scholar]
- Graf, M. La Escasez de Agua En El Mundo y La Importancia Del Acuífero Guaraní Para Sudamérica: Relación Abundancia-Escasez. Available online: https://www.econbiz.de/Record/la-escasez-de-agua-en-el-mundo-y-la-importancia-del-acuífero-guaraní-para-sudamérica-relación-abundancia-escasez-rey-marcia-simone-graf/10005581756 (accessed on 20 May 2024).
- Shiklomanov, L.A. Water in Crisis: A Guide to the World’s Freshwater Resources; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human Appropriation of Renewable Fresh Water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- World Economic Forum Global Risks 2015, 10th ed.; World Economic Forum: Cologny, Switzerland, 2015; Volume 69.
- Martos-Rosillo, S.; Durán, A.; Castro, M.; Vélez, J.J.; Herrera, G.; Martín-Civantos, J.M.; Mateos, L.; Durán, J.J.; Jódar, J.; Gutiérrez, C.; et al. Ancestral Techniques of Water Sowing and Harvesting in Ibero-America: Examples of Hydrogeoethical Systems. In Advances in Geoethics and Groundwater Management: Theory and Practice for a Sustainable Development, Proceedings of the 1st Congress on Geoethics and Groundwater Management (GEOETH&GWM’20), Porto, Portugal, 21–29 October 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 489–492. [Google Scholar]
- Ercin, A.E.; Hoekstra, A.Y. Water footprint scenarios for 2050: A global analysis. Environ. Int. 2014, 64, 71–82. [Google Scholar] [CrossRef] [PubMed]
- FAO Food and Agriculture Organization of the United Nations. AQUASTAT—FAO’s Global Information System on Water and Agriculture. Available online: www.fao.org/nr/water/aquastat/water_use/index.stm (accessed on 30 May 2022).
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M. Water Futures and Solution. Fast Track Initiative; IIASA: Laxenburg, Austria, 2016. [Google Scholar]
- Zhang, S.; Zhang, J.; Yue, T.; Jing, X. Impacts of climate change on urban rainwater harvesting systems. Sci. Total Environ. 2019, 665, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Zhang, S.; Yue, T. Environmental and economic assessment of rainwater harvesting systems under five climatic conditions of Pakistan. J. Clean. Prod. 2020, 259, 120829. [Google Scholar] [CrossRef]
- Murtinho, F.; Tague, C.; de Bievre, B.; Eakin, H.; Lopez-Carr, D. Water Scarcity in the Andes: A Comparison of Local Perceptions and Observed Climate, Land Use and Socioeconomic Changes. Hum. Ecol. 2013, 41, 667–681. [Google Scholar] [CrossRef]
- Huang, Z.; Yuan, X.; Liu, X.; Tang, Q. Growing control of climate change on water scarcity alleviation over northern part of China. J. Hydrol. Reg. Stud. 2023, 46, 101332. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- UN-Water Financing Universal Water. Sanitation and Hygiene under the Sustainable Development Goals: Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2017 Report; UN-Water Financing Universal Water: Geneva, Switzerland, 2017. [Google Scholar]
- Paltán, H.; Basani, M.; Minaya, V.; Rezzano, N. Servicios de Agua Potable y Saneamiento Resilientes En América Latina y El Caribe. Banco Interam. Desarro. 2020, 57. [Google Scholar] [CrossRef]
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- Ramírez Góngora, G. El Estado Mundial del Agua: El Caso de África y América Latina. Bachelor’s Thesis, Universidad de Quintana Roo, Mexico City, Mexico, 2019. [Google Scholar]
- UN Global Sustainable Development Report. Available online: https://sdgs.un.org/gsdr (accessed on 22 April 2024).
- WWC Final report of the 5th World Water Forum. Secretariat of the 3rd World Water Forum. 2003. Available online: https://www.worldwatercouncil.org/fileadmin/world_water_council/documents/world_water_forum_5/WWF5_Final_Report_ENG.pdf (accessed on 27 April 2024).
