Tracking Evidence of Seismic Damage by Nonlinear Numerical Simulations for Dating in Archaeological Contexts
Abstract
:1. Introduction
2. Materials
2.1. The Ancient Roman City of Ostia
2.2. The Piccolo Mercato and the Damaged Pillar
3. Methods
3.1. The Seismic Activity of Ostia Antica
3.2. Nonlinerar Time-History Analyses
4. Results and Discussion
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Pascua, M.A.; Pèrez Lòpez, R.; Giner-Robles, J.L.; Silva, P.G.; Garduño-Monroy, V.H.; Reicherter, K. A comprehensive classification of Earthquake Archaeological Effects (EAE) in archaeoseismology: Application to ancient remains of Roman and Mesoamerican cultures. Quat. Int. 2011, 242, 20–30. [Google Scholar] [CrossRef]
- Kázmér, M. Damage to Ancient Buildings from Earthquakes. In Encyclopedia of Earthquake Engineering; Beer, M., Kougioumtzoglou, I., Patelli, E., Au, I.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Pecchioli, L. Problematiche connesse al restauro archeologico, The Cultural heritage protection in Italy. In Mediterraneum, La Tutela dei Beni Culturali in Italia; Maniscalco, F., Ed.; Massa Editore: Napoli, Italy, 2003; pp. 61–63. [Google Scholar]
- Marino, L. Material for an Atlas of Pathologies in Archaeological Areas and Ruined Buildings; Alinea Editore: Firenze, Italy, 2009. [Google Scholar]
- Arrighetti, A. L’archeosismologia in Architettura. Per un Manuale. Strumenti per la Didattica e la Ricerca; Firenze University Press: Firenze, Italy, 2015. [Google Scholar] [CrossRef]
- Galadini, F.; Hinzen, K.G.; Stiros, S.C. Archaeoseismology: Methodological issues and procedure. J. Seismol. 2006, 10, 395–414. [Google Scholar] [CrossRef]
- Hinzen, K.G. Archaeoseismology. In Encyclopedia of Solid Earth Geophysics; Gupta, H.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 11–15. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Fleischer, C.; Reamer, S.K.; Schreiber, S.; Schütteet, S.; Yerli, B. Quantitative methods in archaeoseismology. Quat. Int. 2011, 242, 31–41. [Google Scholar] [CrossRef]
- Forlin, P.; Valente, R.; Kázmér, M. Assessing earthquake effects on archaeological sites using photogrammetry and 3D model analysis. Digit. Appl. Archaeol. Cult. Herit. 2018, 9, e00073. [Google Scholar] [CrossRef]
- Meghraoui, M.A.; Hinzen, K.G.; Malik, J.N. Paleoseismology, Archeoseismology and Paleotsunami Studies. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: London, UK, 2021; pp. 636–655. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, Y.; Elez, J.; Silva, P.G.; Santos-Delgado, G.; Giner-Robles, J.L.; Reicherter, K. 3D Modelling of Archaeoseismic Damage in the Roman Site of Baelo Claudia (Gibraltar Arc, South Spain). Appl. Sci. 2022, 12, 5223. [Google Scholar] [CrossRef]
- Arrighetti, A.; Repole, M. Expeditious archaeoseismological analysis of a medieval town centre. The case of Siena and the PROTECT project. Eur. J. Post-Class. Archaeol. 2024, 14, 303–324. [Google Scholar]
- Pecchioli, L.; Cangi, G.; Marra, F. Evidence of seismic damages on ancient Roman buildings at Ostia: An arch mechanics approach. J. Archaeol. Sci. Rep. 2018, 21, 117–127. [Google Scholar] [CrossRef]
- Stiros, S.C. Monumental articulated ancient Greek and Roman columns and temples and earthquakes: Archaeological, historical, and engineering approaches. J. Seismol. 2020, 24, 853–881. [Google Scholar] [CrossRef]
- Ambraseys, N.; Psycharis, I.N. Assessment of the long-term seismicity of Athens from two classical columns. Bull. Earthq. Eng. 2012, 10, 1635–1666. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Cucci, L.; Tertulliani, A. Rotation of Objects during the 2009 L’Aquila Earthquake Analyzed with 3D Laser Scans and Discrete-Element Models. Seismol. Res. Lett. 2013, 84, 745–751. [Google Scholar] [CrossRef]
- Mordanova, A.; de Felice, G. Seismic Assessment of Archaeological Heritage Using Discrete Element Method. Int. J. Archit. Herit. 2020, 14, 345–357. [Google Scholar] [CrossRef]
