Will Artificial Intelligence Affect How Cultural Heritage Will Be Managed in the Future? Responses Generated by Four genAI Models
Abstract
:1. Introduction
1.1. Background to the Generative Artificial Intelligence Language Models
1.2. Use of genAI Language Models in Cultural Heritage Studies
2. Methodology
- Will genAI affect how cultural heritage will be managed in the future?
- Can you give me some examples?
- Are there any dangers in relying heavily on genAI to guide cultural heritage professionals in their actions?
- Can you elaborate on [dot point selected from the answer to the previous prompt]?
3. Results and Discussion
3.1. Will genAI Affect How Cultural Heritage Will Be Managed in the Future?
3.1.1. Increased Digitisation
3.1.2. Virtual Reconstructions and the Creation of Interactive and Immersive Experiences
3.1.3. Blending the Old with the New
3.1.4. Analysis and Interpretation Large Volumes of Historical Data and Texts
3.1.5. Novel Ideas and Applications
3.1.6. Limitations of genAI in Generating Logical Answers
3.2. Are There Any Dangers in Relying Heavily on genAI to Guide Cultural Heritage Professionals in Their Actions?
3.2.1. Authenticity
3.2.2. Unintentional Biases, Misrepresentation, and Misinformation
3.2.3. Intentional Biases, Misrepresentation, and Misinformation
3.2.4. Infringement of Intellectual Property and Moral Rights of the Creators and Owners of the Cultural Heritage
3.2.5. Ownership of AI-Generated Cultural Heritage
3.2.6. Complex and Unpredictable Outputs That May Be Difficult to Understand or Interpret by Humans
3.2.7. Perception of Infallibility
3.2.8. Overreliance on genAI and the Deskilling of Humans
3.2.9. Depersonalisation of Cultural Heritage
3.2.10. Balancing the Dangers in Relying Heavily on genAI to Guide Cultural Heritage Professionals
3.2.11. Data and Privacy
4. Discussion and Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Spennemann, D.H.R. Will the age of generative Artificial Intelligence become an age of public ignorance? Preprint 2023, 1–12. [Google Scholar] [CrossRef]
- Markov, T.; Zhang, C.; Agarwal, S.; Eloundou, T.; Lee, T.; Adler, S.; Jiang, A.; Weng, L. New and Improved Content Moderation Tooling. Available online: https://openai.com/blog/new-and-improved-content-moderation-tooling/ (accessed on 28 June 2023).
- Collins, E.; Ghahramani, Z. LaMDA: Our Breakthrough Conversation Technology. Available online: https://web.archive.org/web/20230130233845mp_/https://openai.com/blog/new-and-improved-content-moderation-tooling/ (accessed on 1 September 2023).
- Frąckiewicz, M. ChatGPT-4 for Digital Archaeology: AI-Powered Artifact Discovery and Analysis. Available online: https://ts2.space/en/chatgpt-4-for-digital-archaeology-ai-powered-artifact-discovery-and-analysis/ (accessed on 29 June 2023).
- Spennemann, D.H.R. What has ChatGPT read? References and referencing of archaeological literature by a generative artificial intelligence application. arXiv 2023, arXiv:2308.03301. [Google Scholar]
- Reisner, A. Revealed: The authors whose pirated books are powering generative Ai. Atlantic 2023. Available online: https://www.theatlantic.com/technology/archive/2023/08/books3-ai-meta-llama-pirated-books/675063/ (accessed on 29 June 2023).
- Reisner, A. What I Found in a Database Meta Uses to Train Generative AI. Atlantic 2023. Available online: https://www.theatlantic.com/technology/archive/2023/09/books3-ai-training-meta-copyright-infringement-lawsuit/675411/ (accessed on 29 June 2023).
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency, Virtual, 3–10 March 2021; pp. 610–623. [Google Scholar]
- Rozado, D. The political biases of chatgpt. Soc. Sci. 2023, 12, 148. [Google Scholar] [CrossRef]
- Rutinowski, J.; Franke, S.; Endendyk, J.; Dormuth, I.; Pauly, M. The Self-Perception and Political Biases of ChatGPT. arXiv 2023, arXiv:2304.07333. [Google Scholar] [CrossRef]
- Ferrara, E. Should chatgpt be biased? challenges and risks of bias in large language models. arXiv 2023, arXiv:2304.03738. [Google Scholar]
- McGee, R.W. Is chat gpt biased against conservatives? An empirical study (February 15, 2023). SSRN 2023. [Google Scholar] [CrossRef]
- Kamran, A. Decolonizing Artificial Intelligence: Unveiling Biases, Power Dynamics, and Colonial Continuities in AI Systems. RMS J. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4610643 (accessed on 15 September 2023).