- Bakker, K.; Morinville, C. The governance dimensions of water security: A review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20130116. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.; Brown, R.R.; Bos, J.J.; Bakker, K. Standing on the shoulders of giants: Understanding changes in urban water practice through the lens of complexity science. Urban Water J. 2017, 14, 758–767. [Google Scholar] [CrossRef]
- Markowska, J.; Szalińska, W.; Dąbrowska, J.; Brząkała, M. The concept of a participatory approach to water management on a reservoir in response to wicked problems. J. Environ. Manag. 2020, 259, 109626. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, I.M.; Kotsifakis, K.G.; Feloni, E.G.; Baltas, E.A. Sustainable Water Resources Management in Small Greek Islands under Changing Climate. Water 2019, 11, 1694. [Google Scholar] [CrossRef]
- Luo, K.; Li, Y. Assessing rainwater harvesting potential in a humid and semi-humid region based on a hydrological model. J. Hydrol. Reg. Stud. 2021, 37, 100912. [Google Scholar] [CrossRef]
- Groasis. Ecuador: Plantación de árboles y verduras|Proyectos Groasis. Available online: https://www.groasis.com/es/proyectos/agua-vida-y-naturaleza-plantacion-de-arboles-y-verduras-en-ecuador (accessed on 26 May 2024).
- Manso, M.; Paredes, M.D.A. Técnicas de recolección de agua y oasificación para el desarrollo de la agricultura y la restauración forestal en regiones desfavorecidas. Cuad. Geográficos 2007, 40, 67–80. [Google Scholar]
- Khastagir, A.; Jayasuriya, N. Optimal sizing of rain water tanks for domestic water conservation. J. Hydrol. 2010, 381, 181–188. [Google Scholar] [CrossRef]
- Zhang, S.; Jing, X.; Yue, T.; Wang, J. Performance assessment of rainwater harvesting systems: Influence of operating algorithm, length and temporal scale of rainfall time series. J. Clean. Prod. 2020, 253, 120044. [Google Scholar] [CrossRef]
- Pavolová, H.; Bakalár, T.; Kudelas, D.; Puškárová, P. Environmental and economic assessment of rainwater application in households. J. Clean. Prod. 2019, 209, 1119–1125. [Google Scholar] [CrossRef]
- Ruso, M.; Akıntuğ, B.; Kentel, E. Optimum tank size for a rainwater harvesting system: Case study for Northern Cyprus. IOP Conf. Ser. Earth Environ. Sci. 2019, 297, 012026. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Imteaz, M.A.; Ahsan, A.; Naser, J.; Rahman, A. Reliability analysis of rainwater tanks in Melbourne using daily water balance model. Resour. Conserv. Recycl. 2011, 56, 80–86. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Al-Shareef, A.W. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, S.; Zhang, J.; Wang, Y.; Wang, Y. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China. Resour. Conserv. Recycl. 2017, 126, 74–85. [Google Scholar] [CrossRef]
- Iliopoulou, T.; Dimitriadis, P.; Siganou, A.; Markantonis, D.; Moraiti, K.; Nikolinakou, M.; Meletopoulos, I.T.; Mamassis, N.; Koutsoyiannis, D.; Sargentis, G.-F. Modern Use of Traditional Rainwater Harvesting Practices: An Assessment of Cisterns’ Water Supply Potential in West Mani, Greece. Heritage 2022, 5, 2944–2954. [Google Scholar] [CrossRef]
- Klingborg, P.; Finné, M. Modelling the freshwater supply of cisterns in ancient Greece. Water Hist. 2018, 10, 113–131. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Zarkadoulas, N.; Angelakis, A.N.; Tchobanoglous, G. Urban Water Management in Ancient Greece: Legacies and Lessons. J. Water Resour. Plan. Manag. 2008, 134, 45–54. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; La Barbera, P. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. J. Environ. Manag. 2017, 191, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Melville-Shreeve, P.; Ward, S.; Butler, D. Rainwater Harvesting Typologies for UK Houses: A Multi Criteria Analysis of System Configurations. Water 2016, 8, 129. [Google Scholar] [CrossRef]
- DeBusk, K.M.; Hunt, W.F.; Wright, J.D. Characterizing Rainwater Harvesting Performance and Demonstrating Stormwater Management Benefits in the Humid Southeast USA. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 1398–1411. [Google Scholar] [CrossRef]
