Climate Change Threats to Stone Cultural Heritage: State of the Art of Quantitative Damage Functions and New Challenges for a Sustainable Future
Abstract
:1. Introduction
2. The State of the Art: A Literature Review
3. The Loss of Details (LoD) and the Future Cultural Value (FCV)
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norberg-Schultz, C. Genius Loci towards a Phenomenology of Architecture; Rizzoli: New York, NY, USA, 1980. [Google Scholar]
- IPCC. Intergovernmental Panel on Climate Change; IPCC: Paris, France, 2014. [Google Scholar]
- Fassina, V. Basic chemical mechanism outdoors. In Basic Environmental Mechanisms Affecting Cultural Heritage, Understanding Deterioration Mechanisms for Conservation Purposes, COST Action D42, Chemical Interaction between Cultural Artefacts and Indoor Environment (EnviArt); Nardini Editore: Firenze, Italy, 2010; pp. 75–105. [Google Scholar]
- Casti, M.; Meloni, P.; Pia, G.; Palomba, M. Differential damage in the semi-confined Munazio Ireneo cubicle in Cagliari (Sardinia): A correlation between damage and microclimate. Environ. Earth Sci. 2017, 76, 529. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Rizzo, A. Chemical Characterization of Particulate Matter in the Renaissance City of Ferrara. Geosciences 2021, 11, 227. [Google Scholar] [CrossRef]
- Vidović, K.; Hočevar, S.; Menart, E.; Drventić, I.; Grgić, I.; Kroflič, A. Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: A critical review. Environ. Sci. Pollut. Res. 2022, 29, 46405–46437. [Google Scholar] [CrossRef] [PubMed]
- Vidal, F.; Vicente, R.; Silva, J.M. Review of environmental and air pollution impacts on built heritage: 10 questions on corrosion and soiling effects for urban intervention. J. Cult. Herit. 2019, 37, 273–295. [Google Scholar] [CrossRef]
- Moropoulou, P.; Theoulakis, T.; Chrysopakis, T. Correlation between stone weathering and environmental factors in marine atmosphere. Atmos. Environ. 1995, 29, 895–903. [Google Scholar] [CrossRef]
- Saba, M.; Quiñones-Bolaños, E.E.; Barbosa López, A.E. A review of the mathematical models used for simulation of calcareous stone deterioration in historical buildings. Atmos. Environ. 2018, 280, 156–166. [Google Scholar] [CrossRef]
- Sabbioni, C.; Ghedini, N.; Bonazza, A. Organic anions in damage layers on monuments and buildings. Atmos. Environ. 2003, 37–39, 1261–1269. [Google Scholar] [CrossRef]
- Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C.M.; Brimblecombe, P. Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci. Total Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef] [PubMed]
- Bonazza, A.; Sabbioni, C.; Messina, P.; Guaraldi, C.; De Nuntiis, P. Climate change impact: Mapping thermal stress on Carrara marble in Europe. Sci. Total Environ. 2009, 407, 4506–4512. [Google Scholar] [CrossRef]
- Coletti, C.; Cultrone, G.; Maritan, L.; Mazzoli, C. Combined multi-analytical approach for study of pore system in bricks: How much porosity is there? Mater. Charact. 2016, 121, 82–92. [Google Scholar] [CrossRef]
- Coletti, C.; Cesareo, L.P.; Nava, J.; Germinario, L.; Maritan, L.; Massironi, M.; Mazzoli, C. Deterioration Effects on Bricks Masonry in the Venice Lagoon Cultural Heritage: Study of the Main Façade of the Santa Maria dei Servi Church (14th Century). Heritage 2023, 6, 1277–1292. [Google Scholar] [CrossRef]
- Salvini, S.; Coletti, C.; Maritan, L.; Massironi, M.; Spiess, R.; Mazzoli, C. Petrographic characterization and durability of carbonate stones used in UNESCO World Heritage sites in northeastern Italy. Environ. Earth Sci. 2023, 82, 49. [Google Scholar] [CrossRef]
- Salvini, S.; Coletti, C.; Maritan, L.; Massironi, M.; Balsamo, F.; Mazzoli, C. Exploring the Pore System of Carbonate Rocks through a Multi- Analytical Approach. Environ. Earth Sci. 2023, 82, 564. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; Jiménez Gutiérrez, S.; García-del-Cura, M.A.; Ordóñez, S. Stone weathering under Mediterranean semiarid climate in the fortress of Nueva Tabarca Island (Spain). Build. Environ. 2017, 121, 262–276. [Google Scholar] [CrossRef]