- Paradis, K. More Than Ones and Zeros: Developing an Intersectional Framework for Artificial Intelligence. J. Inf. Ethics 2023, 32, 70–83. [Google Scholar]
- Mbalaka, B. Epistemically violent biases in artificial intelligence design: The case of DALLE-E 2 and Starry AI. Digit. Transform. Soc. 2023, 2, 376–402. [Google Scholar] [CrossRef]
- Tamkin, A.; Brundage, M.; Clark, J.; Ganguli, D. Understanding the capabilities, limitations, and societal impact of large language models. arXiv 2021, arXiv:2102.02503. [Google Scholar]
- Kuck, K. Generative Artificial Intelligence: A Double-Edged Sword. In Proceedings of the 2023 World Engineering Education Forum-Global Engineering Deans Council (WEEF-GEDC), Cape Town, South Africa, 23–27 October 2023; pp. 1–10. [Google Scholar]
- Gross, N. What ChatGPT Tells Us about Gender: A Cautionary Tale about Performativity and Gender Biases in AI. Soc. Sci. 2023, 12, 435. [Google Scholar] [CrossRef]
- Head, C.B.; Jasper, P.; McConnachie, M.; Raftree, L.; Higdon, G. Large language model applications for evaluation: Opportunities and ethical implications. New Dir. Eval. 2023, 2023, 33–46. [Google Scholar] [CrossRef]
- Lucchi, N. ChatGPT: A case study on copyright challenges for generative artificial intelligence systems. Eur. J. Risk Regul. 2023, 1–23. [Google Scholar] [CrossRef]
- Chesterman, S. Good Models Borrow, Great Models Steal: Intellectual Property Rights and Generative AI. Policy Soc. 2023, puae006. [Google Scholar] [CrossRef]
- Chang, K.K.; Cramer, M.; Soni, S.; Bamman, D. Speak, memory: An archaeology of books known to chatgpt/gpt-4. arXiv 2023, arXiv:2305.00118. [Google Scholar]
- Bang, Y.; Cahyawijaya, S.; Lee, N.; Dai, W.; Su, D.; Wilie, B.; Lovenia, H.; Ji, Z.; Yu, T.; Chung, W. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv 2023, arXiv:2302.04023. [Google Scholar]
- Spennemann, D.H.R. ChatGPT and the generation of digitally born “knowledge”: How does a generative AI language model interpret cultural heritage values? Knowledge 2023, 3, 480–512. [Google Scholar] [CrossRef]
- Ray, P.P. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys. Syst. 2023, 3, 121–154. [Google Scholar] [CrossRef]
- Flensted, T. How Many Languages Does ChatGPT Support? The Complete ChatGPT Language List. Available online: https://seo.ai/blog/how-many-languages-does-chatgpt-support#:~:text=Unlock%20the%20Power%20of%20ChatGPT,list%20of%20supported%20languages%20below (accessed on 1 October 2023).
- Hua, S.; Jin, S.; Jiang, S. The Limitations and Ethical Considerations of ChatGPT. Data Intell. 2023, 1–38. [Google Scholar] [CrossRef]
- Ferrara, E. GenAI against humanity: Nefarious applications of generative artificial intelligence and large language models. arXiv 2023, arXiv:2310.00737. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Exploring ethical boundaries: Can ChatGPT be prompted to give advice on how to cheat in university assignments? Preprint 2023, 1–14. [Google Scholar] [CrossRef]
- OpenAI. How ChatGPT and Our Language Models Are Developed. Available online: https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-language-models-are-developed (accessed on 1 February 2024).
- Vaughan-Nichols, S. GPT-3.5 vs GPT-4: Is ChatGPT Plus Worth Its Subscription Fee? Available online: https://www.zdnet.com/article/gpt-3-5-vs-gpt-4-is-chatgpt-plus-worth-its-subscription-fee/ (accessed on 15 September 2023).
- Manyika, J.; Hsiao, S. An Overview of Bard: An Early Experiment with Generative AI [Version 19 October 2023]; Google LLC: Mountain View, CA, USA, 2023. [Google Scholar]
- Google. Bard FAQ. Available online: https://bard.google.com/faq (accessed on 12 October 2023).
