“Scouring for Prehistory”—An Opportunistic Methodology for Sea Floor Archaeology
Abstract
1. Introduction
The Problem
2. An Opportunistic Methodology—Scour Nuclei
2.1. Scour Nuclei
2.2. Scour as a Tool for the Study of Submerged Prehistory
3. A Study of Artificial Reefs as Scour Nuclei
3.1. The Northern Tier, 2020–2023
3.2. An Innovative Methodology
- Evaluation of archival information. This step includes geophysical, geological, archaeological data available. Select sites for step 2.
- Geophysical survey of selected sites. In our case, the use of interferometric side-scan sonar (SSS) was prioritized with some follow-on sub-bottom profiling (SBP) conducted on sites selected for ROV and diver survey.
- Process all geophysical data using software such as HYPACK Survey 2022; Geophysics 2.0; Office SonarWiz 6, etc.
- Produce both individual scour nuclei sonograms along with mosaics of reef sites.
- Generate digital bathymetric models (DBM) of scour features by use of Geographic Information System (GIS) software (Arc GIS 10.8.x, Q GIS 3.34, etc.).
- Survey and evaluate selected scour nuclei—based in DBM analyses—using remotely operated vehicles (ROVs), divers, as well as sediment corers (gravity, box corers) and grab samplers.
3.3. Reef SAV, Barge 13, Discovery of a Late Pleistocene Landform
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gagliano, S.M.; Pearson, C.E.; Weinstein, R.A.; Wiseman, D.E.; McClendon, C.M. Sedimentary Studies of Prehistoric Archaeological Sites: Criteria for the Identification of Submerged Archaeological Sites of the Northern Gulf of Mexico Continental shelf. Prepared for the U.S. Department of the Interior National Park Service, Division of State Plans and Grants, Contract No. C35003(79). 1982. Technical Publication. Available online: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB88178017.xhtml (accessed on 20 May 2024).
- Pearson, C.E.; Kelley, D.B.; Weinstein, R.A.; Gagliano, S.M. Archaeological Investigations on the Outer Continental Shelf: A Study within the Sabine River Valley, Offshore Louisiana and Texas; Prepared by Coastal Environments Inc.; Minerals Management Service, US Department of Interior: Reston, VA, USA, 1986.
- Pearson, C.E.; Weinstein, R.A.; Gagliano, S.M.; Kelley, D.B. Prehistoric Site Discovery on the Outer Continental Shelf, Gulf of Mexico, United States of America. In Prehistoric Archaeology on the Continental Shelf; Evans, A.M., Flatman, J.C., Flemming, N.C., Eds.; Springer Science + Business Media: New York, NY, USA, 2014; pp. 53–72. [Google Scholar] [CrossRef]
- Evans, A.M. Out of Site but Not Out of Mind: Submerged Prehistoric Landscapes on the Northwestern Gulf of Mexico Outer Continental Shelf. Ph.D Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2012. [Google Scholar]
- Evans, A.M.; Bureau of Ocean Energy Management, Interior Department. Examining and Testing Potential Prehistoric Archaeological Features on the Gulf of Mexico Outer Continental Shelf. Government. Bureau of Ocean Energy Management. 2016. Available online: https://www.govinfo.gov/app/details/GOVPUB-I-e58ad5baea6a7cc337588f4b6f85177e (accessed on 1 January 2018).