- Ghisi, E.; Bressan, D.L.; Martini, M. Rainwater tank capacity and potential for potable water savings by using rainwater in the residential sector of southeastern Brazil. Build. Environ. 2007, 42, 1654–1666. [Google Scholar] [CrossRef]
- Bond, T.; Roma, E.; Foxon, K.M.; Templetond, M.R.; Buckley, C.A. Ancient water and sanitation systems-applicability for the contemporary urban developing world. Water Sci. Technol. 2013, 67, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Fenstand, J.E.; Hoynigen-Huene, P.; Hu, Q.; Kokwaro, J.; Stalick, J.; Shrum, W.; Subbarayappa, B.V.; Nakashima, D. Science and Tradicional Nowledge; International Council for Science: Paris, France, 2022. [Google Scholar]
- Jódar, J.; Martos-Rosillo, S.; Custodio, E.; Mateos, L.; Cabello, J.; Casas, J.; Salinas-Bonillo, M.J.; Martín-Civantos, J.M.; González-Ramón, A.; Zakaluk, T.; et al. The Recharge Channels of the Sierra Nevada Range (Spain) and the Peruvian Andes as Ancient Nature-Based Solutions for the Ecological Transition. Water 2022, 14, 3130. [Google Scholar] [CrossRef]
- Oyonarte, N.A.; Gómez-Macpherson, H.; Martos-Rosillo, S.; González-Ramón, A.; Mateos, L. Revisiting irrigation efficiency before restoring ancient irrigation canals in multi-functional, nature-based water systems. Agric. Syst. 2022, 203, 103513. [Google Scholar] [CrossRef]
- Correa, L.; de Araujo, E. Heritage values of water and sea defense in Recife. Challenges for a local governmental approach. In Water & Heritage: Material, Conceptual and Spiritual Connections; Willems, W., van Schaik, H., Eds.; Sidestone Press: Leiden, The Netherlands, 2015; pp. 169–184. [Google Scholar]
- Ghasemi, H.; Valipour, E.; Morad, D. Application of traditional architectural structure as sustainable approach to mitigation of shortage water supply in desert regions. Acad. J. Sci. 2013, 1, 125–132. [Google Scholar]
- Sugiura, M.; Sato, Y.; Ota, S. The framework of skills and knowledge shared in long-enduring organizations in the improvement of irrigation efficiency in Japan. In Water & Heritage: Material, Conceptual and Spiritual Connections; Willems, W., van Schaik, H., Eds.; Sidestone Press: Leiden, The Netherlands, 2015; pp. 313–330. [Google Scholar]
- Hein, C.; van Schaik, H.; Six, D.; Mager, T.; Kolen, J.; Ertsen, M.; Nijhuis, S.; Verschuure-Stuip, G. Introduction: Connecting Water and Heritage for the Future. In Adaptive Strategies for Water Heritage; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar]
- Steenhuis, M. The Deltaworks: Heritage and new space for a changing world. In Water & Heritage: Material, Conceptual and Spiritual Connections; Willems, W., van Schaik, H., Eds.; Sidestone Press: Leiden, The Netherlands, 2015; pp. 331–350. [Google Scholar]
- Yüceer, H.; Baba, A.; Gönülal, Y.Ö.; Uştuk, O.; Gerçek, D.; Güler, S.; Uzelli, T. Valuing Groundwater Heritage: The Historic Wells of Kadıovacık. Geoheritage 2021, 13, 97. [Google Scholar] [CrossRef]
- WWAP (Programa Mundial de las Naciones Unidades de Evaluación de los Recursos Hídricos)/ONU-Agua. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2018: Soluciones Basadas en la Naturaleza para la Gestión del Agua; WWAP: París, France, 2018. [Google Scholar]
- Martos-Rosillo, S.; Durán, A.; Castro, M.; Vélez, J.J.; Herrera, G.; Martín-Civantos, J.M.; Mateos, L.; Durán, J.J.; González-Ramón, A.; Ruiz-Constán, A.; et al. La Siembra y Cosecha del Agua en Iberoamérica; un sistema ancestral de gestión del agua que utiliza soluciones basadas en la naturaleza. Zenodo 2017, 55, 15. [Google Scholar] [CrossRef]
- Albarracín, M.; Ramón, G.; González, J.; Iñiguez-Armijos, C.; Zakaluk, T.; Martos-Rosillo, S. The Ecohydrological Approach in Water Sowing and Harvesting Systems: The Case of the Paltas Catacocha Ecohydrology Demonstration Site, Ecuador. Ecohydrol. Hydrobiol. 2021, 21, 454–466. [Google Scholar] [CrossRef]
- González-Padrón, S.K.; Lerner, A.M.; Mazari-Hiriart, M. Improving Water Access and Health through Rainwater Harvesting: Perceptions of an Indigenous Community in Jalisco, Mexico. Sustainability 2019, 11, 4884. [Google Scholar] [CrossRef]