- Griffin, G.; Wennerström, E.; Foka, A. AI and Swedish Heritage Organisations: Challenges and opportunities. AI Soc. 2023. [Google Scholar] [CrossRef]
- Cuéllar, Á. Artificial Intelligence to the Rescue of the Spanish Golden Age: Automatic Transcription and Modernization of One Thousand Three Hundred Theatrical Prints and Manuscripts. Hipogrifo. Rev. De Lit. Y Cult. Del Siglo De Oro 2023, 11, 101–115. [Google Scholar]
- Assael, Y.; Sommerschield, T.; Shillingford, B.; Bordbar, M.; Pavlopoulos, J.; Chatzipanagiotou, M.; Androutsopoulos, I.; Prag, J.; de Freitas, N. Restoring and attributing ancient texts using deep neural networks. Nature 2022, 603, 280–283. [Google Scholar] [CrossRef]
- Sanders, D.H. Neural Networks, AI, Phone-based VR, Machine Learning, Computer Vision and the CUNAT Automated Translation App–not your father’s archaeological toolkit. In Proceedings of the 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) held jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018), San Francisco, CA, USA, 26–30 October 2018; pp. 1–5. [Google Scholar]
- Roueché, C. AI minds the gap and fills in missing Greek inscriptions. Nature 2022, 603, 235–236. [Google Scholar] [CrossRef]
- Locaputo, A.; Portelli, B.; Colombi, E.; Serra, G. Filling the Lacunae in ancient Latin inscriptions. In Proceedings of the CEUR Workshop Proceedings, Leipzing, Germany, 20–22 September 2023; pp. 68–76. [Google Scholar]
- Guidi, T.; Python, L.; Forasassi, M.; Cucci, C.; Franci, M.; Argenti, F.; Barucci, A. Egyptian hieroglyphs segmentation with convolutional neural networks. Algorithms 2023, 16, 79. [Google Scholar] [CrossRef]
- León, R.B.; Peña, C.A.; Moreno, G.G. Advances in the Development of an Algorithm for Parametric Identification of Egyptian Hieroglyphs Using Artificial Vision. J. Adv. Inf. Technol. 2023, 14, 788–795. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Z.; Zeng, Z.; Zhang, Y.; Zhou, Q. Improvement of Oracle Bone Inscription Recognition Accuracy: A Deep Learning Perspective. ISPRS Int. J. Geo-Inf. 2022, 11, 45. [Google Scholar] [CrossRef]
- Marchant, J. AI reads text from ancient Herculaneum scroll for the first time. Nature 2023. [Google Scholar] [CrossRef]
- Shaus, A.; Gerber, Y.; Faigenbaum-Golovin, S.; Sober, B.; Piasetzky, E.; Finkelstein, I. Forensic document examination and algorithmic handwriting analysis of Judahite biblical period inscriptions reveal significant literacy level. PLoS ONE 2020, 15, e0237962. [Google Scholar] [CrossRef] [PubMed]
- Chammas, M.; Makhoul, A.; Demerjian, J.; Dannaoui, E. A deep learning based system for writer identification in handwritten Arabic historical manuscripts. Multimed. Tools Appl. 2022, 81, 30769–30784. [Google Scholar] [CrossRef]
- Cardarelli, L. A deep variational convolutional Autoencoder for unsupervised features extraction of ceramic profiles. A case study from central Italy. J. Archaeol. Sci. 2022, 144, 105640. [Google Scholar] [CrossRef]
- Argyrou, A.; Agapiou, A.; Papakonstantinou, A.; Alexakis, D.D. Comparison of Machine Learning Pixel-Based Classifiers for Detecting Archaeological Ceramics. Drones 2023, 7, 578. [Google Scholar] [CrossRef]
- Bickler, S.H. Machine learning identification and classification of historic ceramics. Archaeology 2018, 20, 20–32. [Google Scholar]
- Aoulalay, A.; El Makhfi, N.; Abounaima, M.C.; Massar, M. Classification of Moroccan decorative patterns based on machine learning algorithms. In Proceedings of the 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2–3 December 2020; pp. 1–7. [Google Scholar]
- Kuntitan, P.; Chaowalit, O. Using deep learning for the image recognition of motifs on the Center of Sukhothai Ceramics. Curr. Appl. Sci. Technol. 2022, 22, 1–15. [Google Scholar] [CrossRef]
- Chetouani, A.; Treuillet, S.; Exbrayat, M.; Jesset, S. Classification of engraved pottery sherds mixing deep-learning features by compact bilinear pooling. Pattern Recognit. Lett. 2020, 131, 1–7. [Google Scholar] [CrossRef]