- Gusick, A.E.; Maloney, J.; Braje, T.J.; Retallack, G.J.; Johnson, L.; Klotsko, S.; Ainis, A.; Erlandson, J.M. Soils and terrestrial sediments on the seafloor: Refining archaeological paleoshoreline estimates and paleoenvironmental reconstruction off the California coast. Front. Earth Sci. 2022, 10, 941911. [Google Scholar] [CrossRef]
- Fitch, S.; Gaffney, V.L.; Thomson, K. In Sight of Doggerland: From speculative survey to landscape exploration. Internet Archaeol. 2007, 22, 21. [Google Scholar] [CrossRef]
- Gaffney, V.; Thomson, K.; Fitch, S. (Eds.) Mapping Doggerland: The Mesolithic Landscapes of the Southern North Sea; Archaeo Press: Oxford, UK, 2007. [Google Scholar]
- Hemmings, C.A.; Adovasio, J.M. Inundated Landscapes and the Colonization of the Northeastern Gulf of Mexico. In Pre-Clovis in the Americas; Stanford, D.S., Stenger, A., Eds.; Smithsonian Institution: Washington, DC, USA, 2014; pp. 16–31. [Google Scholar]
- Flatman, J.C.; Evans, A.M. Prehistoric Archaeology on the Continental Shelf: The State of Science in 2013. In Prehistoric Archaeology on the Continental Shelf; Evans, A.M., Flatman, J.C., Flemming, N.C., Eds.; Springer Science + Business Media: New York, NY, USA, 2014; pp. 1–12. [Google Scholar] [CrossRef]
- Crombé, P.; Verhegge, J. In search of sealed Palaeolithic and Mesolithic sites using core sampling: The impact of grid size, meshes and auger diameter on discovery probability. J. Archaeol. Sci. 2015, 53, 445–458. [Google Scholar] [CrossRef]
- Garrison, E.G. Submerged Archaeological Resources: Sound, Software and Three-Inch Pipes-A Recipe for Finding Submerged Prehistoric Archaeological Sites? In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6 May 2019. [Google Scholar]
- Anderson, D.G.; Miller, D.S.; Yerka, J.C.; Gilliam, E.; Johanson, D.T.; Anderson, A.G.; Smallwood, A. PIDBA (Paleoindian Database of the Americas) 2010: Current status and findings. Archaeol. East. N. Am. 2010, 38, 63–90. [Google Scholar]
- Anderson, D.G.; Smallwood, A.M.; Miller, D.S. Pleistocene human settlement in the southeastern United States: Current evidence and future directions. PaleoAmerica 2015, 1, 7–51. [Google Scholar] [CrossRef]
- Anderson, D.G.; Echeverry, D.; Miller, D.S.; White, A.A.; Yerka, S.J.; Kansa, E.; Kansa, S.W.; Moore, C.R.; Myers, K.N.; Wells, J.J.; et al. Paleoindian settlement in the southeastern United States. In New Directions in the Search for the First Floridians; Thulman, D.K., Garrison, E.G., Eds.; University of Florida Press: Gainesville, FL, USA, 2019; pp. 241–347. [Google Scholar]
- Stanford, D.; Lowery, D.; Jodry, M.; Bradley, B.A.; Kay, M.; Stafford, T.W.; Speakman, R.J. New evidence for a possible Paleolithic occupation of the eastern North American continental shelf at the Last Glacial Maximum. In Prehistoric Archaeology on the Continental Shelf: A Global Review; Springer: New York, NY, USA, 2014; pp. 73–93. [Google Scholar] [CrossRef]
- Garrison, E.G. Paleoshorelines and Prehistory: An Investigation of Method; Johnson, L.L., Stright, M., Eds.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Hale, J.W.C.; Garrison, E.G. Climate change, cultural adaptations, and lower coastal plain occupations of Georgia and Florida from the early to middle Holocene: Extrapolating spatial trends into the offshore. J. Anthropol. Archaeol. 2019, 55, 101071. [Google Scholar] [CrossRef]