- Caneva, G.; Gori, E.; Montefinale, T. Biodeterioration of monuments in relation to climatic changes in Rome between 19–20th centuries. Sci. Total Environ. 1995, 167, 205–214. [Google Scholar] [CrossRef]
- Toreno, G.; Zucconi, L.; Caneva, G.; Meloni, P.; Isola, D. Recolonization dynamics of marble monuments after cleaning treatments: A nine-year follow-up study. Sci. Total Environ. 2024, 912, 169350. [Google Scholar] [CrossRef] [PubMed]
- Bonazza, A.; Sardella, A. Climate Change and Cultural Heritage: Methods and Approaches for Damage and Risk Assessment Addressed to a Practical Application. Heritage 2023, 6, 3578–3589. [Google Scholar] [CrossRef]
- Patil, S.M.; Kasthurba, A.K.; Patil, M.V. Characterization and assessment of stone deterioration on Heritage Buildings. Case Stud. Constr. Mater. 2021, 15, e00696. [Google Scholar] [CrossRef]
- Pereira, D. The Value of Natural Stones to Gain in the Cultural and Geological Diversity of Our Global Heritage. Heritage 2023, 6, 4542–4556. [Google Scholar] [CrossRef]
- Gandini, A.; Garmendia, L.; San Mateos, R. Towards sustainable historic cities: Mitigation climate change risks. Entrep. Sustain. Issues 2017, 4, 319–327. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The Agenda 2030 for the Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Brundtland, G.H. Our Common Future: Report of the World Commission on Environment and Development; UN-Dokument A/42/427; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Herngren, L.; Goonetilleke, A.; Sukpum, R.; Silva, D.D. Rainfall simulation as a tool for urban water quality research. Environ. Eng. Sci. 2005, 22–23, 378–383. [Google Scholar] [CrossRef]
- Salvini, S.; Bertoncello, R.; Coletti, C.; Germinario, L.; Maritan, L.; Massironi, M.; Pozzobon, R.; Mazzoli, C. Recession rate of carbonate rocks used in cultural heritage: Textural control assessed by accelerated ageing tests. J. Cult. Herit. 2022, 57, 154–164. [Google Scholar] [CrossRef]
- Trudgill, S.T.; Viles, H.A.; Inkpen, R.J.; Cooke, R.U. Remeasurement of weathering rates, St Paul’s Cathedral, London. Earth Surf. Process. Landf. 1989, 14, 175–196. [Google Scholar] [CrossRef]
- Inkpen, R.J.; Viles, H.; Moses, C.; Baily, B. Modelling the impact of changing atmospheric pollution levels on limestone erosion rates in central London, 1980–2010. Atmos. Environ. 2012, 61, 476–481. [Google Scholar] [CrossRef]
- Inkpen, R.J.; Viles, H.; Moses, C.; Baily, B.; Collier, C.; Trudgill, S.T.; Cooke, R.U. Thirty years of erosion and declining atmospheric pollution at St Paul’s Cathedral, London. Atmos. Environ. 2012, 62, 521–529. [Google Scholar] [CrossRef]
- Roberts, S.M. Surface-recession weathering of marble tombstones: New field data and constraints. In Stone Decay in the Architectural Environment; Geological Society of America (GSA): Boulder, CO, USA, 2005; Volume 390, pp. 27–37. [Google Scholar]
- Reddy, M.M.; Sherwood, S.; Doe, B. Limestone and marble dissolution by acid rain. In Material and Degradation Caused by Acid Rain; Baboian, R., Ed.; American Chemical Society: Washington, DC, USA, 1986; pp. 226–238. [Google Scholar]
- Lipfert, F.W. Atmospheric damage to calcareous stones: Comparison and reconciliation of recent experimental findings. Atmos. Environ. 1989, 23, 415–429. [Google Scholar] [CrossRef]
- Livingston, R.A. Acid rain attack on outdoor sculpture in perspective. Atmos. Environ. 2016, 146, 332–345. [Google Scholar] [CrossRef]
- Webb, A.H.; Bawden, R.J.; Busby, A.K.; Hopkins, J.N. Studies on the effects of air pollution on limestone degradation in Great Britain. Atmos. Environ. Part B Urban Atmos. 1992, 26, 165–181. [Google Scholar] [CrossRef]