- Martos-Rosillo, S.; Ruiz-Constán, A.; González-Ramón, A.; Mediavilla, R.; Martín-Civantos, J.M.; Martínez-Moreno, F.J.; Jódar, J.; Marín-Lechado, C.; Medialdea, A.; Galindo-Zaldívar, J.; et al. The oldest managed aquifer recharge system in Europe: New insights from the Espino recharge channel (Sierra Nevada, southern Spain). J. Hydrol. 2019, 578, 124047. [Google Scholar] [CrossRef]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The global volume and distribution of modern groundwater. Nat. Geosci. 2016, 9, 161–167. [Google Scholar] [CrossRef]
- Sprenger, C.; Hartog, N.; Hernández, M.; Vilanova, E.; Grützmacher, G.; Scheibler, F.; Hannappel, S. Inventory of Managed Aquifer Recharge Sites in Europe: Historical Development, Current Situation and Perspectives. Hydrogeol. J. 2017, 25, 1909–1922. [Google Scholar] [CrossRef]
- Civantos, J.M.M.; Rodríguez, B.R.; Zakaluk, T.; Ramón, A.G.; Martos-Rosillo, S. Ancestral Integrated Water Management Systems as Adaptation Tools for Climate Change: The “Acequias De Careo” and Historical Water Management of the Mecina River in Sierra Nevada (Granada, Spain). Conserv. Manag. Archaeol. Sites 2023, 22, 1–23. [Google Scholar] [CrossRef]
- Jódar, J.; Zakaluk, T.; González-Ramón, A.; Ruiz-Constán, A.; Lechado, C.M.; Martín-Civantos, J.M.; Custodio, E.; Urrutia, J.; Herrera, C.; Lambán, L.J.; et al. Artificial recharge by means of careo channels versus natural aquifer recharge in a semi-arid, high-mountain watershed (Sierra Nevada, Spain). Sci. Total Environ. 2022, 825, 153937. [Google Scholar] [CrossRef]
- Carrión, P.; Herrera, G.; Briones, J.; Sánchez, C.; Limón, J. Practical adaptations of ancestral knowledge for groundwater artificial recharge management of Manglaralto coastal aquifer, Ecuador. WIT Trans. Ecol. Environ. 2018, 217, 375–386. [Google Scholar] [CrossRef]
- Ramsar, C. Estrategia Regional de Conservación y uso Sostenible de los Humedales Altoandinos; CONDESAN: Quito, Ecuador, 2008. [Google Scholar]
- Delgado Yánez, M.S.; Martínez-Fresneda Mestre, M.; Villaruela, A. Valoración económica del servicio limnológico de la laguna Magdalena-Atillo, Riobamba-Ecuador. Enfoque UTE 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Villa Caigua, A. Modelos de Zonificación Utilizando Información Geoespacial a Través de SIG, para Establecer Categorías de Manejo en Función de los Conflictos de la Reserva Hídrica y Ecológica de San Cristóbal Galápagos. Bachelor’s Thesis, Universidad San Francisco de Quito, Quito, Ecuador, 2016. [Google Scholar]
- Carrión-Mero, P.; Morante-Carballo, F.; Herrera-Franco, G.; Jaya-Montalvo, M.; Rodríguez, D.; Loor-Flores de Valgas, C.; Berrezueta, E. Community-University Partnership in Water Education and Linkage Process. Study Case: Manglaralto, Santa Elena, Ecuador. Water 2021, 13, 1998. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Jaya-Montalvo, M.; Morillo-Balsera, M.C. Groundwater Resilience Assessment in a Communal Coastal Aquifer System. The Case of Manglaralto in Santa Elena, Ecuador. Sustainability 2020, 12, 8290. [Google Scholar] [CrossRef]
- Dyson, R.G. Strategic development and SWOT analysis at the University of Warwick. Eur. J. Oper. Res. 2004, 152, 631–640. [Google Scholar] [CrossRef]
- Leigh, D. SWOT Analysis. In Handbook of Improving Performance in the Workplace: Volumes 1–3; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 115–140. [Google Scholar]
- Carayannis, E.G.; Campbell, D.F.J. Triple helix, Quadruple helix and Quintuple helix and how do Knowledge, Innovation and the Environment relate to Each other? a proposed framework for a trans-disciplinary analysis of sustainable development and social ecology. Int. J. Soc. Ecol. Sustain. Dev. 2010, 1, 41–69. [Google Scholar] [CrossRef]
- Barth, T.D. The Idea of a Green New Deal in a Quintuple Helix Model of Knowledge, Know-How and Innovation. Int. J. Soc. Ecol. Sustain. Dev. 2011, 2, 1–14. [Google Scholar] [CrossRef]
- Kitzinger, J. The methodology of Focus Groups: The importance of interaction between research participants. Sociol. Health Illn. 1994, 16, 103–121. [Google Scholar] [CrossRef]
- CYTED Siembra y Cosecha de Agua en Áreas Naturales Protegidas. Available online: https://www.cyted.org/RED-SYCA (accessed on 6 March 2024).
