High Temperature Effects on Global Heritage Stone Resources: A Systematic Review
Abstract
:1. Introduction
2. Global Heritage Stone Resources
3. Methods
3.1. Selection of Database
3.2. Database Analyses Criteria
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name and Visual Aspect | Lithology | Place of Origin | Year of Entrance | Reference for Application | Total nr of Papers Found | Search Words | Other Nomenclatures | Composition | Physical and/or Mechanical Properties | High Temperatures | |
---|---|---|---|---|---|---|---|---|---|---|---|
Sedimentary stones | Limestone | Bath, United Kingdom | July 2019 | Marker, 2015 | 31 | Bath stone + Limestone | 1 [68] | 1 [69] | 12 [48,49,54,68,69,70,71,72,73,74,75,76] | 0 | |
Sandstone | Michigan, USA | January 2019 | Rose et al. 2017 | 24 | Jacobsville + Sandstone | 1 [77] | 2 [78,79] | 1 [77] | 0 | ||
Sandy Limestone | Brusssels, Belgium | January 2019 | De Kock et al. 2015 | 9 | Lede Stone + Limestone | 2 [80,81] | 3 [80,81] | 4 [81,82,83] | 0 | ||
Limestone | Lisbon, Portugal | July 2019 | Silva, 2019 | 21 | Lioz + Limestone | 1 [84] | 4 [85,86,87,88] | 4 [45,84,85,89] | 3 [37,45,90] | ||
Limestone | Malta | January 2019 | Cassar et al. 2017 | 63 | Globigerina + Limestone | 0 | 9 [91,92,93,94,95,96,97,98,99] | 14 [50,51,91,92,94,95,96,97,98,99,100,101,102,103] | 1 [42] | ||
Limestone | Namur, Belgium | December 2017 | Pereira et al. 2015 | 9 | Petit Granit + Limestone | 5 [104,105,106,107,108] | 3 [104,105,109] | 3 [105,107,109] | 0 | ||
Sandy limestone/Sandstone | Florence, Italy | July 2019 | Fratini et al. 20115 | 9 | Pietra Serena + Limestone | 0 | 8 [42,110,111,112,113,114,115,116] | 5 [42,110,112,113,117] | 1 [2] | ||
Limestone | Podpeč, Slovenia | December 2017 | Kramar et al. 2015 | 9 | Podpeč + Limestone | 1 [118] | 3 [118,119,120] | 1 [118] | 0 | ||
Limestone | Portland, United Kingdom | December 2017 | Hughes et al. 2013 | 2190 | Portland + Limestone | 6 [52,121,122,123,124,125] | 20 [55,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140] | 27 [52,55,122,124,125,126,127,129,130,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149] | 0 | ||
Sandstone | Salamanca, Spain | February 2018 | Garcia-Talegon et al. 2015 | 10 | Villamayor + Sandstone | 2 [150,151] | 8 [151,152,153,154,155,156,157,158] | 8 [150,151,152,154,156,157,158,159] | 0 | ||
Limestone | Alps, France | April 2023 | Dumont, 2020 | 1 | Echaillon Stone + Limestone | 1 [160] | 1 [160] | 1 [160] | 0 | ||
Breccia | Arrábida, Portugal | April 2023 | 2 | Arrábida + Breccia | 2 [161,162] | 1 [162] | 0 | 0 | |||
Dolomitic limestone | Manitoba, Canada | April 2023 | 1 | Tyndall Stone + Limestone | 1 [163] | 0 | 1 [163] | 0 | |||
(not found) | Tuff | Mexico | April 2023 | 0 | Teozantla + Tuff | - | - | - | - | ||
Igneous stones | Limestone | Jaisalmer, India | April 2023 | [3] | 26 | Jaisalmer + Limestone | 1 [164] | 2 [164,165] | 1 [164] | 0 | |
Granite | Alpedrete Province, Madrid, Spain | July 2019 | Freire-Lista et al. 2015 | 8 | Alpedrete + Granite | 4 [166,167,168,169,170,171,172] | 6 [53,166,167,168,169,170] | 7 [53,166,167,168,169,170,171] | 0 | ||
Monzonite | Larvik, Norway | December 2017 | Heldal et al. 2015 | 5 | Larvikite + Monzonite | 1 [172] | 4 [172,173,174,175] | 1 [172] | 0 | ||
Orthoquartzite | Mar del Plata, Argentina | January 2019 | Cravero et al.2015 | 0 | Piedra Mar del Plata + | - | - | - | - | ||
Granite | Italy | July 2019 | Careddu et al. 2015 | 5 | Rosa Beta + Granite | 2 [176,177] | 4 [176,178,179,180] | 4 [176,178,179,180] | 0 | ||
Porphyry tuff | Rochlitz, Germany | April 2023 | [181] | 2 | Rochlitz + Porphyry Tuff | 1 [181] | 2 [181,182] | 1 [181] | 0 | ||
Metamorphic stones | Deccan | Deccan, India | April 2023 | 12,114 | Deccan + Basalt | 0 | 19 [183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201] | 6 [183,184,191,202,203,204] | 0 | ||
Marble | Tuscany, Italy | December 2017 | Primavori, 2015 | 560 | Carrara + Marble | 3 [39,91,205] | 26 [38,91,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228] | 35 [38,39,212,213,214,215,216,217,218,219,220,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239] | 6 [38,39,209,219,223,240] | ||
Marble | Estremoz, Portugal | February 2018 | Lopes & Martins, 2015 | 29 | Estremoz + Marble | 10 [241,242,243,244,245,246,247,248,249,250] | 11 [241,242,243,244,245,246,247,248,249,250,251] | 4 [242,243,244,249] | 0 | ||
Gneiss | Getinge, Sweden | December 2017 | Schouenborg et al. 2015 | 1 | Hallandia + Gneiss | 1 [252] | 1 [252] | 1 [252] | 0 | ||
Serpentine Marble | Kolmarden, Sweden | January 2019 | Wikstrom & Pereira, 2015 | 1 | Kolmarden Serpentine + Marble | 1 [253] | 1 [253] | 1 [253] | 0 | ||
Marble | Almeria, Spain | July 2019 | Navarro et al. 2015 | 42 | Macael + Marble | 12 [19,248,254,255,256,257,258,259,260,261,262,263] | 22 [16,19,20,21,248,254,255,256,258,259,260,261,262,264,265,266,267,268,269,270,271,272] | 22 [16,19,20,45,47,255,256,257,258,259,260,261,262,265,266,267,270,271,272,273,274,275] | 4 [20,21,45,273] | ||
Marble | Makrana, India | July 2019 | Garg et al. 2019 | 16 | Makrana + Marble | 1 [276] | 4 [24,276,277,278] | 4 [24,276,279,280] | 1 [24] | ||
Marble | Tennessee, USA | July 2019 | Byerly & Knowles, 2017 | 0 | Tennesse + Marble | - | - | - | - | ||
Slate | Wales, United Kingdom | January 2019 | Hughes et al. 2016 | 59 | Welsh + Slate | 2 [281,282] | 5 [281,283,284,285,286] | 4 [281,284,285,286] | 0 | ||
Sillimanite-grade ophicarbonate | Connemara, Ireland | April 2023 | [287] | 20 | Connemara + Marble | 2 [282,288] | 10 [56,288,289,290,291,292,293,294,295] | 3 [289,289,292] | 0 | ||
Phyllite | Bernardos, Spain | April 2023 | [296] | 1 | Bernardos + Phyllite | 1 [297] | 1 [297] | 1 [297] | 0 | ||
Quartzite | Delhi, India | April 2023 | [298] | 22 | Alwar + Quartzite | 2 [298,299] | 6 [298,300,301,302,303,304] | 6 [298,299,301,302,305,306] | 0 |
References
- Sims, I. Natural stone: Sustaining the future of the world’s oldest construction material. Proc. Inst. Civil Eng.-Civil Eng. 2015, 166, 149–157. [Google Scholar] [CrossRef]
- Cooper, B.J. Sustainable Development: An Opportunity for Dimension Stone. Roc Maquina 2004, 54, 12–17. [Google Scholar]
- Cooper, B.J. Toward establishing a “Global Heritage Stone Resource” designation. Episodes 2010, 33, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Adorni, E.; Venturelli, G. Mortars and Stones of the Damascus Citadel (Syria). Int. J. Archit. Herit. 2010, 4, 337–350. [Google Scholar] [CrossRef]
- Pinho, F.F.S.; Lúcio, V.J.G. Rubble Stone Masonry Walls in Portugal: Material Properties, Carbonation Depth and Mechanical Characterization. Int. J. Archit. Herit. 2017, 11, 685–702. [Google Scholar] [CrossRef]
- Winkler, E. Stone in Architecture: Properties, Durability, 3rd ed.; Springer: Berlin, Germany, 1997. [Google Scholar]
- Martinho, E.; Dionísio, A. Assessment Techniques for Studying the Effects of Fire on Stone Materials: A Literature Review. Int. J. Archit. Herit. 2018, 14, 275–299. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 1 March 2023).
- Jain, P.; Castellanos-Acuna, D.; Coogan, S.C.P.; Abatzoglou, J.T.; Flannigan, M.D. Observed Increases in Extreme Fire Weather Driven by Atmospheric Humidity and Temperature. Nat. Clim. Chang. 2022, 12, 63–70. [Google Scholar] [CrossRef]
- Ross, S.M. Saving Heritage Is Key to Sustainable Development. Herit. Can. Spring 2006, 24–28. Available online: https://archive.nationaltrustcanada.ca (accessed on 18 March 2023).
