Educational Potential of Geoheritage: Textbook Localities from the Zagros and the Greater Caucasus
Abstract
:1. Introduction
2. Study Areas
2.1. Abmorghan Anticline (Zagros)
2.2. Skala Monocline (Greater Caucasus)
3. Materials and Methods
4. Results
4.1. Abmorghan Anticline
4.2. Skala Monocline
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef]
- Pescatore, E.; Bentivenga, M.; Giano, S.I.; Siervo, V. Geomorphosites: Versatile Tools in Geoheritage Cultural Dissemination. Geoheritage 2019, 11, 1583–1601. [Google Scholar] [CrossRef]
- Pescatore, E.; Bentivenga, M.; Giano, S.I. Geoheritage and Geoconservation: Some Remarks and Considerations. Sustainability 2023, 15, 5823. [Google Scholar] [CrossRef]
- Prosser, C.D.; Brown, E.J.; Larwood, J.G.; Bridgland, D.R. Geoconservation for science and society—An agenda for the future. Proc. Geol. Assoc. 2013, 124, 561–567. [Google Scholar] [CrossRef]
- Valentini, L.; Guerra, V.; Lazzari, M. Enhancement of geoheritage and development of geotourism: Comparison and inferences from different experiences of communication through art. Geosciences 2022, 12, 264. [Google Scholar] [CrossRef]
- Bollati, I.M.; Rossi, D.; Viani, C. Outdoor River Activities: Relations with Geological Background and Extreme Events in the Perspective of Geoeducation. Geosciences 2023, 13, 122. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.-S.; Kang, H.-C.; Park, J.-W.; Shin, S.; Chae, Y.-U.; Ha, S.; Kim, H.S.; Lim, H.S. Geological values of the Ueumdo geosite in the Hwaseong Geopark, Korea and its application to geo-education. J. Geol. Soc. Korea 2021, 57, 257–273. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E.; Durán-Valsero, J.J.; Dowd, P.A.; Luque-Espinar, J.A.; Heredia, J.; Robledo-Ardila, P.A. Geodiversity of closed depressions in a high relief karst: Geoeducation asset and geotourism resource in the “Sierra de las Nieves” National Park (Málaga Province, Southern Spain). Int. J. Geoheritage Parks 2022, 10, 196–217. [Google Scholar] [CrossRef]
- Schmid-Röhl, A.P. The Lower Jurassic Posidonia Shale in the Swabian Alb Geopark—Geoeducation in an Industrial Environment. Geoconservation Res. 2021, 4, 338–346. [Google Scholar]
- Tormey, D. New approaches to communication and education through geoheritage. Int. J. Geoheritage Parks 2019, 7, 192–198. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H. Comparative Analysis of Two Assessment Methods for the Geoeducational Values of Geosites. A Case Study from the Volcanic Island of Nisyros, SE Aegean Sea, Greece. Geosciences 2022, 12, 82. [Google Scholar] [CrossRef]
- Kubalíková, L.; Bajer, A.; Balková, M.; Kirchner, K.; Machar, I. Geodiversity Action Plans as a Tool for Developing Sustainable Tourism and Environmental Education. Sustainability 2022, 14, 6043. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Venturini, C. Strategies and Tools for Improving Earth Science Education and Popularization in Museums. Geoheritage 2017, 9, 187–194. [Google Scholar] [CrossRef]
- Telbisz, T.; Imecs, Z.; Máthé, A.; Mari, L. Empirical Investigation of the Motivation and Perception of Tourists Visiting the Apuseni Nature Park (Romania) and the Relationship of Tourism and Natural Resources. Sustainability 2023, 15, 4181. [Google Scholar] [CrossRef]
- Vegas, J.; Díez-Herrero, A. An Assessment Method for Urban Geoheritage as a Model for Environmental Awareness and Geotourism (Segovia, Spain). Geoheritage 2021, 13, 27. [Google Scholar] [CrossRef]