- Sheppard, G. The Rainy Season of 1932 in Southwestern Ecuador. Geogr. Rev. 1933, 23, 210. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Morante-Carballo, F.; Briones-Bitar, J.; Herrera-Borja, P.; Chávez-Moncayo, M.; Arévalo-Ochoa, J. Design of a Technical-Artisanal Dike for Surface Water Storage and Artificial Recharge of the Manglaralto Coastal Aquifer. Santa Elena Parish, Ecuador. Int. J. Sustain. Dev. Plan. 2021, 16, 515–523. [Google Scholar] [CrossRef]
- Marcos, J.G.; Álvarez, S.G. Campos de Camellones y Jagüeyes En Ecuador: Una Visión Integral Desde La Arqueología Al Presente Socioambiental. Intersecc. en Antropol. 2016, 17, 19–34. [Google Scholar]
- Erickson, C. El Valor Actual de Los Camellones de Cultivo Precolombinos: Experiencias Del Perú y Bolivia. In Agricultura Ancestral. Camellones y Albarradas: Contexto Social, Usos y Retos del Pasado y del Presente; Valdez, F., Ed.; Abya-Yal: Quito, Ecuador, 2006; pp. 315–321. [Google Scholar]
- Marcos, J.; Tobar, O. La Investigación Arqueológica e Histórica de las Albarradas de la Costa. In Las Albarradas en la Costa del Ecuador: Rescate del Conocimiento Ancestral del Manejo Sostenible de la Biodiversidad; CEAA-ESPOL: Guayaquil, Ecuador, 2004; pp. 31–126. [Google Scholar]
- Álvarez Litben, R. Albarradas. Espacialidad y Recurrencia en los Sistemas de Albarradas Localizadas en las Provincias de Santa Elena y Guayas. Ph.D. Dissertation, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, 2014. [Google Scholar]
- Álvarez Litben, S.G.; Zulaica, L. Indicadores de sustentabilidad en sistemas de albarradas: Aportes metodológicos. Let. Verdes. Rev. Latinoam. Estud. Socioambientales 2015, 18, 184–207. [Google Scholar] [CrossRef]
- Marcos, J.; Osorio, M. Albarradas y camellones en la región costera del antiguo Ecuador. In Agricultura Ancestral. Camellones y Albarradas: Contexto Social, Usos y Retos del Pasado y del Presente; Valdez, F., Ed.; Ediciones Abya-Yala: Quito, Ecuador, 2006; pp. 93–105. [Google Scholar]
- García Petillo, M.; Cánepa, P.; Ronzoni, C. Manual Para el Diseño y la Construcción de Tajamares de Aguada; MGAP, Primera, Eds.; PMinisterios de Ganadería, Agricultura y Pesca: Montevideo, Uruguay, 2008; ISBN 2013206534. [Google Scholar]
- Gortaire, R. Agroecología en el Ecuador. Proceso histórico, logros, y desafíos. Antropol. Cuad. Investig. 2017, 17, 12–38. [Google Scholar] [CrossRef]
- Morán, L.; Villanueva, P.; Varillas, O. Inventario de Tecnologías de Manejo de Agua Para la Agricultura Familiar; Instituto Interamericano de Cooperación para la Agricultura (IICA): Lima, Peru, 2018; ISBN 9789292487997. [Google Scholar]
- Hirozumi, K.; Guía técnica para cosechar el agua de lluvia. Opciones técnicas para la agricultura familiar en la Sierra, Ecuador. Available online: https://www.jica.go.jp/Resource/project/ecuador/001/materials/ku57pq000011cym2-att/water_harvest_sp.pdf (accessed on 30 May 2024).