- Carter, B.; Grimwade, G. Balancing Use and Preservation in Cultural Heritage Management. Int. J. Herit. Stud. 1997, 3, 45–53. [Google Scholar] [CrossRef]
- Hannibal, J.T.; Kramar, S.; Cooper, B.J. Worldwide Examples of Global Heritage Stones: An Introduction. Geol. Soc. Spec. Publ. 2020, 486, 1–6. [Google Scholar] [CrossRef]
- Cooper, B.J. Recognition of a “World Heritage Stone Resource”: A Proposal. In Proceedings of the Global Stone Congress 2008, Carrara, Italy, 1–3 October 2008. [Google Scholar]
- Pereira, D. The Value of Global Heritage Stone Resource Designation in Enhancing and Recovering Our Legacy and Culture. Episodes 2015, 38, 197–202. [Google Scholar]
- Cooper, B.J.; Marker, B.R.; Thomas, I.A. Towards International Designation of a Heritage Dimension Stone. Geol. Soc. Spec. Publ. 2013, 391, 233–240. [Google Scholar] [CrossRef]
- Rodríguez Gordillo, J.; Sáez Pérez, M.P. Performance of Spanish White Macael Marble Exposed to Narrow- and Medium-Range Temperature Cycling. Mater. Construcc. 2010, 60, 127–141. [Google Scholar] [CrossRef]
- Costa, M.M.; Falcão, P.; Paneiro, G. Finishing Surface Influence on Stone Thermal Behaviour. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM; Sofia Vol. 2,: Surveying Geology & Mining Ecology Management (SGEM), Albena, Bulgaria, 17–26 June 2014; 2014; pp. 377–384. [Google Scholar]
- Andriani, G.F.; Germinario, L. Thermal Decay of Carbonate Dimension Stones: Fabric, Physical and Mechanical Changes. Environ. Earth Sci. 2014, 73, 8057–8069. [Google Scholar] [CrossRef]
- Navarro, R.; Pereira, D.; Cruz, A.S.; Carrillo, G. The Significance of “White Macael” Marble Since Ancient Times: Characteristics of a Candidate as Global Heritage Stone Resource. Geoheritage 2019, 11, 113–123. [Google Scholar] [CrossRef]
- Justo, J.; Lagüera, A.; Castro, J.; Miranda, M.; Sagaseta, C. Influence of Temperature on the Tensile Strength of a Limestone and a Marble. In Proceedings of the 17th European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE 2019), Reykjavik, Iceland, 1–6 September 2019. [Google Scholar]
- Justo, J.; Castro, J.; Cicero, S.; Sánchez-Carro, M.A. Influence of Temperature on the Fracture Toughness of Several Rocks. In Proceedings of the 17th European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE 2019), Reykjavik, Iceland, 1–6 September 2019. [Google Scholar]
- Justo, J.; Castro, J. Mechanical Properties of Four Rocks at Different Temperatures and Fracture Assessment Using the Strain Energy Density Criterion. Geomech. Energy Environ. 2021, 25, 100212. [Google Scholar] [CrossRef]
- Justo, J.; Castro, J.; Cicero, S.; Sánchez-Carro, M.A.; Husillos, R. Notch Effect on the Fracture of Several Rocks: Application of the Theory of Critical Distances. Theor. Appl. Fract. Mech. 2017, 90, 251–258. [Google Scholar] [CrossRef]
- Gautam, P.K.; Jha, M.K.; Verma, A.K.; Singh, T.N. Experimental Study of Thermal Damage under Compression and Tension of Makrana Marble. J. Therm. Anal. Calorim. 2020, 139, 609–627. [Google Scholar] [CrossRef]
- Dionísio, A.; Martinho, E.; Pozo-António, J.S.; Sequeira Braga, M.A.; Mendes, M. Evaluation of Combined Effects of Real-Fire and Natural Environment in a Building Granite. Constr. Build. Mater. 2021, 277, 122327. [Google Scholar] [CrossRef]
- Dionísio, A. Stone Decay Induced by Fire on Historic Buildings: The Case of the Cloister of Lisbon Cathedral (Portugal). Geol. Soc. Lond. Spec. Publ. 2007, 271, 87–98. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Sanmartín, P.; Serrano, M.; De la Rosa, J.M.; Miller, A.Z.; Sanjurjo-Sánchez, J. Impact of Wildfire on Granite Outcrops in Archaeological Sites Surrounded by Different Types of Vegetation. Sci. Total Environ. 2020, 747, 141143. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, B.; Yates, T.; Lewry, A. Effect of Fire Damage on Natural Stonework in Buildings. Constr. Build. Mater. 1996, 10, 539–544. [Google Scholar] [CrossRef]
- Gillhuber, S.; Lehrberger, G.; Göske, J. Fire Damage of Trachyte: Investigations of the Teplá Monastery Building Stones. Geol. Soc. Lond. Spec. Publ. 2010, 333, 73–79. [Google Scholar] [CrossRef]
- Hajpál, M. Changes in Sandstones of Historical Monuments Exposed to Fire or High Temperature. Fire Technol. 2002, 38, 373–382. [Google Scholar] [CrossRef]
- Gomez-Heras, M.; McCabe, S.; Smith, B.J.; Fort, R. Impacts of Fire on Stone-Built Heritage: An Overview. J. Archit. Conserv. 2009, 15, 47–58. [Google Scholar] [CrossRef]
- Franzen, C.; Krause, D.; Siedel, H.; Ullrich, B. Temperature Impact on Cotta Sandstone. ResearchGate 2012. Available online: https://www.researchgate.net/publication/257304809_Impact_of_temperature_on_Cotta_sandstone (accessed on 11 April 2023).
- Sanjurjo-Sánchez, J.; Gomez-Heras, M.; Fort, R. Dating Fires and Estimating the Temperature Attained on Stone Surfaces: The Case of Ciudad de Vascos (Spain). Microchem. J. 2016, 127, 247–255. [Google Scholar] [CrossRef]
- McCabe, S.; Smith, B.J.; Warke, P.A. Exploitation of Inherited Weakness in Fire-Damaged Building Sandstone: The “Fatiguing” of “Shocked” Stone. Eng. Geol. 2010, 115, 217–225. [Google Scholar] [CrossRef]
- Heidari, M.; Torabi-Kaveh, M.; Mohseni, H. Artificial Weathering Assessment of Persepolis Stone Due to Heating to Elucidate the Effects of the Burning of Persepolis. Bull. Eng. Geol. Environ. 2016, 75, 979–992. [Google Scholar] [CrossRef]
- Koca, M.Y.; Ozden, G.; Yavuz, A.B.; Kincal, C.; Onargan, T.; Kucuk, K. Changes in the Engineering Properties of Marble in Fire-Exposed Columns. Int. J. Rock Mech. Min. Sci. 2006, 43, 520–530. [Google Scholar] [CrossRef]
- Martinho, E.; Mendes, M.; Dionísio, A. 3D Imaging of P-Waves Velocity as a Tool for Evaluation of Heat-Induced Limestone Decay. Constr. Build. Mater. 2017, 135, 119–128. [Google Scholar] [CrossRef]
- Lu, C.; Jackson, I. Seismic-Frequency Laboratory Measurements of Shear Mode Viscoelasticity in Crustal Rocks I: Competition between Cracking and Plastic Flow in Thermally Cycled Carrara Marble. Phys. Earth Planet. Inter. 1996, 94, 105–119. [Google Scholar] [CrossRef]
- Ruf, M.; Steeb, H. Effects of Thermal Treatment on Acoustic Waves in Carrara Marble. Int. J. Rock Mech. Min. Sci. 2022, 159, 105205. [Google Scholar] [CrossRef]
- Casey, M.; Rutter, E.H.; Schmid, S.M.; Siddans, A.W.B.; Whalley, J.S. Texture Development in Experimentally Deformed Calcite Rocks. In Proceedings of the Annual Meeting of the Geological Society of America, Toronto, ON, Canada, 23–26 October 1978. [Google Scholar]
- Hacker, B.R.; Christie, J.M. High-Pressure Deformation of Calcite Marble and Its Transformation to Aragonite under Non-Hydrostatic Conditions. J. Struct. Geol. 1993, 15, 1207–1222. [Google Scholar] [CrossRef]
- Franzoni, E.; Sassoni, E.; Scherer, G.W.; Naidu, S. Artificial Weathering of Stone by Heating. J. Cult. Herit. 2013, 14, 69–76. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Meng, T.; Hu, Y.Q.; Li, X.H. The Influence of Temperature on Mode I Fracture Toughness and Fracture Characteristics of Sandstone. Rock Mech. Rock Eng. 2017, 50, 2007–2019. [Google Scholar] [CrossRef]
- Al-Shayea, N. Comparing Reservoir and Outcrop Specimens for Mixed Mode I-II Fracture Toughness of a Limestone Rock Formation at Various Conditions. Rock Mech. Rock Eng. 2002, 35, 271–297. [Google Scholar] [CrossRef]
- Justo, J.; Castro, J.; Cicero, S. Notch Effect and Fracture Load Predictions of Rock Beams at Different Temperatures Using the Theory of Critical Distances. Int. J. Rock Mech. Min. Sci. 2020, 125, 104161. [Google Scholar] [CrossRef]
- Justo, J.; Castro, J. Application of the TCD for the Fracture Prediction of Rocks with U-Shaped Notches at Different Temperatures. In Rock Mechanics for Natural Resources and Infrastructure Development- Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, ISRM 2019; CRC Press: Boca Raton, FL, USA, 2020; pp. 1242–1249. [Google Scholar]
- Martinho, E.; Dionísio, A.; Mendes, M. Simulation of a Portuguese Limestone Masonry Structure Submitted to Fire: 3D Ultrasonic Tomography Approach. Int. J. Conserv. Sci. 2017, 8, 565–580. [Google Scholar]
- Channon, D. Feral Pigeon Excrement on Heritage Stonework. 2004. Available online: https://www.researchgate.net/publication/277304552_Feral_pigeon_excrement_on_heritage_stonework (accessed on 9 April 2023).
- Viles, H.A.; Goudie, A.S. Rapid Salt Weathering in the Coastal Namib Desert: Implications for Landscape Development. Geomorphology 2007, 85, 49–62. [Google Scholar] [CrossRef]
- Roussel, E.; Vautier, F.; Voldoire, O.; André, M.-F.; Cassar, J.; Fronteau, G.; Phalip, B.; Thomachot-Schneider, C.; Toumazet, J.-P. Quantifying 450 Years of Limestone Weathering Induced by Salt Crystallization on Fortifications in Malta and Gozo. Geomorphology 2021, 378, 107614. [Google Scholar] [CrossRef]
- Graziani, G.; Sassoni, E.; Scherer, G.W.; Franzoni, E. Phosphate-Based Treatments for Consolidation of Salt-Bearing Globigerina Limestone. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012082. [Google Scholar] [CrossRef]
- Wilhelm, K.; Viles, H.; Burke, Ò. The Influence of Salt on Handheld Electrical Moisture Meters: Can They Be Used to Detect Salt Problems in Porous Stone? Int. J. Archit. Herit. 2016, 10, 735–748. [Google Scholar] [CrossRef]
- López-Arce, P.; Varas-Muriel, M.J.; Fernández-Revuelta, B.; Álvarez de Buergo, M.; Fort, R.; Pérez-Soba, C. Artificial Weathering of Spanish Granites Subjected to Salt Crystallization Tests: Surface Roughness Quantification. Catena 2010, 83, 170–185. [Google Scholar] [CrossRef]
- Thornbush, M.J.; Viles, H.A. Simulation of the Dissolution of Weathered versus Unweathered Limestone in Carbonic Acid Solutions of Varying Strength. Earth Surf. Process. Landf. 2007, 32, 841–852. [Google Scholar] [CrossRef]
- Compton, R.G.; Walker, C.T.; Unwin, P.R.; House, W.A. Dissolution Kinetics of Carrera Marble, Portland Stone and Several Limestones in Acid Waters. J. Chem. Soc. Faraday Trans. 1990, 86, 849–854. [Google Scholar] [CrossRef]
- Giunchi, D.; Baldaccini, N.E.; Sbragia, G.; Soldatini, C. Feral Pigeons: Problems, Dynamics and Control Methods. In Encyclopedia of Pest Management; Taylor & Francis: Abingdon, UK, 2012; pp. 1–4. [Google Scholar]