- Vidal, R.R.; Tassara, A. Geo-Circuit for Interpretation of the Geological Evolution in the Nevados de Chillán Volcanic Complex, Chile. Geoheritage 2023, 15, 63. [Google Scholar] [CrossRef]
- Derafshi, K.; Seyedhamzeh, M. Synthesis of Quantitative Geosite Assessment Models and Its Application on Sistan and Baluchestan Province Natural Heritages, Potential Geotourism Destination of Iran. Geoheritage 2022, 14, 124. [Google Scholar] [CrossRef]
- Farsani, N.T.; Coelho, C.; Costa, C. Geotourism and Geoparks as Gateways to Socio-cultural Sustainability in Qeshm Rural Areas, Iran. Asia Pac. J. Tour. Res. 2012, 17, 30–48. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ghanavati, E.; Kazemi, J. Identifying the Most Effective Geosite Evaluation Models in Iran Using Delphi and Analytic Hierarchy Process Methods. Quaest. Geogr. 2021, 40, 21–31. [Google Scholar] [CrossRef]
- Habibi, T.; Ponedelnik, A.A.; Yashalova, N.N.; Ruban, D.A. Urban geoheritage complexity: Evidence of a unique natural resource from Shiraz city in Iran. Resour. Policy 2018, 59, 85–94. [Google Scholar] [CrossRef]
- Mehdipour Ghazi, J.; Hamdollahi, M.; Moazzen, M. Geotourism of mining sites in Iran: An opportunity for sustainable rural development. Int. J. Geoheritage Parks 2021, 9, 129–142. [Google Scholar] [CrossRef]
- Gutak, J.M.; Ruban, D.A.; Ermolaev, V.A. Devonian geoheritage of Siberia: A case of the northwestern Kemerovo Region of Russia. Heliyon 2023, 9, e13288. [Google Scholar] [CrossRef] [PubMed]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; Lorien: Sankt-Peterburg, Russia, 1998. (In Russian) [Google Scholar]
- Marshall, J.E.A.; Siveter, D.J. The Lake Il’men Clint, Russia: A potential Devonian geopark. J. Min. Inst. 2018, 234, 581–590. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and Geosites: A Bibliometric Analysis and Literature Review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Ólafsdóttir, R.; Tverijonaite, E. Geotourism: A systematic literature review. Geosciences 2018, 8, 234. [Google Scholar] [CrossRef]
- Ziaee, M.; Ferdowsi, S. A Systematic Review of Iranian Research in the Field of Geotourism Studies. Geoheritage 2020, 12, 94. [Google Scholar] [CrossRef]
- Drápela, E. Assessing the Educational Potential of Geosites: Introducing a Method Using Inquiry-Based Learning. Resources 2022, 11, 101. [Google Scholar] [CrossRef]
- García-Ortiz, E.; Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Concepts and terminology for the risk of degradation of geological heritage sites: Fragility and natural vulnerability, a case study. Proc. Geol. Assoc. 2014, 125, 463–479. [Google Scholar] [CrossRef]
- Guerra, V.; Lazzari, M. Geomorphological mapping as a tool for geoheritage inventory and geotourism promotion: A case study from the middle valley of the Marecchia River (northern Italy). Géomorphologie Relief Process. Environ. 2021, 27, 127–145. [Google Scholar] [CrossRef]
- Guerra, V.; Lazzari, M. Geoheritage assessment and potential geotouristic enhancement in mountain environments: A test-site in the northern Apennines (Italy). Geoheritage 2022, 14, 97. [Google Scholar] [CrossRef]
- Kubalíková, L.; Kirchner, K. Geosite and Geomorphosite Assessment as a Tool for Geoconservation and Geotourism Purposes: A Case Study from Vizovická vrchovina Highland (Eastern Part of the Czech Republic). Geoheritage 2016, 8, 5–14. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Merchán-Sanmartín, B.; Cárdenas-Cruz, A.; Jaya-Montalvo, M.; Mata-Perello, J.; Herrera-Franco, G.; Carrión-Mero, P. Sites of Geological Interest Assessment for Geoeducation Strategies, ESPOL University Campus, Guayaquil, Ecuador. Land 2022, 11, 771. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Drymoni, K.; Bonali, F.L.; Tibaldi, A.; Corti, N.; Oppizzi, P. Geosite Assessment and Communication: A Review. Resources 2023, 12, 29. [Google Scholar] [CrossRef]