- Román, P.; Martínez, M.; Pantoja, A. Organización de las Naciones Unidas para la Alimentación y la Agricultura. In Manual de Compostaje del Agricultor Experiencia en America Latina; Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Santiago de Chile, Chile, 2013. [Google Scholar]
- Cassin, J.; Ochoa-Tocachi, B.F. Learning from indigenous and local knowledge: The deep history of nature-based solutions. In Nature-Based Solutions and Water Security; Elsevier: Amsterdam, The Netherlands, 2021; pp. 283–335. [Google Scholar]
- INEC VII Censo de Población y VI de Vivienda. Sistema Integrado de Consultas. Available online: http://redatam.inec.gob.ec/ (accessed on 8 October 2021).
- SNI Sistema Nacional de Información. Available online: https://sni.gob.ec/datos-abiertos/ (accessed on 20 February 2024).
- GAD Parroquia Manglaralto Plan de Desarrollo y Ordenamiento Territorial (PDOT) de la Parroquia Rural Manglaralto 2014—2019; Publisher GAD de la Parroquia Manglaralto: Manglaralto, Ecuador, 2015; pp. 1–197.
- CIPAT-ESPOL; SENAGUA; AECID, D. Mapa hidrogeológico del Ecuador a escala 1:250,000. Available online: https://www.scribd.com/document/418162234/4-MAPA-HIDROGEOL-GICO-ESPOL-1-pdf (accessed on 27 December 2023).
- Rivadeneira-Núñez, G. Los Sentidos y las Representaciones de la Práctica de lo Comunitario en las Juntas de Agua para Consumo Humano en la Provincia Santa Elena: El Caso Manglaralto. Bachelor’s Thesis, Universidad Politénica Salesiana SEDE Quito, Quito, Ecuador, 2013. [Google Scholar]
- Herrera-Franco, G.; Bravo-Montero, L.; Carrión-Mero, P.; Morante-Carballo, F.; Apolo-Masache, B. Community Management of the Olon Coastal Aquifer and its Impact on the Supply of Water Suitable for Human Consumption. Int. J. Sustain. Dev. Plan. 2020, 12, in press. [Google Scholar]
- Herrera-Franco, G.; Carrión-Mero, P.; Briones-Bitar, J. Aplicación del conocimiento ancestral mediante albarradas y tapes en la gestión del agua en la provincia de Santa Elena, Ecuador. Boletín Geológico Min. 2020, 131, 75–88. [Google Scholar] [CrossRef]
- Naiga, R.; Penker, M.; Hogl, K. Women’s Crucial Role in Collective Operation and Maintenance of Drinking Water Infrastructure in Rural Uganda. Soc. Nat. Resour. 2017, 30, 506–520. [Google Scholar] [CrossRef]
- Gómez Martín, E.; Giordano, R.; Pagano, A.; van der Keur, P.; Máñez Costa, M. Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Sci. Total Environ. 2020, 738, 139693. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Franco, G.; Erazo, K.; Mora-Frank, C.; Carrión-Mero, P.; Berrezueta, E. Evaluation of a paleontological museum as geosite and base for geotourism. A case study. Heritage 2021, 4, 1208–1227. [Google Scholar] [CrossRef]
- Martínez Moscoso, A.; Larson, R. Forestry management and water law: Comparing Ecuador and Arizona. Water Int. 2019, 44, 337–353. [Google Scholar] [CrossRef]
- Asamblea Nacional. Ley Orgánica de Recursos Hídricos, Usos, y Aprovechamiento del Agua; República del Ecuador: Quito, Ecuador, 2014. [Google Scholar]
- Ministerio del Ambiente del Ecuador. TULSMA—097-A: Texto Unificado de Legislación Secundaria del Ministerio del Ambiente: Norma de Calidad Ambiental y de Descarga de Efluentes al Recurso Agua; MAE: Quito, Ecuador, 2015. [Google Scholar]
- República del Ecuador. NTE INEN 1108 Agua Potable; INEN: Quito, Ecuador, 2011. [Google Scholar]
- Morán-Tejeda, E.; Bazo, J.; López-Moreno, J.I.; Aguilar, E.; Azorín-Molina, C.; Sanchez-Lorenzo, A.; Martínez, R.; Nieto, J.J.; Mejía, R.; Martín-Hernández, N.; et al. Climate trends and variability in Ecuador (1966–2011). Int. J. Climatol. 2016, 36, 3839–3855. [Google Scholar] [CrossRef]