- Viles, H.A.; Taylor, M.P.; Yates, T.J.S.; Massey, S.W. Soiling and Decay of N.M.E.P. Limestone Tablets. Sci. Total Environ. 2002, 292, 215–229. [Google Scholar] [CrossRef]
- Laue, S. Salt Weathering of Porous Structures Related to Climate Changes/Klimaabhängige Salzverwitterung Poröser Strukturen. Restor. Build. Monum. 2005, 11, 381–390. [Google Scholar] [CrossRef]
- Godts, S.; Hayen, R.; De Clercq, H. Investigating Salt Decay of Stone Materials Related to the Environment: A Case Study in the St. James Church in Liège, Belgium. Stud. Conserv. 2017, 62, 329–342. [Google Scholar] [CrossRef]
- Davies, T.D.; Kelly, P.M.; Brimblecombe, P.; Farmer, G.; Barthelmie, R.J.; Davies, T.D. Acidity of Scottish Rainfall Influenced by Climatic Change. Nature 1986, 322, 359–361. [Google Scholar] [CrossRef]
- White, J.; Wagner, W.; Beal, C. Global Climate Change Linkages: Acid Rain, Air Quality, and Stratospheric Ozone; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Přikryl, R. Durability Assessment of Natural Stone. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 377–390. [Google Scholar] [CrossRef]
- Gomez-Heras, M.; Alvarez de Buergo, M.; Varas-Muriel, M.J.; Fort, R.; Hajpál, M.; Török, Á. Evolution of Porosity in Hungarian Building Stones after Simulated Burning. In Heritage Weathering and Conservation HWC-2006; Taylor & Francis: Rotterdam, The Netherlands, 2006; pp. 513–519. [Google Scholar]
- Hajpál, M.; Török, Á. Mineralogical and Colour Changes of Quartz Sandstones by Heat. Environ. Geol. 2004, 46, 311–322. [Google Scholar] [CrossRef]
- Gómez-Heras, M.; Gomez-Villalba, L.S.; Fort, R. Cambios de Fase en Litoarenitas Calcáreas con la Temperatura: Implicaciones para el Deterioro Causado por Incendios. Macla 2010, 13, 101–102. [Google Scholar]
- Dionísio, A.; Sequeira Braga, M.A.; Waerenborgh, J.C. Clay Minerals and Iron Oxides-Oxyhydroxides as Fingerprints of Firing Effects in a Limestone Monument. Appl. Clay Sci. 2009, 42, 629–638. [Google Scholar] [CrossRef]
- Sippel, J.; Siegesmund, S.; Weiss, T.; Nitsch, K.H.; Korzen, M. Decay of Natural Stones Caused by Fire Damage. Geol. Soc. Lond. Spec. Publ. 2007, 271, 139–151. [Google Scholar] [CrossRef]
- Allen, G.C.; El-Turki, A.; Hallam, K.R.; McLaughlin, D.; Stacey, M. Role of NO2 and SO2 in Degradation of Limestone. Br. Corros. J. 2000, 35, 35–38. [Google Scholar] [CrossRef]
- Marker, B.R. Bath Stone and Purbeck Stone: A Comparison in Terms of Criteria for Global Heritage Stone Resource Designation. Episodes 2015, 38, 118–123. [Google Scholar] [CrossRef]
- Viles, H.A.; Gorbushina, A.A. Soiling and Microbial Colonisation on Urban Roadside Limestone: A Three Year Study in Oxford, England. Build. Environ. 2003, 38, 1217–1224. [Google Scholar] [CrossRef]
- Pesce, G.L.; Morgan, D.; Odgers, D.; Henry, A.; Allen, M.; Ball, R.J. Consolidation of Weathered Limestone Using Nanolime. Proc. Inst. Civ. Eng. Constr. Mater. 2013, 166, 213–228. [Google Scholar] [CrossRef]
- Thornbush, M.; Viles, H. Changing Patterns of Soiling and Microbial Growth on Building Stone in Oxford, England after Implementation of a Major Traffic Scheme. Sci. Total Environ. 2006, 367, 203–211. [Google Scholar] [CrossRef]
- Laycock, E.A.; Spence, K.; Jefferson, D.P.; Hetherington, S.; Martin, B.; Wood, C. Testing the Durability of Limestone for Cathedral Façade Restoration. Environ. Geol. 2008, 56, 521–528. [Google Scholar] [CrossRef]
- Elliott, G.M.; Brown, E.T. Yield of a Soft, High Porosity Rock. Geotechnique 1985, 35, 413–423. [Google Scholar] [CrossRef]
- Nuño, M.; Pesce, G.L.; Bowen, C.R.; Xenophontos, P.; Ball, R.J. Environmental Performance of Nano-Structured Ca(OH)2/TiO2 Photocatalytic Coatings for Buildings. Build. Environ. 2015, 92, 734–742. [Google Scholar] [CrossRef]
- Forrest, M. Secure heritage. Mater. World 2007, 15, 39–40. [Google Scholar]
- Sherman, H.M.; Gierke, J.S.; Anderson, C.P. Controls on Spatial Variability of Uranium in Sandstone Aquifers. Ground Water Monit. Remediat. 2007, 27, 106–118. [Google Scholar] [CrossRef]
- Kerfoot, W.C.; Hobmeier, M.M.; Green, S.A.; Yousef, F.; Brooks, C.N.; Shuchman, R.; Sayers, M.; Lin, L.; Luong, P.; Hayter, E.; et al. Coastal Ecosystem Investigations with LiDAR (Light Detection and Ranging) and Bottom Reflectance: Lake Superior Reef Threatened by Migrating Tailings. Remote Sens. 2019, 11, 1076. [Google Scholar] [CrossRef]
- Mitchell, R.L.; Sheldon, N.D. Sedimentary Provenance and Weathering Processes in the 1.1Ga Midcontinental Rift of the Keweenaw Peninsula, Michigan, USA. Precambrian Res. 2016, 275, 225–240. [Google Scholar] [CrossRef]
- De Kock, T.; Turmel, A.; Fronteau, G.; Cnudde, V. Rock Fabric Heterogeneity and Its Influence on the Petrophysical Properties of a Building Limestone: Lede Stone (Belgium) as an Example. Eng. Geol. 2017, 216, 31–41. [Google Scholar] [CrossRef]
- Dewanckele, J.; Boone, M.A.; De Kock, T.; De Boever, W.; Brabant, L.; Boone, M.N.; Fronteau, G.; Dils, J.; Van Hoorebeke, L.; Jacobs, P.; et al. Holistic Approach of Pre-Existing Flaws on the Decay of Two Limestones. Sci. Total Environ. 2013, 447, 403–414. [Google Scholar] [CrossRef]
- De Kock, T.; Van Stappen, J.; Fronteau, G.; Boone, M.; De Boever, W.; Dagrain, F.; Silversmit, G.; Vincze, L.; Cnudde, V. Laminar Gypsum Crust on Lede Stone: Microspatial Characterization and Laboratory Acid Weathering. Talanta 2017, 162, 193–202. [Google Scholar] [CrossRef]
- Schröer, L.; De Kock, T.; Cnudde, V.; Boon, N. Differential Colonization of Microbial Communities Inhabiting Lede Stone in the Urban and Rural Environment. Sci. Total Environ. 2020, 733, 139339. [Google Scholar] [CrossRef]
- Mozer, A.G.S.; Castro, N.F.; Mansur, K.L.; Ribeiro, R.C.C. Mapping Lioz Limestone in Monuments at Rio de Janeiro, Brazil. Geoheritage 2022, 14, 30. [Google Scholar] [CrossRef]
- Da Conceição Ribeiro, R.C.; Marques Ferreira de Figueiredo, P.; Silva Barbutti, D. Multi-Analytical Investigation of Stains on Dimension Stones in Master Valentim’s Fountain, Brazil. Minerals 2018, 8, 465. [Google Scholar] [CrossRef]
- Miller, A.; Dionísio, A.; Macedo, M.F. Primary Bioreceptivity: A Comparative Study of Different Portuguese Lithotypes. Int. Biodeterior. Biodegrad. 2006, 57, 136–142. [Google Scholar] [CrossRef]
- Polck, M.A.R.; Siqueira, L.M.P.; Barreto, A.M. An Urban Geotourism Route in the City of Recife (PE), Based on Fossiliferous Stones. Anu. Inst. Geociênc. 2020, 43, 425–435. [Google Scholar] [CrossRef]
- Silva, Z.C.G. Lioz—A Royal Stone in Portugal and a Monumental Stone in Colonial Brazil. Geoheritage 2019, 11, 165–175. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; López, L.; Dionísio, A.; Rivas, T. A Study on the Suitability of Mechanical Soft-Abrasive Blasting Methods to Extract Graffiti Paints on Ornamental Stones. Coatings 2018, 8, 335. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Otero, J.; Alonso, P.; Mas i Barberà, X. Nanolime- and Nanosilica-Based Consolidants Applied on Heated Granite and Limestone: Effectiveness and Durability. Constr. Build. Mater. 2019, 201, 852–870. [Google Scholar] [CrossRef]
- Eichert, D.; Vergès-Belmin, V.E.; Kahn, O. Electronic Paramagnetic Resonance as a Tool for Studying the Blackening of Carrara Marble Due to Irradiation by a Q-Switched YAG Laser. J. Cult. Herit. 2000, 1, S1296–S2074. [Google Scholar] [CrossRef]
- Bianco, L. Geochemistry, Mineralogy and Textural Properties of the Lower Globigerina Limestone Used in the Built Heritage. Minerals 2021, 11, 740. [Google Scholar] [CrossRef]
- Bianco, L. Petrological, Mineralogical and Geochemical Characteristics of the Globigerina Limestone Outcropping at Fomm Ir-Ri¯ H¯, Malta. C. R. Acad. Bulg. Sci. 2020, 73, 985–991. [Google Scholar] [CrossRef]
- Briffa, S.M.; Vella, D.A. The Behaviour of As-Applied and Artificially Weathered Silica–Epoxy Consolidants on a Typical Mediterranean Porous Limestone: A Comparison with TEOS. Herit. Sci. 2019, 7, 70. [Google Scholar] [CrossRef]
- Cataldo, A.; De Benedetto, E.; Cannazza, G.; D’Amico, S.; Farrugia, L.; Mifsud, G.; Dimech, E.; Sammut, C.V.; Persico, R.; Leucci, G.; et al. TDR-Based Water Content Estimation on Globigerina Limestone through Permittivity Measurements. In Proceedings of the 3rd IMEKO International Conference on Metrology for Archaeology and Cultural Heritage, MetroArchaeo, Lecce, Italy; 2017; pp. 528–533. [Google Scholar]
- Andreotti, S.; Franzoni, E.; Ruiz-Agudo, E.; Scherer, G.W.; Fabbri, P.; Sassoni, E.; Rodriguez-Navarro, C. New Polymer-Based Treatments for the Prevention of Damage by Salt Crystallization in Stone. Mater. Struct./Materiaux Constr. 2019, 52, 1309. [Google Scholar] [CrossRef]
- Cataldo, A.; De Benedetto, E.; Cannazza, G.; D’Amico, S.; Farrugia, L.; Mifsud, G.; Dimech, E.; Sammut, C.V.; Persico, R.; Leucci, G.; et al. Dielectric Permittivity Diagnostics as a Tool for Cultural Heritage Preservation: Application on Degradable Globigerina Limestone. Measurement 2018, 123, 270–274. [Google Scholar] [CrossRef]
- Bianco, L. Petrological Characteristics of Blue Lenticular Patches Occurring in the Lower Globigerina Building Limestone of Malta. Rev. Rom. Mater. 2018, 48, 115–120. [Google Scholar]
- Cassar, J.; Torpiano, A.; Zammit, T.; Micallef, A. Proposal for the Nomination of Lower Globigerina Limestone of the Maltese Islands as a “Global Heritage Stone Resource”. Episodes 2017, 40, 221–231. [Google Scholar] [CrossRef]
- Grøntoft, T.; Cassar, J.A. An Assessment of the Contribution of Air Pollution to the Weathering of Limestone Heritage in Malta. Environ. Earth Sci. 2020, 79, 310. [Google Scholar] [CrossRef]
- Dreyfuss, T. Artificially Induced Calcium Oxalate on Limestone in Urban Environments—New Findings. J. Cult. Herit. 2020, 42, 56–63. [Google Scholar] [CrossRef]
- Camilleri, D.H. Malta’s Heritage in Stone: From Temple Builders to Eurocodes 6/8. Masonry Int. 2019, 31, 49–65. [Google Scholar]
- Cabello-Briones, C.; Viles, H.A. Evaluating the Effects of Open Shelters on Limestone Deterioration at Archaeological Sites in Different Climatic Locations. Int. J. Archit. Herit. 2017, 11, 816–828. [Google Scholar] [CrossRef]