- Štrba, L.; Rybár, P.; Baláž, B.; Molokac, M.; Hvizdak, L.; Krsak, B.; Lukac, M.; Muchova, L.; Tometzová, D.; Ferenčíková, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- Štrba, Ľ.; Vravcová, A.; Podoláková, M.; Varcholová, L.; Kršák, B. Linking Geoheritage or Geosite Assessment Results with Geotourism Potential and Development: A Literature Review. Sustainability 2023, 15, 9539. [Google Scholar] [CrossRef]
- Tomić, N.; Božić, S. A modified geosite assessment model (M-GAM) and its application on the Lazar Canyon area (Serbia). Int. J. Environ. Res. 2014, 8, 1041–1052. [Google Scholar]
- Vujičić, M.D.; Vasiljević, Đ.A.; Marković, S.B.; Hose, T.A.; Lukić, T.; Hadžić, O.; Janićević, S. Preliminary geosite assessment model (GAM) and its application on Fruška Gora Mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–377. [Google Scholar] [CrossRef]
- Kirillova, K. A review of aesthetics research in tourism: Launching the Annals of Tourism Research Curated Collection on beauty and aesthetics in tourism. Ann. Tour. Res. 2023, 100, 103553. [Google Scholar] [CrossRef]
- Alavi, M. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 1994, 229, 211–238. [Google Scholar] [CrossRef]
- Alipour, M. Collision along irregular plate margin controlled the tectono-stratigraphic evolution of the Iranian Zagros fold and thrust belt. Mar. Pet. Geol. 2023, 154, 106311. [Google Scholar] [CrossRef]
- Mouthereau, F.; Lacombe, O.; Vergés, J. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 2012, 532–535, 27–60. [Google Scholar] [CrossRef]
- Ruh, J.B.; Gerya, T.; Burg, J.-P. Toward 4D modeling of orogenic belts: Example from the transpressive Zagros Fold Belt. Tectonophysics 2017, 702, 82–89. [Google Scholar] [CrossRef]
- Sepehr, M.; Cosgrove, J.W. Structural framework of the Zagros Fold-Thrust Belt, Iran. Mar. Pet. Geol. 2004, 21, 829–843. [Google Scholar] [CrossRef]
- Zamani, B.G. Geodynamics and tectonic stress model for the Zagros fold–thrust belt and classification of tectonic stress regimes. Mar. Pet. Geol. 2023, 155, 106340. [Google Scholar]
- Ajirlu, M.S.; Moazzen, M.; Hajialioghli, R. Tectonic evolution of the Zagros Orogen in the realm of the Neotethys between the Central Iran and Arabian Plates: An ophiolite perspective. Cent. Eur. Geol. 2016, 59, 1–27. [Google Scholar] [CrossRef]
- Arfania, R.; Shahriari, S. Role of southeastern Sanandaj-Sirjan Zone in the tectonic evolution of Zagros Orogenic Belt, Iran. Isl. Arc 2009, 18, 555–576. [Google Scholar] [CrossRef]
- Golonka, J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 2004, 381, 235–273. [Google Scholar] [CrossRef]
- Jafari, A.; Ao, S.; Jamei, S.; Ghasemi, H. Evolution of the Zagros sector of Neo-Tethys: Tectonic and magmatic events that shaped its rifting, seafloor spreading and subduction history. Earth-Sci. Rev. 2023, 241, 104419. [Google Scholar] [CrossRef]
- Leturmy, P.; Robin, C. Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic-Cenozoic: Introduction. Geol. Soc. Spec. Publ. 2010, 330, 1–4. [Google Scholar] [CrossRef]
- Andadlibi, M.J. Geological Map of Iran, Scale 1:1000000; Geological Survey of Iran: Tehran, Iran, 1967. [Google Scholar]