- Smallwood, A.M.; Jennings, T.A.; Anderson, D.G.; Ledbetter, J. Testing for evidence of Paleoindian responses to environmental changes during the Younger Dryas chronozone in Georgia. Southeast. Archaeol. 2015, 34, 23–45. [Google Scholar] [CrossRef]
- Smith, M.F.; Joy, S.A.; Waters, M.R.; Halligan, J.J.; Faught, M.K.; Thulman, D.K.; Perrotti, A.G.; Fenerty, B.; Duggins, R.; Burke, A.M. Contributions of Submerged Archaeological Research to the Late Pleistocene and Early Holocene Record of the Southeast; University of Alabama Press: Tuscaloosa, AL, USA, 2022; pp. 213–229. [Google Scholar]
- Smith, M.F. Liquid Landscapes: Submerged Archaeological Sites in Florida and the Terminal Pleistocene Settlement of a New Continent. Doctoral Dissertation, Texas A&M University, College Station, TX, USA, 2019. [Google Scholar]
- Garrison, E.G.; Cook Hale, J.; Cameron, C.S.; Smith, E. The archeology, sedimentology and paleontology of Gray’s Reef National Marine Sanctuary and nearby hard bottom reefs along the midcontinental shelf of the Georgia Bight. J. Archaeol. Sci. Rep. 2016, 5, 240–262. [Google Scholar]
- DePratter, M.P. Variability within upper Shoreface Facies Seaward of Barrier Islands within the Georgia Bight. Unpublished. Master’s Thesis, The University of Georgia, Athens, GA, USA, 1991. [Google Scholar]
- Pilkey, O.H.; Blackwelder, B.W.; Doyle, L.J.; Estes, E.; Terlecky, P.M. Aspects of carbonate sedimentation on the Atlantic continental shelf off the southern United States. J. Sediment. Res. 1969, 39, 744–768. [Google Scholar]
- Whitehouse, R. Scour at Marine Structures: A Manual for Practical Applications; Thomas Telford Publications: London, UK, 1998. [Google Scholar]
- Niedoroda, A.W.; Dalton, C. A review of the fluid mechanics of ocean scour. Ocean Eng. 1982, 9, 159–170. [Google Scholar] [CrossRef]
- Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications. Thomas Telford: London, UK, 1997. [Google Scholar]
- Quinn, R.; Bull, J.M.; Dix, J.K.; Adams, J.R. The Mary Rose site–Geophysical Evidence for palaeo-scour marks. Int. J. Naut. Archaeol. 1997, 26, 3–16. [Google Scholar]
- Quinn, R. The role of scour in shipwreck site formation processes and the preservation of wreck-associated scour signatures in the sedimentary record—Evidence from seabed and sub-surface data. J. Archaeol. Sci. 2006, 33, 1419–1432. [Google Scholar] [CrossRef]
- Quinn, R.; Boland, D. The role of time-lapse bathymetric surveys in assessing morphological change at shipwreck sites. J. Archaeol. Sci. 2010, 37, 2938–2946. [Google Scholar] [CrossRef]
- Quinn, R.; Saunders, R.; Plets, R.; Westley, K.; Dix, J. Marine scour of cohesionless sediments. In Site Formation Processes of Submerged Shipwrecks; Keith, M.E., Ed.; University Press of Florida: Gainesville, FL, USA, 2016; pp. 70–89. [Google Scholar]
- Quinn, R.; Smyth, T.A.G. Processes and patterns of flow, erosion, and deposition at shipwreck sites: A computational fluid dynamic simulation. Archaeol. Anthropol. Sci. 2018, 10, 1429–1442. [Google Scholar] [CrossRef]
- Raineault, N.A.; Trembanis, A.C.; Miller, D.C.; Capone, V. Interannual changes in the seafloor surficial geology at artificial reef site on the inner continental shelf. Cont. Shelf Res. 2013, 58, 67–78. [Google Scholar] [CrossRef]
- Smyth, T.A.G.; Quinn, R. The role of computational fluid dynamics in understanding shipwreck site formation processes. J. Archaeol. Sci. 2014, 45, 220–225. [Google Scholar] [CrossRef]
- Caston, G.F. Wreck marks: Indicators of net sand transport. Mar. Geol. 1979, 33, 193–204. [Google Scholar] [CrossRef]