- Hibo, D. The “Petit Granit” from the Meuse Valley and Soignies Basin Mines: A Sedimentological Examination and Comparison. Bull. Soc. Belge Geol. 1993, 102, 359–378. [Google Scholar]
- Pereira, D.; Tourneur, F.; Bernáldez, L.; Blázquez, A.G. Petit Granit: A Belgian Limestone Used in Heritage, Construction and Sculpture. Episodes 2015, 38, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Groessens, E. The Origin and Evolution of the Expression “Petit Granit”. Bull. Soc. Belge Geol. 1993, 102, 271–276. [Google Scholar]
- Netels, V.; Doyen, L. Geoelectrical and Electromagnetic Mapping of a Faulted and Karstified Limestone Deposit under a Thick Tertiary Overburden. Bull. Soc. Belge Geol. 1997, 105, 15–28. [Google Scholar]
- Pereira, D.; Perez-Castro, P. Art Museums: A Good Context for Outreach Activities on Natural Stones and Heritage. Geoheritage 2019, 11, 125–132. [Google Scholar] [CrossRef]
- Dubois, C.; Quinif, Y.; Baele, J.-M.; Dagrain, F.; Deceuster, J.; Kaufmann, O. The Evolution of the Mineralogical and Petrophysical Properties of a Weathered Limestone in Southern Belgium. Geol. Belg. 2014, 17, 1–8. [Google Scholar]
- Coli, M.; Livi, E.; Pandeli, E.; Tanini, C. Pietra Serena Mining in Fiesole. Part II: Geological Situation. J. Min. Sci. 2003, 39, 56–63. [Google Scholar] [CrossRef]
- Clausi, M.; Magnani, L.L.; Occhipinti, R.; Riccardi, M.P.; Zema, M.; Tarantino, S.C. Interaction of Metakaolin-Based Geopolymers with Natural and Artificial Stones and Implications on Their Use in Cultural Heritage. Int. J. Conserv. Sci. 2016, 7, 871–884. [Google Scholar]
- Santo, A.P.; Centauro, I.; Pecchioni, E. Walking Through Florence to Discover the Stone-Built Cultural Heritage. In International Conference Florence Heri-Tech: The Future of Heritage Science and Technologies; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Sorace, S. Long-Term Tensile and Bending Strength of Natural Building Stones. Mater. Struct./Materiaux Constr. 1996, 29, 426–435. [Google Scholar] [CrossRef]
- Coli, M.; Ciuffreda, A.L.; Donigaglia, T.; Tanganelli, M. The Building Stones of Prato’s Cathedral and Bell Tower, Italy. Appl. Sci. 2022, 12, 10132. [Google Scholar] [CrossRef]
- Sassoni, E.; Franzoni, E.; Pigino, B.; Scherer, G.W.; Naidu, S. Consolidation of Calcareous and Siliceous Sandstones by Hydroxyapatite: Comparison with a TEOS-Based Consolidant. J. Cult. Herit. 2013, 14, S103–S108. [Google Scholar] [CrossRef]
- Fratini, F.; Cantisani, E.; Pecchioni, E.; Pandeli, E.; Vettori, S. Pietra Alberese: Building Material and Stone for Lime in the Florentine Territory (Tuscany, Italy). Heritage 2020, 3, 1520–1538. [Google Scholar] [CrossRef]
- Bargossi, G.M.; Gamberini, F.; Gasparotto, G.; Grillini, G.C.; Marocchi, M. Dimension and Ornamental Stones from the Tosco-Romagnolo and Bolognese Apennine. Period. Miner. 2004, 73, 171–195. [Google Scholar]
- Kramar, S.; Bedjanič, M.; Mirtič, B.; Mladenović, A.; Rožič, B.; Skaberne, D.; Gutman, M.; Zupančič, N.; Cooper, B. Podpeč Limestone: A Heritage Stone from Slovenia. Geoheritage 2015, 7, 33–41. [Google Scholar] [CrossRef]
- Rožič, B.; Gale, L.; Brajković, R.; Popit, T.; Žvab Rožič, P. Lower Jurassic Succession at the Site of Potential Roman Quarry Staje near Ig (Central Slovenia). Geologija 2018, 61, 49–71. [Google Scholar] [CrossRef]
- Gale, L. Lower Jurassic Foraminiferal Biostratigraphy of Podpeč Limestone (External Dinarides, Slovenia). Geologia 2014, 57, 119–146. [Google Scholar] [CrossRef]
- Marinelli, A.; Stewart, M.R. Comparative Experimental Study of the Mechanical and Fracture Properties of Portland Limestone and Corsehill Sandstone. Frat. Integrità Strutt. 2019, 13, 438–450. [Google Scholar] [CrossRef]
- Hughes, T.; Lott, G.K.; Poultney, M.J.; Cooper, B.J. Portland Stone: A Nomination for “Global Heritage Stone Resource” from the United Kingdom. Episodes 2013, 36, 221–226. [Google Scholar] [CrossRef]
- Falcon-Lang, H. The Isle of Portland, Dorset, England. Geol. Today 2011, 27, 34–38. [Google Scholar] [CrossRef]
- Butler-Warke, A.; Warke, M.R. Foundation Stone of Empire: The Role of Portland Stone in ‘Heritage’, Commemoration, and Identity. Trans. Inst. Br. Geogr. 2021, 46, 958–972. [Google Scholar] [CrossRef]
- Eklund, J.A.; Zhang, H.; Viles, H.A.; Curteis, T. Using Handheld Moisture Meters on Limestone: Factors Affecting Performance and Guidelines for Best Practice. Int. J. Archit. Herit. 2013, 7, 207–224. [Google Scholar] [CrossRef]
- Dubelaar, C.W.; Engering, S.; Van Hees, R.P.J.; Koch, R.; Lorenz, H.-G. Lithofacies and Petrophysical Properties of Portland Base Bed and Portland Whit Bed Limestone as Related to Durability. Heron 2003, 48, 221–229. [Google Scholar]
- Kirkitsos, P.; Sikiotis, D. Deterioration of Pentelic Marble, Portland Limestone, and Baumberger Sandstone in Laboratory Exposures to Gaseous Nitric Acid. Atmos. Environ. 1995, 29, 77–86. [Google Scholar] [CrossRef]
- Kirkitsos, P.; Sikiotis, D. Deterioration of Pentelic Marble, Portland Limestone, and Baumberger Sandstone in Laboratory Exposures to NO2: A Comparison with Exposures to Gaseous HNO3. Atmos. Environ. 1996, 30, 941–950. [Google Scholar] [CrossRef]
- Allison, R.J. A Non-Destructive Method of Determining Rock Strength. Earth Surf. Process. Landf. 1988, 13, 729–736. [Google Scholar] [CrossRef]
- Searle, D.E.; Mitchell, D.J. The Effect of Coal and Diesel Particulates on the Weathering Loss of Portland Limestone in an Urban Environment. Sci. Total Environ. 2006, 370, 207–223. [Google Scholar] [CrossRef]
- Viles, H.A. The Early Stages of Building Stone Decay in an Urban Environment. Atmos. Environ. Part A Gen. Top. 1990, 24, 229–232. [Google Scholar] [CrossRef]
- Cabello Briones, C.; Viles, H. An Assessment of the Role of an Open Shelter in Reducing Soiling and Microbial Growth on the Archaeological Site of the Bishop’s Palace, Witney, England. Conserv. Manag. Archaeol. Sites 2018, 20, 2–17. [Google Scholar] [CrossRef]
- Allison, R.J.; Kimber, O.G. Modelling Failure Mechanisms to Explain Rock Slope Change along the Isle of Purbeck Coast, UK. Earth Surf. Process. Landf. 1998, 23, 731–750. [Google Scholar] [CrossRef]
- Bijeljic, B.; Mostaghimi, P.; Blunt, M.J. Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media. Phys. Rev. Lett. 2011, 107, 204502. [Google Scholar] [CrossRef]
- Cooper, T.P.; O’Brien, P.F.; Jeffrey, D.W. Rates of Deterioration of Portland Limestone in an Urban Environment. Stud. Conserv. 1992, 37, 228–238. [Google Scholar] [CrossRef]
- Alyafei, N.; Blunt, M.J. The Effect of Wettability on Capillary Trapping in Carbonates. Adv. Water Resour. 2016, 90, 36–50. [Google Scholar] [CrossRef]
- Perry, S.H.; Duffy, A.P. The Short-Term Effects of Mortar Joints on Salt Movement in Stone. Atmos. Environ. 1997, 31, 1297–1305. [Google Scholar] [CrossRef]
- Hutchinson, A.J.; Johnson, J.B.; Thompson, G.E.; Wood, G.C.; Sage, P.W.; Cooke, M.J. The Role of Fly-Ash Particulate Material and Oxide Catalysts in Stone Degradation. Atmos. Environ. Part A Gen. Top. 1992, 26, 2795–2803. [Google Scholar] [CrossRef]
- Roots, O. ICP Materials: Long-Term Studies at the Lahemaa Monitoring Station, Estonia. Proc. Est. Acad. Sci. 2015, 64, 43–52. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.M.; Martínez-Ramírez, S.; Viles, H.A. Efficiency and Durability of a Self-Cleaning Coating on Concrete and Stones under Both Natural and Artificial Ageing Trials. Appl. Surf. Sci. 2018, 433, 312–320. [Google Scholar] [CrossRef]
- Johnson, J.B.; Montgomery, M.; Thompson, G.E.; Wood, G.C.; Sage, P.W.; Cooke, M.J. The Influence of Combustion-Derived Pollutants on Limestone Deterioration: 2. The Wet Deposition of Pollutant Species. Corros. Sci. 1996, 38, 267–278. [Google Scholar] [CrossRef]
- Wilhelm, K.; Viles, H.; Burke, O.; Mayaud, J. Surface Hardness as a Proxy for Weathering Behaviour of Limestone Heritage: A Case Study on Dated Headstones on the Isle of Portland, UK. Environ. Earth Sci. 2016, 75, 931. [Google Scholar] [CrossRef]
- Hennah, S.J.; Astin, T.R.; Sothcott, J.; McCann, C. Relationships between Rock Heterogeneity, Attenuation, and Velocity Dispersion at Ultrasonic and Sonic Frequencies. In Proceedings of the SEG International Exposition and Annual Meeting, Dallas, DX, USA, 26–31 October 2003. [Google Scholar]
- Cabello Briones, C. Effects of Open Shelters on Limestone Decay: The Case Study of the Bishop’s Palace Archaeological Site in Witney (England). In Science, Technology and Cultural Heritage—Proceedings of the 2nd International Congress on Science and Technology for the Conservation of Cultural Heritage; CRC Press: Boca Raton, FL, USA, 2014; pp. 41–46. [Google Scholar]
- Grossi, C.M.; Esbert, R.M.; Díaz-Pache, F. Decay and Durability of Building Stones in Urban Environments|Degradación y Durabilidad de Materiales Rocosos de Edificación en Ambientes Urbanos. Mater. Construcc. 1998, 48, 5–25. [Google Scholar] [CrossRef]
- Daengprathum, N.; Onchang, R.; Nakhapakorn, K.; Robert, O.; Tipayarom, A.; Sturm, P.J. Estimation of Effects of Air Pollution on the Corrosion of Historical Buildings in Bangkok. Environ. Nat. Resour. J. 2022, 20, 505–514. [Google Scholar] [CrossRef]
- Inkpen, R. Errors in Measuring the Percentage Dry Weight Change of Stone Tablets. Earth Surf. Process. Landf. 1995, 20, 783–793. [Google Scholar] [CrossRef]
- Inkpen, R.; Viles, H.; Moses, C.; Baily, B. Modelling the Impact of Changing Atmospheric Pollution Levels on Limestone Erosion Rates in Central London, 1980–2010. Atmos. Environ. 2012, 61, 476–481. [Google Scholar] [CrossRef]
- Roots, O.O.; Roose, A.; Eerme, K. Remote Sensing of Climate Change, Long-Term Monitoring of Air Pollution and Stone Material Corrosion in Estonia. Int. J. Remote Sens. 2011, 32, 9691–9705. [Google Scholar] [CrossRef]
- García-Talegón, J.; Vicente, M.A.; Vicente-Tavera, S.; Molina-Ballesteros, E. Assessment of Chromatic Changes Due to Artificial Ageing and/or Conservation Treatments of Sandstones. Color Res. Appl. 1998, 23, 46–51. [Google Scholar] [CrossRef]
- Ordaz, J.; Alonso, F.J. Características Del Sistema Poroso de La Arenisca de Villamayor (Salamanca). Trab. Geol. Univ. Oviedo 1983, 13, 83–92. [Google Scholar]