- Baedeker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A. Effects of Acidic Deposition on the Erosion of Carbonate Stone—Experimental Results from the U.S. National Acid Precipitation Assessment Program (NAPAP). Atmos. Environ. Part B Urban Atmos. 1992, 26, 147–158. [Google Scholar] [CrossRef]
- Kucera, V.; Fitz, S. Direct and indirect air pollution effects on materials including cultural monuments. Water Air Soil Pollut. 1995, 85, 153–165. [Google Scholar] [CrossRef]
- Yerrapragada, S.S.; Chirra, S.R.; Jaynes, J.H.; Li, S.; Bandyopadhyay, J.K.; Gauri, K.L.; Srinivas, B.; Surendra, S.Y. Weathering rates of marble in laboratory and outdoor conditions. J. Environ. Eng. 1996, 122, 856–863. [Google Scholar] [CrossRef]
- Delalieux, F.; Cardell-Fernandez, C.; Torfs, K.; Vleugels, G.; Van Grieken, R. Damage functions and mechanism equations derived from limestone weathering in field exposure. Water Air Soil Pollut. 2002, 139, 75–94. [Google Scholar] [CrossRef]
- Lan, T.T.N.; Thoa, N.T.P.; Nishimura, R.; Tsujino, Y.; Yokoi, M.; Maeda, Y. New model for the sulfation of marble by dry deposition Sheltered marble—The indicator of air pollution by sulfur dioxide. Atmos. Environ. 2005, 39, 913–920. [Google Scholar]
- Kucera, V.; Tidblad, J.; Kreislova, K.; Knotkova, D.; Faller, M.; Reiss, R.; Snethlage, R.; Yates, T.; Henriksen, J.; Schreiner, M.; et al. UN/ECE ICP Materials Dose-response functions for the multi pollutant situation. In Acid Rain—Deposition to Recovery; Springer: Dordrecht, The Netherlands, 2007; pp. 249–258. [Google Scholar] [CrossRef]
- Germinario, L.; Coletti, C.; Girardi, G.; Maritan, L.; Praticelli, N.; Sassi, R.; Mazzoli, C. Microclimate and weathering in cultural heritage: Design of a monitoring apparatus for field tests. Heritage 2022, 5, 3211–3219. [Google Scholar] [CrossRef]
- Vazquez-Calvo, C.; Alvarez de Buergo, M.; Fort, R.; Varas-Muriel, M.J. The measurement of surface roughness to determine the suitability of different methods for stone cleaning. J. Geophys. Eng. 2012, 9, 108–117. [Google Scholar] [CrossRef]
- Bonomo, A.E.; Amodio, A.M.; Prosser, G.; Sileo, M.; Rizzo, G. Evaluation of soft limestone degradation in the Sassi UNESCO site (Matera, Southern Italy): Loss of material measurement and classification. J. Cult. Herit. 2020, 42, 191–201. [Google Scholar] [CrossRef]
- Randazzo, L.; Collina, M.; Ricca, M.; Barbieri, L.; Bruno, F.; Arcudi, A.; La Russa, M.F. Damage Indices and Photogrammetry for Decay Assessment of Stone-Built Cultural Heritage: The Case Study of the San Domenico Church Main Entrance Portal (South Calabria, Italy). Sustainability 2020, 12, 5198. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. Near-infrared modeling and enhanced visualization, as a novel approach for 3D decay mapping of stone sculptures. Archaeol. Anthropol. Sci. 2020, 12, 13801–13812. [Google Scholar] [CrossRef]
- Hernández-Montes, E.; Gil-Martín, L.M.; Coletti, C.; Dilaria, S.; Germinario, L.; Mazzoli, C. Prediction Model for the Evolution of the Deterioration of Bricks in Heritage Buildings in Venice Caused by Climate Change. Heritage 2022, 6, 483–491. [Google Scholar] [CrossRef]
- Carta, L.; Calcaterra, D.; Cappelletti, P.; Langella, A.; De Gennaro, M. The stone materials in the historic architecture of the ancient center of Sassari: Distribution and state of conservation. J. Cult. Herit. 2005, 6, 277–286. [Google Scholar] [CrossRef]
- Turkington, A.V.; Phillips, J.D. Cavernous weathering, dynamical instability and self-organization. Earth Surf. Process. Landf. 2004, 29, 665–675. [Google Scholar] [CrossRef]
- Fitzner BHeinriehs, K.; Kownatzki, R. Weathering forms at natural stone monuments–classification, mapping and evaluation. Int. J. Archit. Herit. 1997, 3, 105–124. [Google Scholar]
- Brandi, C. La Teoria del Restauro; Einaudi: Milan, Italy, 1963. [Google Scholar]