- Cintas, C.; Lucena, M.; Fuertes, J.M.; Delrieux, C.; Navarro, P.; González-José, R.; Molinos, M. Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks. J. Cult. Herit. 2020, 41, 106–112. [Google Scholar] [CrossRef]
- Ostertag, C.; Beurton-Aimar, M. Matching ostraca fragments using a siamese neural network. Pattern Recognit. Lett. 2020, 131, 336–340. [Google Scholar] [CrossRef]
- Marie, I.; Qasrawi, H. Virtual assembly of pottery fragments using moiré surface profile measurements. J. Archaeol. Sci. 2005, 32, 1527–1533. [Google Scholar] [CrossRef]
- Anglisano, A.; Casas, L.; Queralt, I.; Di Febo, R. Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments. Sustainability 2022, 14, 11214. [Google Scholar] [CrossRef]
- Aslan, S.; Vascon, S.; Pelillo, M. Two sides of the same coin: Improved ancient coin classification using Graph Transduction Games. Pattern Recognit. Lett. 2020, 131, 158–165. [Google Scholar] [CrossRef]
- Bickler, S.H. Prospects for machine learning for shell midden analysis. Archaeol. New Zealand 2018, 61, 48–58. [Google Scholar]
- Byeon, W.; Dominguez-Rodrigo, M.; Arampatzis, G.; Baquedano, E.; Yravedra, J.; Maté-González, M.A.; Koumoutsakos, P. Automated identification and deep classification of cut marks on bones and its paleoanthropological implications. J. Comput. Sci. 2019, 32, 36–43. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Cifuentes-Alcobendas, G.; Jiménez-García, B.; Abellán, N.; Pizarro-Monzo, M.; Organista, E.; Baquedano, E. Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications. Sci. Rep. 2020, 10, 18862. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, P.; Xie, H. Research into Digital Oil Painting Restoration Algorithm Based on Image Acquisition Technology. In Proceedings of the 2022 International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME), Madrid, Spain, 27–29 June 2022; pp. 65–68. [Google Scholar]
- Sizyakin, R.; Voronin, V.; Pižurica, A. Virtual restoration of paintings based on deep learning. In Proceedings of the Fourteenth International Conference on Machine Vision (ICMV 2021), Rome, Italy, 8–12 November 2021; pp. 422–432. [Google Scholar]
- Agapiou, A.; Lysandrou, V. Interacting with the Artificial Intelligence (AI) Language Model ChatGPT: A Synopsis of Earth Observation and Remote Sensing in Archaeology. Heritage 2023, 6, 4072–4085. [Google Scholar] [CrossRef]
- Graham, D. The Use of Generative AI in an Interdisciplinary Approach for Cultural Preservation. Qeios 2023. [Google Scholar] [CrossRef]
- Merritt, E. Chatting about Museums with ChatGPT. Available online: https://www.aam-us.org/2023/01/25/chatting-about-museums-with-chatgpt (accessed on 29 June 2023).
- Trichopoulos, G.; Konstantakis, M.; Alexandridis, G.; Caridakis, G. Large Language Models as Recommendation Systems in Museums. Electronics 2023, 12, 3829. [Google Scholar] [CrossRef]
- Trichopoulos, G.; Konstantakis, M.; Caridakis, G.; Katifori, A.; Koukouli, M. Crafting a Museum Guide Using GPT4. Bid Data Cogntiive Comput. 2023, 7, 148. [Google Scholar] [CrossRef]
- Trichopoulos, G. Large Language Models for Cultural Heritage. In Proceedings of the 2nd International Conference of the ACM Greek SIGCHI Chapter, CHIGREECE 2023, Athens, Greece, 27–28 September 2023; Article 33. pp. 1–5. [Google Scholar]
- Spennemann, D.H.R. Exhibiting the Heritage of COVID-19—A Conversation with ChatGPT. Heritage 2023, 6, 5732–5749. [Google Scholar] [CrossRef]
- Makhortykh, M.; Zucker, E.M.; Simon, D.J.; Bultmann, D.; Ulloa, R. Shall androids dream of genocides? How generative AI can change the future of memorialization of mass atrocities. Discov. Artif. Intell. 2023, 3, 28. [Google Scholar] [CrossRef]
- Hines, A.; Bishop, P.J.; Slaughter, R.A. Thinking about the Future: Guidelines for Strategic Foresight; Social Technologies: Washington, DC, USA, 2006. [Google Scholar]
- Van Duijne, F.; Bishop, P. Introduction to Strategic Foresight; Future Motions, Dutch Futures Society: Den Haag, The Netherlands, 2018; Volume 1, p. 67. [Google Scholar]
- OpenAI. ChatGPT 3.5 (August 3 Version). Available online: https://chat.openai.com (accessed on 11 September 2023).