- Caputo, R.; Hinzen, K.G.; Liberatore, D.; Schreiber, S.; Helly, B.; Tziafalias, A. Quantitative archaeoseismological investigation of the Great Theatre of Larissa, Greece. Bull. Earthq. Eng. 2011, 9, 347–366. [Google Scholar] [CrossRef]
- Lorenzoni, F.; Valluzzi, M.R.; Modena, C. Seismic assessment and numerical modelling of the Sarno Baths, Pompeii. J. Cult. Herit. 2019, 40, 288–298. [Google Scholar] [CrossRef]
- Aita, D.; Beatini, V.; Garavaglia, E.; Paris, V.; Pizzigoni, A.; Sgambi, L. The stone roof of the tholos of Athena Pronaia in Delphi: Structural hypotheses starting from fragments of marble tiles. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2-2023, 59–66. [Google Scholar] [CrossRef]
- Volant, P.; Levret, A.; Carbon, D.; Scotti, O.; Comberscure, D.; Verdel, T.; Piant, A.; Laurent, P. An archaeo-seismological study of the Nîmes Roman aqueduct, France: Indirect evidence for an M > 6 seismic event? Nat. Hazards 2009, 49, 53–77. [Google Scholar] [CrossRef]
- Kim, J.; Lorenzoni, F.; Salvalaggio, M.; Valluzzi, M.R. Seismic vulnerability assessment of free-standing massive masonry columns by the 3D Discrete Element Method. Eng. Struct. 2021, 246, 113004. [Google Scholar] [CrossRef]
- Tabbara, M.R.; Karam, G.N. Experimental, Numerical, and Theoretical Investigation of the Rocking Response of Baalbek Columns under Harmonic Excitations. J. Earthq. Eng. 2022, 26, 887–910. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Meghraoui, M.; Bahrouni, N.; Reamer, S.K. Testing the earthquake damage and vulnerability of the Cherichira aqueduct bridge, Kairouan (Tunisia) with discrete element modeling. Mediterr. Geosci. Rev. 2022, 4, 495–516. [Google Scholar] [CrossRef]
- Available online: https://www.ostiaantica.beniculturali.it/en/events/hazard-and-disaster-risk-ostia-and-portus-between-hypothesis-and-reality-conference-live-streaming (accessed on 2 September 2024).
- Pecchioli, L.; Betti, M.; Pintucchi, B. Archaeoseismological project in Ostia: Tracking evidence on seismic damage by nonlinear numerical simulations. Dev. Built Environ. 2022, 10, 100073. [Google Scholar] [CrossRef]
- Lanciani, R.A. The Ruins and Excavations of Ancient Rome; A Companion Book for Students and Travelers; The Riverside Press: Cambridge, UK, 1897. [Google Scholar]
- Available online: https://culture.ec.europa.eu/cultural-heritage/initiatives-and-success-stories/european-heritage-label/european-heritage-label-sites/archaeological-area-of-ostia-antica-italy (accessed on 2 September 2024).
- Lanciani, R.A. Segni di terremoti negli edifizi di Roma antica. Bull. Comm. Archeol. Comunale Roma 1918, 45, 3–28. (In Italian) [Google Scholar]
- Marra, F.; Milana, G.; Pecchioli, L.; Roselli, P.; Cangi, G.; Famiani, D.; Mercuri, A.; Carlucci, G. Historical faulting as the possible cause of earthquake damages in the ancient Roman port city of Ostia. J. Seismol. 2020, 24, 833–851. [Google Scholar] [CrossRef]
- Hinzen, K.G. Rotation of vertically oriented objects during earthquakes. J. Seismol. 2012, 16, 797–814. [Google Scholar] [CrossRef]
- Pradhan, C.; Banerjee, A.; Roy, R. Evolution of a 3D model for free-standing rigid blocks and its behavior under base excitations. Int. J. Non-Linear Mech. 2022, 142, 103992. [Google Scholar] [CrossRef]
- Asteris, P.G.; Sarhosis, V.; Mohebkhah, A.; Plevris, V.; Papaloizou, L.; Komodromos, P.; Lemos, J.V. Numerical Modeling of Historic Masonry Structures. In Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures; Asteris, P.G., Plevris, V., Eds.; IGI Global: Hershey, PA, USA, 2015; pp. 213–256. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. A review of numerical models for masonry structures. In Numerical Modeling of Masonry and Historical Structures; Ghiassi, B., Milani, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–53. [Google Scholar] [CrossRef]
- Betti, M.; Galano, L.; Vignoli, A. Finite element modelling for seismic assessment of historic masonry buildings. In Earthquakes and Their Impact on Society; D’Amico, S., Ed.; Springer Natural Hazards: Cham, Switzerland, 2016; pp. 377–415. [Google Scholar] [CrossRef]