- Martin Patino, M.T.; Madruga, F.; Saavedra, J. The Internal Structure of the Villamayor Sandstone as It Affects Its Use as a Construction Material. Appl. Clay Sci. 1993, 8, 61–77. [Google Scholar] [CrossRef]
- Marcos Laso, B. Biodiversity and Lichenic Growth on Some Monuments in Salamanca City|Biodiversidad y Colonización Liquénica de Algunos Monumentos en La Ciudad de Salamanca (España). Bot. Complut. 2001, 93–102. [Google Scholar]
- Vielba Cuerpo, C.; Hernández Olivares, F. Tests to Characterize the Behaviour of Natural Stone in Contact with Water|Ensayos de Caracterización Del Comportamiento Frente Al Agua de La Piedra Natural. Mater. Construcc. 2002, 52, 43–54. [Google Scholar] [CrossRef]
- Schleicher, N.; Hernández, C.R. Source Identification of Sulphate Forming Salts on Sandstones from Monuments in Salamanca, Spain—A Stable Isotope Approach. Environ. Sci. Pollut. Res. 2010, 17, 770–778. [Google Scholar] [CrossRef]
- Grondona, I.; Monte, E.; Rives, V.; Vicente, M.A. Lichenized Association between Septonema Tormes sp. Nov., a Coccoid Cyanobacterium, and a Green Alga with an Unforeseen Biopreservation Effect of Villamayor Sandstone at “Casa Lis” of Salamanca, Spain. Mycol. Res. 1997, 101, 1489–1495. [Google Scholar] [CrossRef]
- Arco, M.D.; Carballo, A.M.; Holgado, M.J.; Martín, C.; Rives, V. A Microporosity Study of Villamayor Sandstone (Salamanca, Spain). Appl. Clay Sci. 1987, 2, 375–383. [Google Scholar] [CrossRef]
- Vicente, M.A.; Brufau, A. Weathering of the Villamayor Arkosic Sandstone Used in Buildings, under a Continental Semi-Arid Climate. Appl. Clay Sci. 1986, 1, 265–272. [Google Scholar] [CrossRef]
- Saavedra, J.; Madruga, F.; Martin Patino, M.T. Classification of Villamayor Sandstone (Salamanca) from Technological Characteristics and Internal Structure|Clasificación de la Arenisca de Villamayor (Salamanca) por Sus Características Tecnológicas y Estructura Interna. Bol. Geol. y Min. 1993, 104, 655–663. [Google Scholar]
- Dumont, T. Échaillon Stone from France: A Global Heritage Stone Resource Proposal. Geol. Soc. Lond. Spec. Publ. 2020, 486, 115–128. [Google Scholar] [CrossRef]
- Kullberg, J.C.; Coelho, C.; Prego, A. Geological and Cultural Routes of the Arrábida Breccia: A Contribution to the Nomination of Arrábida for UNESCO’s Mixed World Heritage List. In Proceedings of the STRATI 2013: First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy, Lisbon, Portugal, 1–7 July 2013; Springer International Publishing: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kullberg, J.C.; Prego, A. The Historical Importance and Architectonic Relevance of the “Extinct” Arrábida Breccia. Geoheritage 2019, 11, 87–111. [Google Scholar] [CrossRef]
- Brisbin, W.C.; Young, G.; Young, J. Geology of the Parliament Buildings 5: Geology of the Manitoba Legislative Building. Geosci. Can. 2005, 32, 177–193. [Google Scholar]
- Kaur, G.; Kaur, P.; Ahuja, A.; Singh, A.; Saini, J.; Agarwal, P.; Bhargava, O.N.; Pandit, M.; Goswami, R.G.; Acharya, K.; et al. Jaisalmer Golden Limestone: A Heritage Stone Resource from the Desert of Western India. Geoheritage 2020, 12, 53. [Google Scholar] [CrossRef]
- Sen, P.; Ghosh, J.; Prabhulingaiah, G.; Sekhar, D.M.R. Internal Morphology of SMS Grade Limestone Samples. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 2006, 115, 127–131. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R. Exfoliation Microcracks in Building Granite. Implications for Anisotropy. Eng. Geol. 2017, 220, 85–93. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J. Thermal Stress-Induced Microcracking in Building Granite. Eng. Geol. 2016, 206, 83–93. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R. Heritage Stone 4. The Piedra Berroqueña Region: Candidacy for Global Heritage Stone Province Status. Geosci. Can. 2016, 43, 43–52. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J. Alpedrete Granite (Spain): A Nomination for the “Global Heritage Stone Resource” Designation. Episodes 2015, 38, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Oujja, M.; Ascaso, C.; Pérez-Ortega, S.; Souza-Egipsy, V.; Fort, R.; de los Ríos, A.; Wierzchos, J.; Cañamares, M.V.; Castillejo, M. Influence of Wavelength on the Laser Removal of Lichens Colonizing Heritage Stone. Appl. Surf. Sci. 2017, 399, 758–768. [Google Scholar] [CrossRef]
- Fort, R.; de Buergo, M.A.; Perez-Monserrat, E.M.; Gomez-Heras, M.; Jose Varas-Muriel, M.; Freire, D.M. Evolution in the Use of Natural Building Stone in Madrid, Spain. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 421–429. [Google Scholar] [CrossRef]
- Heldal, T.; Meyer, G.B.; Dahl, R. Global Stone Heritage: Larvikite, Norway. Geol. Soc. Lond. Spec. Publ. 2015, 407, 21–34. [Google Scholar] [CrossRef]
- Andersen, T. Crystallization History of a Permian Composite Monzonite-Alkali Syenite Pluton in the Sande Cauldron, Oslo Rift, Southern Norway. Lithos 1984, 17, 153–170. [Google Scholar] [CrossRef]
- Ramberg, I.B. Braid Perthite in Nepheline Syenite Pegmatite, Langesundsfjorden, Oslo Region (Norway). Lithos 1972, 5, 281–306. [Google Scholar] [CrossRef]
- Andersen, T.; Erambert, M.; Larsen, A.O.; Selbekk, R.S. Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zirconium Silicate Mineral Assemblages as Indicators of Alkalinity and Volatile Fugacity in Mildly Agpaitic Magma. J. Petrol. 2010, 51, 2303–2325. [Google Scholar] [CrossRef]
- Careddu, N.; Grillo, S. Rosa Beta Granite (Sardinian Pink Granite): A Heritage Stone of International Significance from Italy. Geol. Soc. Lond. Spec. Publ. 2015, 407, 155–172. [Google Scholar] [CrossRef]
- Del Lama, E.A.; Costa, A.G. Global Heritage Stones in Brazil. Geoheritage 2022, 14, 25. [Google Scholar] [CrossRef]
- Cuccuru, S.; Puccini, A. Petrographic, Physical–Mechanical and Radiological Characterisation of the Rosa Beta Granite (Corsica-Sardinia Batholith). In Engineering Geology for Society and Territory-Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Cuccuru, S.; Cherchi, G.P. The Bassacutena District: Quarrying Aspects and Physicomechanical Characterization of “Rosa Beta” Granite|Il Polo Estrattivo di Bassacutena: Aspetti Giacimentologici e Caratterizzazione Fisico-Meccanica del Granito “Rosa Beta”. Rend. Online Soc. Geol. Ital. 2008, 3, 282–283. [Google Scholar]
- Puccini, A.; Xhixha, G.; Cuccuru, S.; Oggiano, G.; Xhixha, M.K.; Mantovani, F.; Alvarez, C.R.; Casini, L. Radiological Characterization of Granitoid Outcrops and Dimension Stones of the Variscan Corsica-Sardinia Batholith. Environ. Earth Sci. 2014, 71, 393–405. [Google Scholar] [CrossRef]
- Siedel, H.; Rust, M.; Goth, K.; Krüger, A.; Heidenfelder, W. Rochlitz Porphyry Tuff (“Rochlitzer Porphyrtuff”): A Candidate for “Global Heritage Stone Resource” Designation from Germany. Episodes 2019, 42, 81–91. [Google Scholar] [CrossRef]
- Takahashi, Y. Some Topics in English Newsmagazines in 2019, with Special Reference to Mineral Resources, Building Stones, and a Revised Classification of Igneous Rocks. Jpn. Mag. Mineral. Petrol. Sci. 2020, 48, 133–141. [Google Scholar] [CrossRef]
- Vedanti, N.; Malkoti, A.; Pandey, O.P.; Shrivastava, J.P. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies. Pure Appl. Geophys. 2018, 175, 2905–2930. [Google Scholar] [CrossRef]
- Prasanna Lakshmi, K.J.; Senthil Kumar, P.; Vijayakumar, K.; Ravinder, S.; Seshunarayana, T.; Sen, M.K. Petrophysical Properties of the Deccan Basalts Exposed in the Western Ghats Escarpment Around Mahabaleshwar and Koyna, India. J. Asian Earth Sci. 2014, 84, 176–187. [Google Scholar] [CrossRef]
- Das, A.; Krishnaswami, S. Barium in Deccan Basalt Rivers: Its Abundance, Relative Mobility and Flux. Aquat. Geochem. 2006, 12, 221–238. [Google Scholar] [CrossRef]
- Sukheswala, R.N.; Poldervaart, A. Deccan Basalts of the Bombay Area, India. Bull. Geol. Soc. Am. 1958, 69, 1473–1494. [Google Scholar] [CrossRef]
- Kulkarni, H.; Deolankar, S.B.; Lalwani, A.; Joseph, B.; Pawar, S. Hydrogeological Framework of the Deccan Basalt Groundwater Systems, West-Central India. Hydrogeol. J. 2000, 8, 368–378. [Google Scholar] [CrossRef]
- Salil, M.S.; Shrivastava, J.P.; Pattanayak, S.K. Similarities in the Mineralogical and Geochemical Attributes of Detrital Clays of Maastrichtian Lameta Beds and Weathered Deccan Basalt, Central India. Chem. Geol. 1997, 136, 25–32. [Google Scholar] [CrossRef]
- Chandrasekharam, D.; Vaselli, O.; Sheth, H.C.; Keshav, S. Petrogenetic Significance of Ferro-Enstatite Orthopyroxene in Basaltic Dikes from the Tapi Rift, Deccan Flood Basalt Province, India. Earth Planet. Sci. Lett. 2000, 179, 469–476. [Google Scholar] [CrossRef]
- Kulkarni, Y.R.; Sangode, S.J.; Meshram, D.C.; Patil, S.K.; Dutt, Y. Mineral Magnetic Characterization of the Godavari River Sediments: Implications to Deccan Basalt Weathering. J. Geol. Soc. India 2014, 83, 376–384. [Google Scholar] [CrossRef]
- Malik, A.; Chakraborty, T.; Rao, K.S.; Kumar, D.; Chandel, P.; Sharma, P. Dynamic Response of Deccan Trap Basalt under Hopkinson Bar Test. Procedia Eng. 2017, 173, 647–654. [Google Scholar] [CrossRef]
- Kumar, A.; Shrivastava, J.P. Carbon Capture Induced Changes in Deccan Basalt: A Mass-Balance Approach. Greenh. Gases Sci. Technol. 2019, 9, 1158–1180. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Ma, G.S.-K.; Matsuhisa, Y. Oxygen Isotope Evidence for Crustal Contamination in Deccan Basalts. Chem. Erde 2013, 73, 105–112. [Google Scholar] [CrossRef]
- Sano, T.; Fujii, T.; Deshmukh, S.S.; Fukuoka, T.; Aramaki, S. Differentiation Processes of Deccan Trap Basalts: Contribution from Geochemistry and Experimental Petrology. J. Petrol. 2001, 42, 2175–2195. [Google Scholar] [CrossRef]
- Kumar, A.; Shrivastava, J.P. Thermodynamic Modelling and Experimental Validation of CO2 Mineral Sequestration in Mandla Basalt of the Eastern Deccan Volcanic Province, India. J. Geol. Soc. India 2019, 93, 269–277. [Google Scholar] [CrossRef]
- Santosh, M.; Hari, K.R.; Chatterjee, A.C. Fluid Inclusions in Deccan Basalt. In Proceedings of the Fluid Inclusions (India). Fluid inclusions. Memoir-Geological Society of India. 1988, 11. Available online: https://www.geosocindia.org/GSI/product-category/memoirs (accessed on 20 September 2024).