- Google. Google Bard Version 2023.07.13. Available online: https://bard.google.com (accessed on 19 October 2023).
- Microsoft. Bing Chat Enterprise. Available online: https://www.bing.com/chat (accessed on 19 September 2023).
- DeepAi. DeepAi. Available online: https://deepai.org/chat (accessed on 19 September 2023).
- Spennemann, D.H.R. Children of AI: A protocol for managing the born-digital ephemera spawned by Generative AI Language Models. Publications 2023, 11, 45. [Google Scholar] [CrossRef]
- Jadresin Milic, R.; McPherson, P.; McConchie, G.; Reutlinger, T.; Singh, S. Architectural history and sustainable architectural heritage education: Digitalisation of heritage in New Zealand. Sustainability 2022, 14, 16432. [Google Scholar] [CrossRef]
- Maietti, F. Digital Documentation for Enhancement and Conservation of Minor or Inaccessible Heritage Sites. In Cultural Leadership in Transition Tourism: Developing Innovative and Sustainable Models; Springer: Berlin/Heidelberg, Germany, 2022; pp. 139–156. [Google Scholar]
- Comes, R.; Neamțu, C.G.D.; Grec, C.; Buna, Z.L.; Găzdac, C.; Mateescu-Suciu, L. Digital Reconstruction of Fragmented Cultural Heritage Assets: The Case Study of the Dacian Embossed Disk from Piatra Roșie. Appl. Sci. 2022, 12, 8131. [Google Scholar] [CrossRef]
- Popova, D. Digital Reconstruction of Lost Architectural Heritage on the Case Study of Two 19th Century Houses. Digit. Present. Preserv. Cult. Sci. Herit. 2023, 13, 117–126. [Google Scholar] [CrossRef]
- Anichini, F.; Banterle, F.; Buxeda i Garrigós, J.; Callieri, M.; Dershowitz, N.; Dubbini, N.; Diaz, D.L.; Evans, T.; Gattiglia, G.; Green, K. Developing the ArchAIDE Application: A Digital Workflow for Identifying, Organising and Sharing Archaeological Pottery Using Automated Image Recognition; Internet Archaeology nº 52; University of York: York, UK, 2020. [Google Scholar]
- Anichini, F.; Dershowitz, N.; Dubbini, N.; Gattiglia, G.; Itkin, B.; Wolf, L. The automatic recognition of ceramics from only one photo: The ArchAIDE app. J. Archaeol. Sci. Rep. 2021, 36, 102788. [Google Scholar] [CrossRef]
- Neumüller, M.; Reichinger, A.; Rist, F.; Kern, C. 3D printing for cultural heritage: Preservation, accessibility, research and education. In 3D Research Challenges in Cultural Heritage: A Roadmap in Digital Heritage Preservation; Ioannides, M., Quak, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 119–134. [Google Scholar]
- Koutsoudis, A.; Arnaoutoglou, F.; Chamzas, C. On 3D reconstruction of the old city of Xanthi: A minimum budget approach to virtual touring based on photogrammetry. J. Cult. Herit. 2007, 8, 26–31. [Google Scholar] [CrossRef]
- Amakawa, J.; Westin, J. New Philadelphia: Using augmented reality to interpret slavery and reconstruction era historical sites. Int. J. Herit. Stud. 2018, 24, 315–331. [Google Scholar] [CrossRef]
- Tschirschwitz, F.; Richerzhagen, C.; Przybilla, H.-J.; Kersten, T.P. Duisburg 1566: Transferring a historic 3d city model from google earth into a virtual reality application. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2019, 87, 47–56. [Google Scholar] [CrossRef]
- Korsten, B.; Haanstra, B. The Next Rembrandt. Available online: www.nextrembrandt.com (accessed on 1 September 2023).