- Ertsen, M.W.; Ngugi, K.N. Ambivalent Assets: The Success of Sand-Storage Dams for Rainwater Harvesting in Kitui County, Kenya. Front. Water 2021, 3, 676167. [Google Scholar] [CrossRef]
- Ngugi, K.N.K.; Gichaba, C.M.M.; Kathumo, V.M.V.; Ertsen, M.W.M. Back to the drawing board: Assessing siting guidelines for sand dams in Kenya. Sustain. Water Resour. Manag. 2020, 6, 58. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Quiñonez-Barzola, X.; Morante-Carballo, F.; Montalván, F.J.; Herrera-Franco, G.; Plaza-Úbeda, J. Geometric Model of a Coastal Aquifer to Promote the Sustainable Use of Water. Manglaralto, Ecuador. Water 2021, 13, 923. [Google Scholar] [CrossRef]
- Hut, R.; Ertsen, M.; Joeman, N.; Vergeer, N.; Winsemius, H.; van de Giesen, N. Effects of sand storage dams on groundwater levels with examples from Kenya. Phys. Chem. Earth Parts A/B/C 2008, 33, 56–66. [Google Scholar] [CrossRef]
- Kedar, Y. Water and Soil from the Desert: Some Ancient Agricultural Achievements in the Central Negev. Geogr. J. 1957, 123, 179. [Google Scholar] [CrossRef]
- Konrad, C.P.; Warner, A.; Higgins, J.V. Evaluating Dam Re-Operation for Freshwater Conservation in the Sustainable Rivers Project. River Res. Appl. 2012, 28, 777–792. [Google Scholar] [CrossRef]
- Ryan, C.; Elsner, P. The potential for sand dams to increase the adaptive capacity of East African drylands to climate change. Reg. Environ. Chang. 2016, 16, 2087–2096. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chaudhary, S.; Chinnasamy, P.; Hsu, M.J. Harvesting river water through small dams promote positive environmental impact. Environ. Monit. Assess. 2016, 188, 645. [Google Scholar] [CrossRef] [PubMed]
- Morante-Carballo, F.; Gurumendi-Noriega, M.; Cumbe-Vásquez, J.; Bravo-Montero, L.; Carrión-Mero, P. Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador. Sustainability 2022, 14, 7856. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Hsu, M.J. Small size, Big Potential: Check Dams For Sustainable Development. Environ. Sci. Policy Sustain. Dev. 2008, 50, 22–35. [Google Scholar] [CrossRef]
- Lasage, R.; Aerts, J.; Mutiso, G.-C.M.; de Vries, A. Potential for community based adaptation to droughts: Sand dams in Kitui, Kenya. Phys. Chem. Earth Parts A/B/C 2008, 33, 67–73. [Google Scholar] [CrossRef]
- Andrikopoulou, T.; Schielen, R.M.J.; Spray, C.J.; Schipper, C.A.; Blom, A. A Framework to Evaluate the SDG Contribution of Fluvial Nature-Based Solutions. Sustainability 2021, 13, 11320. [Google Scholar] [CrossRef]
- Schmidt, S.; Guerrero, P.; Albert, C. Advancing Sustainable Development Goals with localised nature-based solutions: Opportunity spaces in the Lahn river landscape, Germany. J. Environ. Manag. 2022, 309, 114696. [Google Scholar] [CrossRef] [PubMed]
- Mainali, B.; Ngo, H.H.; Guo, W.; Pham, T.T.N.; Johnston, A. Feasibility assessment of recycled water use for washing machines in Australia through SWOT analysis. Resour. Conserv. Recycl. 2011, 56, 87–91. [Google Scholar] [CrossRef]
- Kataoka, Y.; Kuyama, T. Groundwater Management Policies in Asian Mega-Cities; Springer: Tokyo, Japan, 2008; pp. 225–245. [Google Scholar]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban greening through nature-based solutions—Key characteristics of an emerging concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Vandergert, P.; Connop, S.; Schipper, K.; Zwierzchowska, I.; Collier, M.; Lodder, M. Examining the policy needs for implementing nature-based solutions in cities: Findings from city-wide transdisciplinary experiences in Glasgow (UK), Genk (Belgium) and Poznań (Poland). Land Use Policy 2020, 96, 104688. [Google Scholar] [CrossRef]