- Choubey, V.D. Long-Distance Correlation of Deccan Basalt Flows, Central India. Bull. Geol. Soc. Am. 1973, 84, 2785–2790. [Google Scholar] [CrossRef]
- Das, A.; Krishnaswami, S. Elemental Geochemistry of River Sediments from the Deccan Traps, India: Implications to Sources of Elements and Their Mobility during Basalt-Water Interaction. Chem. Geol. 2007, 242, 232–254. [Google Scholar] [CrossRef]
- Keays, R.R.; Lightfoot, P.C. Crustal Sulfur Is Required to Form Magmatic Ni-Cu Sulfide Deposits: Evidence from Chalcophile Element Signatures of Siberian and Deccan Trap Basalts. Miner. Depos. 2010, 45, 241–257. [Google Scholar] [CrossRef]
- Sayyed, M.R.G.; Hundekari, S.M. Preliminary Comparison of Ancient Bole Beds and Modern Soils Developed Upon the Deccan Volcanic Basalts Around Pune (India): Potential for Palaeoenvironmental Reconstruction. Quat. Int. 2006, 156–157, 189–199. [Google Scholar] [CrossRef]
- Mishra, S.; Misra, S.; Vyas, D.; Nikalje, D.; Warhade, A.; Roy, S. A 1251 m-Thick Deccan Flood Basalt Pile Recovered by Scientific Drilling in the Koyna Region, Western India. J. Geol. Soc. India 2017, 90, 788–794. [Google Scholar] [CrossRef]
- Chaudhary, M.; Sharma, R.; Kapoor, D.; Sadiq, M. Formation Evaluation of Deccan (Basalt) Trap Basement of Kutch Offshore Basin, Gulf of Kutch, India. J. Pet. Sci. Eng. 2022, 217, 110854. [Google Scholar] [CrossRef]
- Liu, D.; Agarwal, R.; Liu, F.; Yang, S.; Li, Y. Modeling and Assessment of CO2 Geological Storage in the Eastern Deccan Basalt of India. Environ. Sci. Pollut. Res. 2022, 29, 85465–85481. [Google Scholar] [CrossRef] [PubMed]
- Deolankar, S.B. The Deccan Basalts of Maharashtra, India—Their Potential as Aquifers. Ground Water 1980, 18, 188–195. [Google Scholar] [CrossRef]
- Coli, M.; Criscuolo, A. The Carrara Marble: Geology, Geomechanics and Quarrying. IOP Conf. Ser. Earth Environ. Sci. 2021, 833, 203. [Google Scholar] [CrossRef]
- Borla, O.; Lacidogna, G.; Carpinteri, A. X-ray Photoelectron Spectroscopy on Fracture Surfaces of Carrara Marble Specimens Crushed in Compression. In Proceedings of the 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety, ECF 2012, Kazan, Russia, 26–31 August 2012. [Google Scholar]
- Carpinteri, A.; Lacidogna, G.; Borla, O. Alpha Particle Emissions from Carrara Marble Specimens Crushed in Compression and X-ray Photoelectron Spectroscopy of Correlated Nuclear Transmutations. In Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes; Carpinteri, A., Lacidogna, G., Manuello, A., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Cheng, Y.; Wong, L.N.Y.; Maruvanchery, V. Transgranular Crack Nucleation in Carrara Marble of Brittle Failure. Rock Mech. Rock Eng. 2016, 49, 3069–3082. [Google Scholar] [CrossRef]
- Bruijn, R.H.C.; Kunze, K.; Mainprice, D.; Burlini, L. Mechanical and Microstructural Development of Carrara Marble with Pre-Existing Strain Variation. Tectonophysics 2011, 503, 75–91. [Google Scholar] [CrossRef]
- Kandula, N.; Cordonnier, B.; Boller, E.; Weiss, J.; Dysthe, D.K.; Renard, F. Dynamics of Microscale Precursors Durig Brittle Compressive Failure in Carrara Marble. J. Geophys. Res. Solid Earth 2019, 124, 6121–6139. [Google Scholar] [CrossRef]
- Ree, J.-H.; Ando, J.-I.; Han, R.; Shimamoto, T. Coseismic Microstructures of Experimental Fault Zones in Carrara Marble. J. Struct. Geol. 2014, 66, 75–83. [Google Scholar] [CrossRef]
- Vaselli, L.; Cortecci, G.; Tonarini, S.; Ottria, G.; Mussi, M. Conditions for Veining and Origin of Mineralizing Fluids in the Alpi Apuane (NW Tuscany, Italy): Evidence from Structural and Geochemical Analyses on Calcite Veins Hosted in Carrara Marbles. J. Struct. Geol. 2012, 44, 76–92. [Google Scholar] [CrossRef]
- Giresse, P.; Bromblet, P.; de Barrau, C. Carrara Marble in the 11th Century Romanesque Works of Roussillon (Lintel of Saint-Genis-des-Fontaines, Lintel and Altar Table of Saint-André-de-Sorède, Eastern Pyrénées). Textural and Isotopic Analysis | Le Marbre de Carrare dans les Œuvres R. ArcheoSciences 2020, 44, 71–79. [Google Scholar] [CrossRef]
- Cheng, Y.; Wong, L.N.Y.; Zou, C. Experimental Study on the Formation of Faults from En-Echelon Fractures in Carrara Marble. Eng. Geol. 2015, 195, 312–326. [Google Scholar] [CrossRef]
- Luzin, V.; Dmitry, N.; Siegesmund, S. Temperature Induced Internal Stress in Carrara Marble. Mater. Sci. Forum 2014, 777, 148–154. [Google Scholar] [CrossRef]
- Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G. Fault Zone Structure and Fluid-Rock Interaction of a High Angle Normal Fault in the Carrara Marble (NW Tuscany, Italy)|Caratteri Strutturali e Interazione Fluido-Roccia in Una Faglia Normale Ad Alto Angolo Nei Marmi di Carrara. Rend. Online Soc. Geol. Ital. 2009, 5, 142–143. [Google Scholar]
- Aidun, J.B.; Gupta, Y.M. Shear Wave Measurements for Improved Characterization of Shock-Induced Phase Transformations in Carrara Marble. Geophys. Res. Lett. 1989, 16, 191–194. [Google Scholar] [CrossRef]
- Tal, Y.; Evans, B.; Mok, U. Direct Observations of Damage During Unconfined Brittle Failure of Carrara Marble. J. Geophys. Res. Solid Earth 2016, 121, 1584–1609. [Google Scholar] [CrossRef]
- Nardini, L.; Rybacki, E.; Döhmann, M.J.E.A.; Morales, L.F.G.; Brune, S.; Dresen, G. High-Temperature Shear Zone Formation in Carrara Marble: The Effect of Loading Conditions. Tectonophysics 2018, 749, 120–139. [Google Scholar] [CrossRef]
- Doan, M.-L.; Billi, A. High Strain Rate Damage of Carrara Marble. Geophys. Res. Lett. 2011, 38, L19302. [Google Scholar] [CrossRef]
- Bruni, S.; Cariati, F.; Bianchi, C.L.; Zanardini, E.; Sorlini, C. Spectroscopic Investigation of Red Stains Affecting the Carrara Marble Façade of the Certosa of Pavia. Archaeometry 1995, 37, 249–255. [Google Scholar] [CrossRef]
- Schubnel, A.; Walker, E.; Thompson, B.D.; Fortin, J.; Guéguen, Y.; Young, R.P. Transient Creep, Aseismic Damage and Slow Failure in Carrara Marble Deformed Across the Brittle-Ductile Transition. Geophys. Res. Lett. 2006, 33, L17301. [Google Scholar] [CrossRef]
- Covey-Crump, S.J. The Application of Hart’s State Variable Description of Inelastic Deformation to Carrara Marble at T < 450 °C. J. Geophys. Res. 1994, 99, 19793–19808. [Google Scholar] [CrossRef]
- Bonazza, A.; Sabbioni, C.; Messina, P.; Guaraldi, C.; De Nuntiis, P. Climate Change Impact: Mapping Thermal Stress on Carrara Marble in Europe. Sci. Total Environ. 2009, 407, 4506–4512. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Xiong, Q. A Method for Multiscale Interpretation of Fracture Processes in Carrara Marble Specimen Containing a Single Flaw under Uniaxial Compression. J. Geophys. Res. Solid Earth 2018, 123, 6459–6490. [Google Scholar] [CrossRef]
- Covey-Crump, S.J. The High Temperature Static Recovery and Recrystallization Behaviour of Cold-Worked Carrara Marble. J. Struct. Geol. 1997, 19, 225–241. [Google Scholar] [CrossRef]
- Zou, C.; Cheng, Y.; Li, J. Strain Rate and Size Effects on the Brittleness Indexes of Carrara Marble. Int. J. Rock Mech. Min. Sci. 2021, 146, 104860. [Google Scholar] [CrossRef]
- Wielgosz-Rondolino, D.; Antonelli, F.; Bojanowski, M.J.; Gładki, M.; Göncüoğlu, M.C.; Lazzarini, L. Improved Methodology for Identification of Göktepe White Marble and the Understanding of Its Use: A Comparison with Carrara Marble. J. Archaeol. Sci. 2020, 113, 105059. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Zhou, Y.-S.; Yao, W.-M.; He, C.-R.; Dang, J.-X. Experimental Study on the Effect of Water on the Strength and Deformation Mechanism of Carrara Marble at High Temperature. Dizhen Dizhi 2017, 39, 54–66. [Google Scholar] [CrossRef]
- Affuso, A.M.G.; Garzonio, C.A. Analysis of the Correlation Between Bending Phenomena and Physical-Mechanical and Petrographic Parameters of Carrara Marble Slabs. In Proceedings of the 10th ISRM Congress, Sandton, South Africa, 8–12 September 2003; pp. 1–6. [Google Scholar]
- Coli, M.; Livi, E.; Baldi, M.; Coli, N. Studies for Rockburst Prediction in the Carrara Marble—II: Geostructural/Geomechanical Rivisitation and 2D FEM Modeling of a Large Underground Quarry. In Proceedings of the ISRM International Symposium—EUROCK 2012, Stockholm, Sweden, 28–30 May 2012. [Google Scholar]
- Scheffzük, C.; Siegesmund, S.; Hoffmann, A.; Nikolayev, D.I. Texture and Residual Strain in Carrara Marbles Measured by TOF Neutron Diffraction. In Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC, Madrid, Spain, 21–24 June 2006; pp. 547–553. [Google Scholar]
- Song, J.; Zhou, Y.; Dang, J.; Yao, W. An Experimental Study on Pressure Solution Creep and Micro-Crack Healing of Carrara Marble. Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/J. China Univ. Pet. (Ed. Nat. Sci.) 2017, 41, 52–60. [Google Scholar] [CrossRef]
- Royer-Carfagni, G.; Salvatore, W. Localized Fatigue Damage of Carrara Marble. In Proceedings of the International Conference Damage Fracture Mechanics, Torino, Italy, 19 June 1998; pp. 65–76. [Google Scholar]
- Chaye D’albissin, M.; Yokoyama, Y.; Massot, J.-C. Effect of Experimental Deformation on ESR Spectrum of Carrara Marble: Application to Tectonized Marbles|Effet d’une Déformation Expérimentale sur le Spectre de Résonance Paramagnétique Électronique (RPE) du Marbre de Carrare et Application aux Marbres T. Comptes Rendus Acad. Sci. Sér. II Sci. Terre Planètes 1994, 318, 405–410. [Google Scholar]