- McNinch, J.E.; Wells, J.T.; Drake, T.G. The fate of artifacts in an energetic, shallow-water environment: Scour and burial at the wreck site of Queen Anne’s Revenge. Southeast. Geol. 2001, 40, 19–27. [Google Scholar]
- Trembanis, A.C.; McNinch, J.E. Predicting Scour and Maximum Settling Depths of Shipwrecks: A Numeric Simulation of the Fate of Queen Anne’s Revenge. In Coastal Sediments ’03; ASCE Press: Clearwater Beach, FL, USA, 2003. [Google Scholar]
- Trembanis, A.C. Complex Inner Shelf Environments: Observations and Modeling of Morphodynamics and Scour Processes. Ph.D. Thesis, The College of William and Mary, Williamsburg, VA, USA, 2004. [Google Scholar] [CrossRef]
- Sonnenburg, E.P.; Boyce, J.I. Data-fused digital bathymetry and side-scan sonar as a base for archaeological inventory of submerged landscapes in the Rideau Canal, Ontario, Canada. Geoarchaeology 2008, 23, 654–674. [Google Scholar] [CrossRef]
- Delong, K.L.; Gonzalez, S.; Obelcz, J.B.; Truong, J.T.; Bentley, S.J., Sr.; Xu, K.; Reese, C.A.; Harley, G.L.; Caporaso, A.; Shen, Z.; et al. Late Pleistocene baldcypress (Taxodium distichum) forest deposit on the continental shelf of the northern Gulf of Mexico. Boreas 2021, 50, 871–892. [Google Scholar] [CrossRef]
- Donahue, B.T.; Gayes, P.T.; Scott, D.B.; McCarthy, F.M.G. The late Pleistocene–early Holocene marine transition in South Carolina: An exposed forest floor onthe SC mid-shelf. Abstr. Programs—Geol. Soc. Am. 1995, 27, 202. [Google Scholar]
- Panamerican Consultants, Inc. Remote Sensing Survey and Diver Investigations, Atlantic Intracoastal Waterway, Chatham, Bryan, Liberty, McIntosh, Glynn and Camden Counties, Georgia and Portions of Beaufort County, South Carolina. Prepared for US Army Corps of Engineers; DCA/GEC A Joint Venture, LLC, Savannah District: Jacksonville Beach, FL, USA, 2012. [Google Scholar]
- Richardson, P.D. The generation of scour marks near obstacles. J. Sediment. Petrol. 1978, 38, 965–970. [Google Scholar]
UGAMS# | Sample ID | Material | δ13C, ‰ | 14C Age Years, BP | ± | pMC | ± |
---|---|---|---|---|---|---|---|
64367 | Barge 6 | wood | −26.16 | 49,670 | 420 | 0.21 | 0.01 |
64368 | Barge 13 | wood | −25.48 | 40,800 | 180 | 0.62 | 0.01 |
67126 | Barge 13 | wood | −24.59 | 37,560 | 220 | 0.93 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrison, E.G.; Jones, E.C.; Robinson, M.; Rivera, Y.I.; Williams, K.A.; Prueitt, B.; Carter, A.L.; Newton, M.A.; Hemmings, C.A. “Scouring for Prehistory”—An Opportunistic Methodology for Sea Floor Archaeology. Heritage 2024, 7, 3417-3428. https://doi.org/10.3390/heritage7070161
Garrison EG, Jones EC, Robinson M, Rivera YI, Williams KA, Prueitt B, Carter AL, Newton MA, Hemmings CA. “Scouring for Prehistory”—An Opportunistic Methodology for Sea Floor Archaeology. Heritage. 2024; 7(7):3417-3428. https://doi.org/10.3390/heritage7070161
Chicago/Turabian StyleGarrison, Ervan G., Emily Carter Jones, Michael Robinson, Yasmine I. Rivera, Kelsey A. Williams, Benjamin Prueitt, Anderson L. Carter, Matthew A. Newton, and C. Andrew Hemmings. 2024. "“Scouring for Prehistory”—An Opportunistic Methodology for Sea Floor Archaeology" Heritage 7, no. 7: 3417-3428. https://doi.org/10.3390/heritage7070161
APA StyleGarrison, E. G., Jones, E. C., Robinson, M., Rivera, Y. I., Williams, K. A., Prueitt, B., Carter, A. L., Newton, M. A., & Hemmings, C. A. (2024). “Scouring for Prehistory”—An Opportunistic Methodology for Sea Floor Archaeology. Heritage, 7(7), 3417-3428. https://doi.org/10.3390/heritage7070161