- Spennemann, D.H.R. The Shifting Baseline Syndrome and Generational Amnesia in Heritage Studies. Heritage 2022, 5, 2007–2027. [Google Scholar] [CrossRef]
- Labadi, S. UNESCO, cultural heritage, and outstanding universal value: Value-based analyses of the World Heritage and Intangible Cultural Heritage Conventions; UNESDOC: New York, NY, USA, 2013. [Google Scholar]
- Deacon, H.; Smeets, R. Authenticity, value and community involvement in heritage management under the world heritage and intangible heritage conventions. Herit. Soc. 2013, 6, 129–143. [Google Scholar] [CrossRef]
- Jigyasu, N. Authentic versus staged identity–problematizing tourism interventions for authenticity and integrity in historic cities. J. Cult. Herit. Manag. Sustain. Dev. 2022. [Google Scholar] [CrossRef]
- Katz, R.; Katz, E. Evaluating culture: World music and fusion food. Int. J. Cult. Stud. 2015, 18, 155–165. [Google Scholar] [CrossRef]
- Erdem, B.; Dogdubay, M.; Sarıoglan, M. The relationship between product innovation and fusion cuisine in food and beverage establishments: A discussion on Turkish cuisine. In Current Issues in Hospitality and Tourism Research and Innovations; Radzi, S.M., Chik, C.T., Hashim, R., Abu, R., Zainal, A., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 213–218. [Google Scholar]
- Sutton, R.A. “Fusion” and questions of Korean cultural identity in music. Korean Stud. 2011, 35, 4–24. [Google Scholar] [CrossRef]
- Google Arts & Culture. Fabricius. Available online: https://experiments.withgoogle.com/fabricius (accessed on 1 February 2024).
- Plecher, D.A.; Eichhorn, C.; Seyam, K.M.; Klinker, G. ARsinoë—Learning Egyptian Hieroglyphs with Augmented Reality and Machine Learning. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Recife, Brazil, 9–13 November 2020; pp. 326–332. [Google Scholar]
- Alkaissi, H.; McFarlane, S.I. Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus 2023, 15, e35179. [Google Scholar] [CrossRef] [PubMed]
- Emsley, R. ChatGPT: These are not hallucinations–they’re fabrications and falsifications. Schizophrenia 2023, 9, 52. [Google Scholar] [CrossRef]
- Hiter, S. Generative AI Ethics: Concerns and Solutions. Available online: https://www.eweek.com/artificial-intelligence/generative-ai-ethics/ (accessed on 1 October 2023).
- Shi, M. The ethics of generative AI: How we can harness this powerful technology. Available online: https://www.zdnet.com/article/how-we-can-harness-the-power-of-generative-ai-ethically/ (accessed on 1 October 2023).
- Boyko, J.; Cohen, J.; Fox, N.; Veiga, M.H.; Li, J.I.; Liu, J.; Modenesi, B.; Rauch, A.H.; Reid, K.N.; Tribedi, S. An interdisciplinary outlook on large language models for scientific research. arXiv 2023, arXiv:2311.04929. [Google Scholar]
- Tang, L.; Sun, Z.; Idnay, B.; Nestor, J.G.; Soroush, A.; Elias, P.A.; Xu, Z.; Ding, Y.; Durrett, G.; Rousseau, J.F. Evaluating large language models on medical evidence summarization. Npj Digit. Med. 2023, 6, 158. [Google Scholar] [CrossRef]
- Babl, F.E.; Babl, M.P. Generative artificial intelligence: Can ChatGPT write a quality abstract? Emerg. Med. Australas. 2023, 35, 809–811. [Google Scholar] [CrossRef]
- Messner, W.; Greene, T.; Matalone, J. From Bytes to Biases: Investigating the Cultural Self-Perception of Large Language Models. arXiv 2023, arXiv:2312.17256. [Google Scholar]
- Marcinowski, M. Evaluation of neural networks applied in forensics; handwriting verification example. Aust. J. Forensic Sci. 2022, 55, 745–754. [Google Scholar] [CrossRef]
- Inayatullah, S. Future Avoiders, Migrants and Natives. J. Futures Stud. 2004, 9, 83–86. [Google Scholar]
Training Data | Can Search | |||
---|---|---|---|---|
Language Model | Parameters | Time Cut-Off | The WWW | Languages |
OpenAi ChatGPT 3.5 | 175 billion | Sep 2021 | no | 95 |
DeepAI | 175 billion * | 2019 + updates * | no | ? |
GPT-4/BingChat | 100 trillion | Sep 2021 | no/yes | 25 |
Google Bard | 137 billion * | 2019 * | yes | >40 |