- Suleiman, L.; Olofsson, B.; Saurí, D.; Palau-Rof, L. A breakthrough in urban rain-harvesting schemes through planning for urban greening: Case studies from Stockholm and Barcelona. Urban For. Urban Green. 2020, 51, 126678. [Google Scholar] [CrossRef]
- Droste, N.; Schröter-Schlaack, C.; Hansjürgens, B.; Zimmermann, H. Implementing Nature-Based Solutions in Urban Areas: Financing and Governance Aspects. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Springer: Berlin/Heidelberg, Germany, 2017; pp. 307–321. [Google Scholar]
- Mora Bernal, A. ¿Existe el enfoque nexo agua-energía-alimento en el mandato constitucional del Ecuador? Rev. Derecho Ambient. 2021, 2, 193. [Google Scholar] [CrossRef]
Region | WS&H Techniques | Applications/Uses | Academic Participation/Authorities/ Companies/Community |
---|---|---|---|
Coast/ coastal | Albarradas/jagüeyes (artificial wetlands), artisanal dyke (tape), technical–artisanal dyke (tape), and camellones (complex channel systems). | Domestic use, human consumption, agricultural production, and tourism. | CIPAT-ESPOL *, UPSE *, JAAPMAN *, INIAP *, MAGAP *, JRAPO *, and OIEA *. |
Andean/ inter-Andean | Cocha/albarrada (artificial wetlands), Pishku Chaqui (irrigation system forming an inverted “Y”), tajamares/pilancones (water reservoirs), canterones (simple channel systems), reservorio semitechado (semi-roofed reservoir), camellones (complex channel systems), and rainwater-collection wells. | Domestic use, human Consumption, irrigation for pastures and crops, and irrigation system for agricultural production. | Junta Parroquial de Limonal, CIPAT-ESPOL, ESPOCH *, UPS *, USFQ *; IICA *; Universidad Nacional Agraria La Molina, Caja Nacional de Riego and community. |
Insular/ the Galapagos | Water reservoirs by volcanic cracks and | Domestic use, human consumption, irrigation and drainage systems, and tourism. | Municipality and community. |
“Chino Goteras” water supply system (water damming of riverbeds). |
Internal Factors | |
WS&H Strengths | WS&H Weaknesses |
Political system
| Political system
|
External factors | |
WS&H Opportunities | WS&H Threats |
Political system
| Political system
|
Strategies: Strengths + Opportunities | Strategies: Weaknesses + Opportunities |
|
|
Strategies: Strengths–Threats | Strategies: Weaknesses–Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Franco, G.; Morante-Carballo, F.; Bravo-Montero, L.; Valencia-Robles, J.; Aguilar-Aguilar, M.; Martos-Rosillo, S.; Carrión-Mero, P. Water Sowing and Harvesting (WS&H) for Sustainable Management in Ecuador: A Review. Heritage 2024, 7, 3696-3718. https://doi.org/10.3390/heritage7070175
Herrera-Franco G, Morante-Carballo F, Bravo-Montero L, Valencia-Robles J, Aguilar-Aguilar M, Martos-Rosillo S, Carrión-Mero P. Water Sowing and Harvesting (WS&H) for Sustainable Management in Ecuador: A Review. Heritage. 2024; 7(7):3696-3718. https://doi.org/10.3390/heritage7070175
Chicago/Turabian StyleHerrera-Franco, Gricelda, Fernando Morante-Carballo, Lady Bravo-Montero, Juan Valencia-Robles, Maribel Aguilar-Aguilar, Sergio Martos-Rosillo, and Paúl Carrión-Mero. 2024. "Water Sowing and Harvesting (WS&H) for Sustainable Management in Ecuador: A Review" Heritage 7, no. 7: 3696-3718. https://doi.org/10.3390/heritage7070175
APA StyleHerrera-Franco, G., Morante-Carballo, F., Bravo-Montero, L., Valencia-Robles, J., Aguilar-Aguilar, M., Martos-Rosillo, S., & Carrión-Mero, P. (2024). Water Sowing and Harvesting (WS&H) for Sustainable Management in Ecuador: A Review. Heritage, 7(7), 3696-3718. https://doi.org/10.3390/heritage7070175