- Zhang, G.; Song, M.; Li, J.; Shao, T.; Ji, S.; Wang, H. Microstructural Characteristics and Deformation Mechanism of Carrara Marble in Axial Compression Experiments. Geotecton. Metallog. 2018, 42, 786–797. [Google Scholar] [CrossRef]
- Miller, J.T.; Einstein, H.H. Crack Coalescence Tests on Granite. In Proceedings of the 42nd U.S. Rock Mechanics—2nd U.S.-Canada Rock Mechanics Symposium, San Francisco, CA, USA, 29 June–2 July 2008. [Google Scholar]
- Zou, C.; Wong, L.N.Y. Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings. Rock Mech. Rock Eng. 2016, 49, 1695–1708. [Google Scholar] [CrossRef]
- Lissa, S.; Ruf, M.; Steeb, H.; Quintal, B. Effects of Crack Roughness on Attenuation Caused by Squirt Flow in Carrara Marble. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophisicists: Houston, TX, USA, 2020; pp. 2439–2443. [Google Scholar]
- De Raadt, W.S.; Burlini, L.; Kunze, K.; Spiers, C.J. Effect of Pre-Existing Crystallographic Preferred Orientation on the Rheology of Carrara Marble. J. Struct. Geol. 2014, 68, 44–57. [Google Scholar] [CrossRef]
- Soutelo, S.G.; Garcia-M, A.G.; Bordas, H.G.; Savin, M.-C. Epigraphic and Archaeometric Study of the Roman Funerary Plaque of Cela (Mos, Pontevedra): New Approach to Its Interpretation|Estudio Epigráfico y Arqueométrico de la Placa Funeraria de Cela (Mos, Pontevedra): Nuevas Propuestas de Interpretación. Estud. Quat. 2019, 20, 71–84. [Google Scholar] [CrossRef]
- Lopes, L.; Martins, R. Global Heritage Stone: Estremoz Marbles, Portugal. Geol. Soc. Lond. Spec. Publ. 2015, 407, 57–74. [Google Scholar] [CrossRef]
- Lapuente Mercadal, P.; Savin, M.-C.; González Soutelo, S.; Gutiérrez Garcia-M, A.; Chapoulie, R.; Laborde Marqueze, A.; Pérez García, P.P. Marble Pieces in the Romanesque Portal of Glory of the Santiago de Compostela Cathedral. New Data through a Multi-Analytical Approach. Int. J. Archit. Herit. 2020, 14, 1239–1251. [Google Scholar] [CrossRef]
- Menningen, J.; Siegesmund, S.; Lopes, L.; Martins, R.; Sousa, L. The Estremoz Marbles: An Updated Summary on the Geological, Mineralogical and Rock Physical Characteristics. Environ. Earth Sci. 2018, 77, 191. [Google Scholar] [CrossRef]
- Moreira, N.; Pedro, J.; Santos, J.F.; Araújo, A.; Dias, R.; Ribeiro, S.; Romão, J.; Mirão, J. 87Sr/86Sr Applied to Age Discrimination of the Palaeozoic Carbonates of the Ossa-Morena Zone (SW Iberia Variscides). Int. J. Earth Sci. 2019, 108, 963–987. [Google Scholar] [CrossRef]
- Moreira, N.; Pedro, J.; Lopes, L.; Carneiro, A.; Mourinha, N.; Araújo, A.; Santos, J.F. The Ossa-Morena Marbles Used in the Classical Antiquity: Review of Their Petrographic Features and Isotopic Data|Mármores da Zona de Ossa-Morena Utilizados na Antiguidade Clássica: Revisão das Características Petrográficas e Isotópicas. Comun. Geol. 2020, 107, 81–89. [Google Scholar]
- Ochoa, C.F.; Galán, M.B.; García-Entero, V.; Álvarez, S.V. Cover of the Sarcophagus with the Cycle of Jonah Found in Carranque (Toledo) | Cubierta de Sarcófago con el Ciclo de Jonás Hallada en Carranque (Toledo). Arch. Español Arqueol. 2011, 84, 231–242. [Google Scholar] [CrossRef]
- Origlia, F.; Gliozzo, E.; Meccheri, M.; Spangenberg, J.E.; Memmi, I.T.; Papi, E. Mineralogical, Petrographic and Geochemical Characterisation of White and Coloured Iberian Marbles in the Context of the Provenancing of Some Artifacts from Thamusida (Kenitra, Morocco). Eur. J. Miner. 2011, 23, 857–869. [Google Scholar] [CrossRef]
- Siegesmund, S.; Ruedrich, J.; Koch, A. Marble Bowing: Comparative Studies of Three Different Public Building Facades. Environ. Geol. 2008, 56, 473–494. [Google Scholar] [CrossRef]
- Taelman, D.; Elburg, M.; Smet, I.; De Paepe, P.; Vanhaecke, F.; Vermeulen, F. White, Veined Marble from Roman Ammaia (Portugal): Provenance and Use. Archaeometry 2013, 55, 370–390. [Google Scholar] [CrossRef]
- Taelman, D.; Elburg, M.; Smet, I.; De Paepe, P.; Lopes, L.; Vanhaecke, F.; Vermeulen, F. Roman Marble from Lusitania: Petrographic and Geochemical Characterisation. J. Archaeol. Sci. 2013, 40, 2227–2236. [Google Scholar] [CrossRef]
- Schouenborg, B.; Andersson, J.; Göransson, M.; Inger, L. The Hallandia Gneiss, a Swedish Heritage Stone Resource. Geol. Soc. Lond. Spec. Publ. 2015, 407, 35–48. [Google Scholar] [CrossRef]
- Wikström; Pereira, D. The Kolmården Serpentine Marble in Sweden: A Stone Found Both in Castles and People’s Homes. Geol. Soc. Lond. Spec. Publ. 2015, 407, 49–56. [Google Scholar] [CrossRef]
- Lapuente, P.; Rodà, I.; Gutiérrez Garcia-M, A.; Brilli, M. Addressing the Controversial Origin of the Marble Source Used in the Phoenician Anthropoid Sarcophagi of Gadir (Cadiz, Spain). Archaeometry 2021, 63, 467–480. [Google Scholar] [CrossRef]
- Navarro, R.; Pereira, D.; Gimeno, A.; Del Barrio, S. Influence of Natural Carbonation Process in Serpentinites Used as Construction and Building Materials. Constr. Build. Mater. 2018, 170, 537–546. [Google Scholar] [CrossRef]
- Navarro, R.; Cruz, A.S.; Arriaga, L.; Baltuille, J.M. Characterization of the Main Types of Marble Extracted in the Area of Macael (Almería, Southeastern Spain) and Its Historical Importance|Caracterización de los Principales Tipos de Mármol Extraídos en la Comarca de Macael (Almería, Sureste de España) y. Bol. Geol. y Min. 2017, 128, 345–361. [Google Scholar] [CrossRef]
- Rey, J.; Martínez, J.; Vera, P.; Ruiz, N.; Cañadas, F.; Montiel, V. Ground-Penetrating Radar Method Used for the Characterisation of Ornamental Stone Quarries. Constr. Build. Mater. 2015, 77, 439–447. [Google Scholar] [CrossRef]
- Navarro, R.; Pereira, D.; Gimeno, A.; Del Barrio, S. Characterization of the Natural Variability of Macael Serpentinite (Verde Macael) (Almería, South of Spain) for Their Appropriate Use in the Building Industry. In Engineering Geology for Society and Territory-Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Navarro, R.; Pereira, D.; Gimeno, A.; Del Barrio, S. Verde Macael: A Serpentinite Wrongly Referred to as a Marble. Geosciences 2013, 3, 102–113. [Google Scholar] [CrossRef]
- Luque, A.; Ruiz-Agudo, E.; Cultrone, G.; Sebastián, E.; Siegesmund, S. Direct Observation of Microcrack Development in Marble Caused by Thermal Weathering. Environ. Earth Sci. 2011, 62, 1375–1386. [Google Scholar] [CrossRef]
- Sáez-Pérez, M.P.; Rodríguez-Gordillo, J. Structural and Compositional Anisotropy in Macael Marble (Spain) by Ultrasonic, XRD and Optical Microscopy Methods. Constr. Build. Mater. 2009, 23, 2121–2126. [Google Scholar] [CrossRef]
- Rodríguez-Gordillo, J.; Sáez-Pérez, M.P. Effects of Thermal Changes on Macael Marble: Experimental Study. Constr. Build. Mater. 2006, 20, 355–365. [Google Scholar] [CrossRef]
- Mehiri, K.; Vieville, P.; Lipinski, P.; Tidu, A.; Tijeras, V. Initiation and Coalescence of Local Damages on Blanco de Macael Marble. In Fracture of Nano and Engineering Materials and Structures—Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, 3–7 July 2006; Springer: Dordrecht, The Netherlands, 2006; pp. 545–546. [Google Scholar]
- Cámara, B.; De Buergo, M.Á.; Bethencourt, M.; Fernández-Montblanc, T.; La Russa, M.F.; Ricca, M.; Fort, R. Biodeterioration of Marble in an Underwater Environment. Sci. Total Environ. 2017, 609, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.; Montiel, V.; Rey, J.; Cañadas, F.; Vera, P. Utilization of Integrated Geophysical Techniques to Delineate the Extraction of Mining Bench of Ornamental Rocks (Marble). Remote Sens. 2017, 9, 1322. [Google Scholar] [CrossRef]
- Burgos-Cara, A.; Ruiz-Agudo, E.; Rodríguez-Navarro, C. Effectiveness of Oxalic Acid Treatments for the Protection of Marble Surfaces. Mater. Des. 2017, 115, 82–92. [Google Scholar] [CrossRef]
- Luque, A.; Cultrone, G.; Mosch, S.; Siegesmund, S.; Sebastián, E.; Leiss, B. Anisotropic Behaviour of White Macael Marble Used in the Alhambra of Granada (Spain): The Role of Thermohydric Expansion in Stone Durability. Eng. Geol. 2010, 115, 209–216. [Google Scholar] [CrossRef]
- Tucci, P.; Marrese, G.; Polvorinos, A.; Azzaro, E. Italica (Seville, Spain): Use of Local Marble in Augustan Age. Period. Miner. 2010, 79, 113–129. [Google Scholar] [CrossRef]
- Morbidelli, P.; Tucci, P.; Imperatori, C.; Polvorinos, A.; Preite Martinez, M.; Azzaro, E.; Hernandez, M.J. Roman Quarries of the Iberian Peninsula: “Anasol” and “Anasol”-Type. Eur. J. Miner. 2007, 19, 125–135. [Google Scholar] [CrossRef]
- Benavente, D.; Martínez-Verdú, F.; Bernabeu, A.; Viqueira, V.; Fort, R.; García Del Cura, M.A.; Illueca, C.; Ordóñez, S. Influence of Surface Roughness on Color Changes in Building Stones. Color Res. Appl. 2003, 28, 343–351. [Google Scholar] [CrossRef]
- Bello, M.A.; Martín, L.; Martín, A. Decay and Treatment of Macael White Marble. Stud. Conserv. 1992, 37, 193–200. [Google Scholar] [CrossRef]
- Bello, M.A.; Martín, L.; Martín, A. Scanning Electron Microscopy to Establish the Marble Weathering Mechanism in the Alhambra of Granada (Spain). Scanning Microsc. 1991, 5, 645–652. [Google Scholar]