- Theodossopoulos, D.; Sinha, B. A review of analytical methods in the current design processes and assessment of performance of masonry structures. Constr. Build. Mater. 2013, 41, 990–1001. [Google Scholar] [CrossRef]
- Schiavoni, M.; Giordano, E.; Roscini, F.; Clementi, F. Numerical modeling of a majestic masonry structure: A comparison of advanced techniques. Eng. Fail. Anal. 2023, 149, 107293. [Google Scholar] [CrossRef]
- Bartoli, G.; Betti, M.; Biagini, P.; Borghini, A.; Ciavattone, A.; Girardi, M.; Lancioni, G.; Marra, A.M.; Ortoloani, B.; Pintucchi, B.; et al. Epistemic uncertainties in structural modelling: A blind benchmark for seismic assessment of slender masonry towers. ASCE’s J. Perform. Constr. Facil. 2017, 31, 04017067. [Google Scholar] [CrossRef]
- Abedi, K.; Ferdousi, A.; Afshin, H. A novel steel section for concrete-filled tubular columns. Thin-Walled Struct. 2008, 46, 310–319. [Google Scholar] [CrossRef]
- Su, K.; Zhu, H.Z.; Shi, Y.A.; Wei, Y.J.; Wu, H.G.; Shi, C.Z. Loads bearing mechanism of steel bifurcation combined with concrete anchor block. Eng. Struct. 2019, 194, 251–2619. [Google Scholar] [CrossRef]
- Bartoli, G.; Betti, M.; Borri, C. Numerical modelling of the structural behaviour of Brunelleschi’s Dome of Santa Maria del Fiore. Int. J. Archit. Herit. 2015, 9, 408–429. [Google Scholar] [CrossRef]
- Iervolino, I.; Galasso, C.; Cosenza, E. REXEL: Computer aided record selection for code-based seismic structural analysis. Bull. Earthq. Eng. 2010, 8, 339–362. [Google Scholar] [CrossRef]
Code | Earthquake | MW | Duration (s) | EpiD (km) | Site EC8 | Primary Component PGA (cm/s2) | Secondary Component PGA (cm/s2) |
---|---|---|---|---|---|---|---|
FIN0 | Emilia 2nd shock 29 May 2012 | 6.0 | 119.0 | 17.5 | C | 234.28 | 207.74 |
MOG | Emilia 2nd shock 29 May 2012 | 6.0 | 115.0 | 15.8 | C | 235.62 | 167.07 |
NOR | Central Italy 26 October 2016 | 5.9 | 73.86 | 13.3 | C | 210.80 | 118.36 |
SAN0 | Emilia 2nd shock 29 May 2012 | 6.0 | 170.0 | 6.1 | C | 216.65 | 170.89 |
SMS0 | Emilia 2nd shock 29 May 2012 | 6.0 | 160.0 | 16.9 | C | 175.33 | 174.17 |
TO | Emilia 2nd shock 29 May 2012 | 6.0 | 110.0 | 14.2 | C | 223.97 | 141.77 |
ULO | Northwestern Balkan Peninsula 15 April 1979 | 6.9 | 46.18 | 22.0 | B | 277.04 | 232.27 |
Δϕ (°) sc-PGA = 4 m/s2 | Δϕ (°) sc-PGA = 5 m/s2 | Δϕ (°) sc-PGA = 6 m/s2 | |
---|---|---|---|
FIN0 | 0.31 | 4.15 | 6.05 |
MOG | 4.00 | 9.92 | 10.34 |
NOR | 1.54 | 0.74 | 1.49 |
SAN0 | 2.11 | 9.51 | 9.57 |
SMS0 | 0.99 | 9.43 | 14.8 |
TO | 0.84 | 1.09 | 3.98 |
ULO | 0.71 | 3.25 | 8.88 |
|U| (mm) sc-PGA = 4 m/s2 | |U| (mm) sc-PGA = 5 m/s2 | |U| (mm) sc-PGA = 6 m/s2 | |
---|---|---|---|
FIN0 | 78.6 | 128.4 | 120.6 |
MOG | 102.1 | 177.1 | 227.2 |
NOR | 43.4 | 68.7 | 161.5 |
SAN0 | 68.4 | 140.7 | 175.2 |
SMS0 | 86.6 | 154.1 | 164.9 |
TO | 51.2 | 27.8 | 104.7 |
ULO | 41.2 | 155.9 | 230.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecchioli, L.; Pintucchi, B.; Betti, M. Tracking Evidence of Seismic Damage by Nonlinear Numerical Simulations for Dating in Archaeological Contexts. Heritage 2024, 7, 5774-5786. https://doi.org/10.3390/heritage7100271
Pecchioli L, Pintucchi B, Betti M. Tracking Evidence of Seismic Damage by Nonlinear Numerical Simulations for Dating in Archaeological Contexts. Heritage. 2024; 7(10):5774-5786. https://doi.org/10.3390/heritage7100271
Chicago/Turabian StylePecchioli, Laura, Barbara Pintucchi, and Michele Betti. 2024. "Tracking Evidence of Seismic Damage by Nonlinear Numerical Simulations for Dating in Archaeological Contexts" Heritage 7, no. 10: 5774-5786. https://doi.org/10.3390/heritage7100271
APA StylePecchioli, L., Pintucchi, B., & Betti, M. (2024). Tracking Evidence of Seismic Damage by Nonlinear Numerical Simulations for Dating in Archaeological Contexts. Heritage, 7(10), 5774-5786. https://doi.org/10.3390/heritage7100271