- Bergson, H. Matter and Memory: (Illustrated) (English Edition); Panatianos Classics: Napoli, Italy, 1896. [Google Scholar]
- Zanardi, B. Evoluzione del deperimento della Colonna Traiana. Dal tempo dei calchi di Luigi XIV e Napoleone III allo stato attuale. In La Colonna Traiana e gli Artisti Francesi da Luigi XIV a Napoleone I—Catalogo Della Mostra; Edizioni Carte Segrete: Roma, Italy, 1988. [Google Scholar]
- Camuffo, D. Reconstructing the climate and the air pollution of Rome during the life of the Trajan Column. Sci. Total Environ. 1993, 128, 205–226. [Google Scholar] [CrossRef]
- Camuffo, D. Acid rain and deterioration of monuments: How old is the phenomenon? Atmos. Environ. 1992, 26, 241–247. [Google Scholar] [CrossRef]
- Camuffo, D.; Enzi, S. Impact of the Clouds of Volcanic Aerosols in Italy During the Last 7 Centuries. Nat. Hazards 1995, 11, 135–161. [Google Scholar] [CrossRef]
- Fontanella, U.; Tomasetti, M.; Visco, G.; Sammartino, M.O. Characterization of Rome’s rainwater in the early of 2018 aiming to find correlations between chemical-physical parameters and sources of pollution: A statistical study. J. Atmos. Chem. 2021, 78, 1–16. [Google Scholar] [CrossRef]
- Battista, G.; de Lieto Vollaro, R. Correlation between air pollution and weather data in urban areas: Assessment of the city of Rome (Italy) as spatially and temporally independent regarding pollutants. Atmos. Environ. 2017, 165, 240–247. [Google Scholar] [CrossRef]
- Borzenkova, I.; Zorita, E.; Borisova, O.; Kalniņa, L.; Kisielienė, D.; Koff, T.; Kuznetsov, D.; Lemdahl, G.; Sapelko, T.; Stančikaitė, M.; et al. Climate Change During the Holocene (Past 12,000 Years). In Second Assessment of Climate Change for the Baltic Sea Basin; Springer Nature: Cham, Switzerland, 2015; pp. 25–49. [Google Scholar] [CrossRef]
- Camuffo, D.; Bernardi, A. Deposition of urban pollution on the Ara Pacis, Rome. Sci. Total Environ. 1996, 189–190, 235–245. [Google Scholar] [CrossRef]
- Winkler, A.; Contardo, T.; Lapenta, V.; Sgamellotti, A.; Loppi, S. Assessing the impact of vehicular particulate matter on cultural heritage by magnetic biomonitoring at Villa Farnesina in Rome, Italy. Sci. Total Environ. 2022, 823, 153729. [Google Scholar] [CrossRef] [PubMed]
- Depeyrot, G. Optimo Principi: Iconographie, Monnaie et Propagande sous Trajan; Collection Moneta: Wetteren, Belgium, 2007. [Google Scholar]
- Stefan, A.S. La Colonne Trajane; Editions A&J Picard: Paris, France, 2015. [Google Scholar]
- Bubola, F.; Coletti, C.; Balliana, E.; Cecamore, C.; Presicce, C.P.; Mazzoli, C. The diagnostic study of the plaster casts of the Trajan’s Column in the Museum of Roman Civilisation (Rome). In Proceedings of the IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Rome, Italy, 19–21 October 2023; pp. 648–652. [Google Scholar]
- López-Armenta, M.F.; Nespeca, R. 3D change detection for cultural heritage monitoring: Two case studies of underground sculptural reliefs. Digit. Appl. Archaeol. Cult. Herit. 2024, 33, e00328. [Google Scholar] [CrossRef]
Equation | Mat | Input Data | Parameters | Ref. |
---|---|---|---|---|
M | SO2 and H+ | Annual surface recession normalized to annual rainfall. | [30] | |
PL | CO2, SO2, HNO3, H+ rainwater, and time | Surface recession rate per meter of precipitation | [33] | |
LS | Effects of (T) and concentration of H+ ions | Material loss (mmol/L of Ca2+ ions). | [36] | |
LS | SO2, NO2, and rainfall R in m/yr | Weight loss of material per unit surface | [35] | |
LS | Time of wetting (TOW), SO2, NO2, and rainfall R in m/yr | Weight loss of material per unit surface | [37] | |
LS | Time of wetting (TOW), SO2, NO2, and rainfall R in m/yr | Material loss measured in microns | [39] | |
Δm = 6.56 + 27.38 H+ + (1.131 · 1013 · CSO20.7 · CNO20.3/V) t | M | SO2, NO2, H+ rainwater, and time | Surface recession rate per meter of precipitation | [38] |
LS | Temperature (T), humidity (H60), SO2, HNO3, H+ rainwater, and time | Annual surface recession in microns | [41] | |