- Justo, J.; Castro, J.; Miranda, M.; Gatica, D.; Cicero, S. The Theory of Critical Distances Applied to Fracture of Rocks with Circular Cavities. Theor. Appl. Fract. Mech. 2022, 121, 103530. [Google Scholar] [CrossRef]
- Acampa, G.; Grasso, M. Integrated Evaluation Methods to HBIM for the Management of Cultural Heritage: The Case Study of the Colonnade of Patio de los Leones, Alhambra-Granada|Metodi di Valutazione Integrati all’HBIM per la Gestione del Patrimonio Storico: Il Caso del Colonnat. Valori Valutazioni 2021, 29, 133–153. [Google Scholar] [CrossRef]
- Garcia-Guinea, J.; Crespo-Feo, E.; Correcher, V.; Iordanidis, A.; Charalampides, G.; Karamitou-Mentessidi, G. New Data on the Cathodoluminescence of White Marbles: Interpretation of Peaks and Relationships to Weathering. Mediterr. Archaeol. Archaeom. 2010, 10, 107–114. [Google Scholar]
- Garg, S.; Kaur, P.; Pandit, M.; Fareeduddin Kaur, G.; Kamboj, A.; Thakur, S.N. Makrana Marble: A Popular Heritage Stone Resource from NW India. Geoheritage 2019, 11, 909–925. [Google Scholar] [CrossRef]
- Pappu, A.; Chaturvedi, R.; Tyagi, P. Sustainable Approach Towards Utilizing Makrana Marble Waste for Making Water Resistant Green Composite Materials. SN Appl. Sci. 2020, 2, 347. [Google Scholar] [CrossRef]
- Bhadra, B.K.; Gupta, A.K.; Sharma, J.R.; Choudhary, B.R. Mining Activity and Its Impact on the Environment: Study from Makrana Marble and Jodhpur Sandstone Mining Areas of Rajasthan. J. Geol. Soc. India 2007, 70, 557–570. [Google Scholar]
- Dwivedi, R.D.; Singh, P.K.; Singh, T.N.; Singh, D.P. Compressive Strength and Tensile Strength of Rocks at Sub-Zero Temperature. Indian J. Eng. Mater. Sci. 1998, 5, 43–48. [Google Scholar]
- Kaul, B.K.; Chattopadhyay, B.C. Effect of the Volume of the Specimen on the Flexural Strength of Makrana Marble. In Proceedings of the Symp on Rock Mech and Tunnelling Prob, Kurukshetra, Haryana, India, 17–18 December 1973; pp. 200–203. [Google Scholar]
- Hughes, T.; Horak, J.; Lott, G.; Roberts, D. Cambrian Age Welsh Slate: A Global Heritage Stone Resource from the United Kingdom. Episodes 2016, 39, 45–51. [Google Scholar] [CrossRef]
- Wyse Jackson, P.N.; Caulfield, L.; Feely, M.; Joyce, A.; Parkes, M.A. Connemara Marble, Co. Galway, Ireland: A Global Heritage Stone Resource Proposal. Geol. Soc. Spec. Publ. 2020, 486, 251–268. [Google Scholar] [CrossRef]
- Attewell, P.B.; Taylor, R.K. A Microtextural Interpretation of a Welsh Slate. Int. J. Rock Mech. Min. Sci. 1969, 6, 423–438. [Google Scholar] [CrossRef]
- Price, W.R.; Ronck, C.L. Quarrying for World Heritage Designation: Slate Tourism in North Wales. Geoheritage 2019, 11, 1839–1854. [Google Scholar] [CrossRef]
- Girdler, R.W. Some Preliminary Measurements of Anisotropy of Magnetic Susceptibility of Rocks. Geophys. J. R. Astron. Soc. 1961, 5, 197–206. [Google Scholar] [CrossRef]
- Fuller, M.D. Anisotropy of Susceptibility and the Natural Remanent Magnetization of Some Welsh Slates. Nature 1960, 186, 791–792. [Google Scholar] [CrossRef]
- Rathore, J.S.; Henry, B. Comparison of Strain and Magnetic Fabrics in Dalradian Rocks from the Southwest Highlands of Scotland. J. Struct. Geol. 1982, 4, 373–384. [Google Scholar] [CrossRef]
- Kollar, A.D.; Feely, M.; Joyce, A.; Fedosick, R.; Hughes, K.; Costanzo, A. Carnegie Institute Extension Connemara Marble: Cross-Atlantic Connections Between Western Ireland and Gilded Age Architecture in Pittsburgh, Pennsylvania. Ann. Carnegie Mus. 2020, 86, 207–253. [Google Scholar] [CrossRef]
- Yardley, B.W.D.; Lloyd, G.E. An Application of Cathodoluminescence Microscopy to the Study of Textures and Reactions in High-Grade Marbles from Connemara, Ireland. Geol. Mag. 1989, 126, 333–337. [Google Scholar] [CrossRef]
- Max, M.D. Connemara Marble and the Industry Based Upon It. In Report Series—Geological Survey of Ireland, Dublin Ireland; 1985; Available online: https://www.gsi.ie/en-ie/Pages/default.aspx (accessed on 20 September 2024).
- Feely, M.; Wilton, D.H.; Costanzo, A.; Kollar, A.D.; Goudie, D.J.; Joyce, A. Mineral Liberation Analysis and Scanning Electron Microscopy of Connemara Marble: New Mineral Distribution Maps of an Iconic Irish Gem Material. J. Gemmol. 2019, 36, 456–466. [Google Scholar] [CrossRef]
- McCaffrey, K.J.W.; Feely, M.; Hennessy, R.; Thompson, J. Visualization of Folding in Marble Outcrops, Connemara, Western Ireland: An Application of Virtual Outcrop Technology. Geosphere 2008, 4, 588–599. [Google Scholar] [CrossRef]
- Leake, B.E.; Tanner, P.W.G.; Senior, A. The Composition and Origin of the Connemara Dolomitic Marbles and Ophicalcites, Ireland. J. Petrol. 1975, 16, 237–257. [Google Scholar] [CrossRef]
- Cliff, R.A.; Yardley, B.W.D.; Bussy, F. U–Pb Isotopic Dating of Fluid Infiltration and Metasomatism During Dalradian Regional Metamorphism in Connemara, Western Ireland. J. Metamorph. Geol. 1993, 11, 185–191. [Google Scholar] [CrossRef]
- Senior, A.; Leake, B.E. Regional Metasomatism and the Geochemistry of the Dalradian Metasediments of Connemara, Western Ireland. J. Petrol. 1978, 19, 585–625. [Google Scholar] [CrossRef]
- Cárdenes, V.; López-Piñeiro, S.; Ruiz de Argandoña, V.G. The Relevance of the Green Phyllites of Lugo (Spain) in the Architectonical Heritage: An Exceptional Roofing Slate Resource. Geoheritage 2021, 13, 11. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio, A.; Ruiz de Argandoña, V.G. Roofing Slate from Bernardos, Spain: A Potential Candidate for Global Heritage Stone. Episodes 2021, 44, 3–9. [Google Scholar] [CrossRef]
- Kaur, G.; Agarwal, P.; Garg, S.; Kaur, P.; Saini, J.; Singh, A. The Alwar Quartzite Built Architectural Heritage of North India: A Case for Global Heritage Stone Resource Designation. Geoheritage 2021, 13, 55. [Google Scholar] [CrossRef]
- Mahajan, A.K.; Shukla, A.K.; Pandey, A.; Chauhan, M.; Chauhan, N.; Rai, N. Shear Wave Velocity Investigation for Ten Representative Sites of National Capital Territory, New Delhi, India. Int. J. Geotech. Earthq. Eng. 2011, 2, 29–43. [Google Scholar] [CrossRef]
- Pathak, A.K.; Tripathi, S.; Maurya, A.K.; Das, P.; Ranjan, J.; Patel, A.K.; Misra, P.; Kumar, A. High Resolution Heliborne Magnetic, Radiometric, and Time Domain Electromagnetic Data Interpretation of Chomun-Alwar Tract of Alwar Sub-basin, North Delhi Fold Belt, Northern India as an Aid to Uranium Exploration. Explor. Res. At. Miner. 2020, 28, 24–35. [Google Scholar]
- Muthamilselvan, A. Application of Supervised Classification and Crosta Technique for Lithological Discrimination in Parts of South Khetri Belt, Sikar District, Rajasthan. J. Indian Soc. Remote Sens. 2017, 45, 377–383. [Google Scholar] [CrossRef]
- Kaur, P.; Zeh, A.; Chaudhri, N.; Gerdes, A.; Okrusch, M. Archaean to Palaeoproterozoic Crustal Evolution of the Aravalli Mountain Range, NW India, and Its Hinterland: The U-Pb and Hf Isotope Record of Detrital Zircon. Precambrian Res. 2011, 187, 155–164. [Google Scholar] [CrossRef]
- Kaur, G.; Mehta, P.K. Geochemistry and Petrogenesis of Jasrapura Granitoid, North Khetri Copper Belt, Rajasthan: Evidence for Island Arc Magmatism. J. Geol. Soc. India 2007, 69, 319–330. [Google Scholar]
- Powar, M.M.; Mathur, A.B. Geology and Geochemistry of Amphibolites from Ghataser Area, Mahendragarh District, Haryana. Indian Miner. 2004, 58, 27–34. [Google Scholar]
- Verma, V.K. Ripple Marks in Alwar Quartzites East of Mera Ka Gurha near Udaipur, Rajasthan. Proc. Indian Acad. Sci. Sect. A 1964, 59, 313–317. [Google Scholar] [CrossRef]
- Zaheeruddin; Khurshid, S. Aquifer Geometry and Hydrochemical Framework of the Shallow Alluvial Aquifers in the Western Part of the Yamuna River Basin, India. Water Qual. Res. J. Can. 2004, 39, 129–139. [Google Scholar] [CrossRef]
Categories | Identified Information for Selection/Topic Detected for Selection |
---|---|
Other nomenclatures | References to other facies of the same lithotype |
Different commercial names for the same lithotype data | |
Composition | Mineralogic and petrographic composition |
Chemical composition | |
Physical and/or Mechanical Properties | Properties that characterize the stone as a material, some examples found: porosity, capillarity, structure properties, color measurements, gloss. |
High Temperatures | Exposition of stone to temperatures above 120 °C data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobarinhas, R.; Dionísio, A.; Paneiro, G. High Temperature Effects on Global Heritage Stone Resources: A Systematic Review. Heritage 2024, 7, 6310-6342. https://doi.org/10.3390/heritage7110296
Lobarinhas R, Dionísio A, Paneiro G. High Temperature Effects on Global Heritage Stone Resources: A Systematic Review. Heritage. 2024; 7(11):6310-6342. https://doi.org/10.3390/heritage7110296
Chicago/Turabian StyleLobarinhas, Roberta, Amélia Dionísio, and Gustavo Paneiro. 2024. "High Temperature Effects on Global Heritage Stone Resources: A Systematic Review" Heritage 7, no. 11: 6310-6342. https://doi.org/10.3390/heritage7110296
APA StyleLobarinhas, R., Dionísio, A., & Paneiro, G. (2024). High Temperature Effects on Global Heritage Stone Resources: A Systematic Review. Heritage, 7(11), 6310-6342. https://doi.org/10.3390/heritage7110296