Opportunity | ChatGPT 3.5 | Bing Chat Balanced—BB | Bing Chat Creative—BC | DeepAI Genius | Google Bard |
---|---|---|---|---|---|
High quality digital replicas to protect originals | X | X | X | X | X |
Restoration/reconstruction of damaged/cultural artifacts | X | X | X | X | X |
Digitally restoring faded or damaged text of manuscripts | X | ||||
Reconstruction of historical sites | X | ||||
Interactive/immersive educational tools and experiences | X | X | X | ||
Translation and transcription of texts and manuscripts | X | X | |||
Analyse and interpret large volumes of historical data and texts | X | X | X | ||
Create new art, etc., inspired by historical styles and traditions | X | X | |||
Digital reconstruction of ancient buildings | X | ||||
Language revival and translation incl. synthesising speech | X | X | |||
Interactive museum exhibits | X | ||||
AI creates historically accurate virtual worlds for gaming | X | ||||
AI image analysis to protect archaeological sites from looting | X | ||||
AI image analysis to assess environmental damage to sites | X | X | |||
Immersive and informative tourist experiences via mobile apps | X | X | X | ||
Promoting and disseminating cultural diversity and awareness | X | ||||
Predict effects of time and environmental factors on artifacts | X | ||||
Augment cultural heritage objects with additional information | X | ||||
GenAI to authenticate cultural heritage objects | X |
Danger | ChatGPT 3.5 | Bing Chat Balanced—BB | Bing Chat Creative—BC | DeepAI Genius | Google Bard |
---|---|---|---|---|---|
genAI artifacts may lack the authenticity of originals | X | X | X | ||
genAI artifacts may include errors/be inaccurate | X | ||||
difficulty in distinguishing real and genAI artifacts | X | ||||
ownership and control over AI-generated cultural heritage | X | X | X | ||
misrepresentations can perpetuate stereotypes | X | ||||
misrepresentations can disrespect cultural traditions | X | X | |||
data privacy/need for responsible data management | X | X | |||
inaccurate, misleading, and distorted representations of heritage | X | X | X | ||
infringe on rights and interests of creators of cultural heritage | X | ||||
infringe on rights and interests of owners of cultural heritage | X | X | |||
biases in data may favour or exclude certain cultures/narratives | X | X | X | ||
biased outputs in general | X | X | X | X | |
create fake/misleading content to damage/destroy cultural heritage | X | ||||
depersonalisation of cultural interactions | X | ||||
overreliance causes decrease in skills/expertise of CHM professionals | X | X | |||
diminish skills of artisans, conservators, and restorers | X | ||||
lack of human expertise | X | X | |||
assumption that AI-generated content is infallible | X | ||||
lack of contextual understanding | X | ||||
loss of jobs | X | ||||
malicious misrepresentation | X | X | |||
loss of control/CHM professionals do not understand how models work | |||||
commodification of heritage | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spennemann, D.H.R. Will Artificial Intelligence Affect How Cultural Heritage Will Be Managed in the Future? Responses Generated by Four genAI Models. Heritage 2024, 7, 1453-1471. https://doi.org/10.3390/heritage7030070
Spennemann DHR. Will Artificial Intelligence Affect How Cultural Heritage Will Be Managed in the Future? Responses Generated by Four genAI Models. Heritage. 2024; 7(3):1453-1471. https://doi.org/10.3390/heritage7030070
Chicago/Turabian StyleSpennemann, Dirk H. R. 2024. "Will Artificial Intelligence Affect How Cultural Heritage Will Be Managed in the Future? Responses Generated by Four genAI Models" Heritage 7, no. 3: 1453-1471. https://doi.org/10.3390/heritage7030070
APA StyleSpennemann, D. H. R. (2024). Will Artificial Intelligence Affect How Cultural Heritage Will Be Managed in the Future? Responses Generated by Four genAI Models. Heritage, 7(3), 1453-1471. https://doi.org/10.3390/heritage7030070