LS | Effects of (T) and concentration of H+ ions | Material loss measured in microns, from [36] | [39] | |
LS | SO2, NO2, H+ rainwater, and time | Material loss measured in microns, from [35] | [39] | |
LS | Effects of (T) and concentration of H+ ions | Material loss measured in microns, from [37] | [39] | |
LS | Material loss measured in microns | [39] | ||
0309 R (unsheltered environments) (sheltered environments) | LS | Total rainfall R (mm), exposure t (years), SO2, and RH | Stone exposure to unsheltered and sheltered environments | [40] |
. | LS | Difference in concentration , , and organic acids | Effect of acid rain runoff and dry deposition on carbonate dissolution | [34] |
Yeq = ((DWL/ρbulk)/STotal) · (texp/MRD) | LM, VS | Loss of weight (DWL), stone density (ρbulk), total area of sample (STotal), time (texp), and recession measured on monument (MRD) | Number of years of natural aging to achieve the same state of erosion with artificial tests | [38] |
UCP=∑ni=1 ai cpi | B | UCP is defined by the combination of climatic parameters (cpi = HR, T, salts, rains, …) and ai is the weighting coefficient. | Recession is formulated as a linear combination of cpi. It is defined a DED according to the cardinal exposition. | [47] |
Traditional Modes | New Challenges |
---|---|
Stone recession rate is usually considered on slabs, disregarding the morphological aspects. | Approaches to measuring surface changes should evaluate the differential effect of climate and micro-climate conditions on geometric features in stone recession. |
Stone cultural heritage is considered for its intrinsic property while its cultural value is considered separately. | Cultural heritage is filled with details holding cultural messages. The differential loss of material should also be considered in terms of the quantification of Loss of Details (LoD), as an indicator of cultural identity preservation. |
Studies are disconnected from the real environmental and urban context. | Monuments and historical buildings should be considered in relation to the real setting (connected with specific micro-climate conditions, urban environment, and orientation), and results should effectively support authorities in the adoption of strategies by formulating guidelines, providing a reliable damage assessment for sustainable management, and playing an active part in the transition towards more sustainable socio-economic models. |
Reliable projections into the future are lacking. | New technologies (e.g., 3D reconstruction or digitalization) can make visual projections according to climate projections (IPCC) and estimate the Future Cultural Value (FCV) of the monuments, as their capacity of holding and transmitting their cultural message to future generations, increasing awareness and education for a resilient society. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coletti, C. Climate Change Threats to Stone Cultural Heritage: State of the Art of Quantitative Damage Functions and New Challenges for a Sustainable Future. Heritage 2024, 7, 3276-3290. https://doi.org/10.3390/heritage7060154
Coletti C. Climate Change Threats to Stone Cultural Heritage: State of the Art of Quantitative Damage Functions and New Challenges for a Sustainable Future. Heritage. 2024; 7(6):3276-3290. https://doi.org/10.3390/heritage7060154
Chicago/Turabian StyleColetti, Chiara. 2024. "Climate Change Threats to Stone Cultural Heritage: State of the Art of Quantitative Damage Functions and New Challenges for a Sustainable Future" Heritage 7, no. 6: 3276-3290. https://doi.org/10.3390/heritage7060154
APA StyleColetti, C. (2024). Climate Change Threats to Stone Cultural Heritage: State of the Art of Quantitative Damage Functions and New Challenges for a Sustainable Future. Heritage, 7(6), 3276-3290. https://doi.org/10.3390/heritage7060154