- James, G.A.; Wynd, J.G. Stratigraphic nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bull. 1965, 49, 2182–2245. [Google Scholar]
- Ghanbarian, M.A.; Derakhshani, R. The folds and faults kinematic association in Zagros. Sci. Rep. 2022, 12, 8350. [Google Scholar] [CrossRef] [PubMed]
- Soleimany, B.; Sàbat, F. Style and age of deformation in the NW Persian Gulf. Pet. Geosci. 2010, 16, 31–39. [Google Scholar] [CrossRef]
- Babazadeh, S.A.; Cluzel, D. New biostratigraphy and microfacies analysis of Eocene Jahrum Formation (Shahrekord region, High Zagros, West Iran). A carbonate platform within the Neo-Tethys oceanic realm. BSGF—Earth Sci. Bull. 2023, 194, 1. [Google Scholar] [CrossRef]
- Fallah-Bagtash, R.; Adabi, M.H.; Sadeghi, A.; Dehyadegari, E. Reservoir quality of the Jahrum carbonate succession; a case study from the Fars region of Zagros Basin, SW Iran. J. Stratigr. Sedimentol. Res. 2020, 36, 27–58. [Google Scholar]
- Mohseni, H.; Hassanvand, V.; Homaie, M. Microfacies analysis, depositional environment, and diagenesis of the Asmari–Jahrum reservoir in Gulkhari oil field, Zagros basin, SW Iran. Arab. J. Geosci. 2016, 9, 113. [Google Scholar] [CrossRef]
- Parvaneh Nejad Shirazi, M.; Bahrami, M.; Amiri Bakhtiar, H.; Bamdad, O. Microfacies, sedimentary environment and paleoecology of Paleocene-Eocene deposits in the Zagros Basin, north of Shiraz, southwest Iran. Hist. Biol. 2014, 26, 493–501. [Google Scholar] [CrossRef]
- Sinapour, M.; Seyrafian, A. Microfacies and sedimentary environment of the Jahrum formation, south-central Zagros basin. Carbonates Evaporites 2021, 36, 76. [Google Scholar] [CrossRef]
- Adamia, S.; Zakariadze, G.; Chkhotua, T.; Sadradze, N.; Tsereteli, N.; Chabukiani, A.; Gventsadze, A. Geology of the Caucasus: A review. Turk. J. Earth Sci. 2011, 20, 489–544. [Google Scholar] [CrossRef]
- Forte, A.M.; Gutterman, K.R.; van Soest, M.C.; Gallagher, K. Building a Young Mountain Range: Insight Into the Growth of the Greater Caucasus Mountains From Detrital Zircon (U-Th)/He Thermochronology and 10Be Erosion Rates. Tectonics 2022, 41, e2021TC006900. [Google Scholar] [CrossRef]
- Koronovskiy, N.V. The Caucasus: Unsolved problems of geology. Vestn.—Mosk. Univ. Seriya Geol. 1990, 4, 3–11. [Google Scholar]
- Mosar, J.; Mauvilly, J.; Koiava, K.; Gamkrelidze, I.; Enna, N.; Lavrishev, V.; Kalberguenova, V. Tectonics in the Greater Caucasus (Georgia—Russia): From an intracontinental rifted basin to a doubly verging fold-and-thrust belt. Mar. Pet. Geol. 2022, 140, 105630. [Google Scholar] [CrossRef]
- Somin, M.L. Pre-Jurassic basement of the Greater Caucasus: Brief overview. Turk. J. Earth Sci. 2011, 20, 545–610. [Google Scholar] [CrossRef]
- Ruban, D.A.; Zerfass, H.; Yang, W. A new hypothesis on the position of the Greater Caucasus Terrane in the Late Palaeozoic-Early Mesozoic based on palaeontologic and lithologic data. Trab. De Geol. 2007, 27, 19–27. [Google Scholar]
- Adamia, S.; Alania, V.; Chabukiani, A.; Kutelia, Z.; Sadradze, N. Great Caucasus (Cavcasioni): A long-lived North-Tethyan back-arc basin. Turk. J. Earth Sci. 2011, 20, 611–628. [Google Scholar] [CrossRef]
- Hässig, M.; Moritz, R.; Ulianov, A.; Popkhadze, N.; Galoyan, G.; Enukidze, O. Jurassic to Cenozoic Magmatic and Geodynamic Evolution of the Eastern Pontides and Caucasus Belts, and Their Relationship With the Eastern Black Sea Basin Opening. Tectonics 2020, 39, e2020TC006336. [Google Scholar] [CrossRef]
- Kazmin, V.G.; Tikhonova, N.F. Evolution of Early Mesozoic back-arc basins in the Black Sea—Caucasus segment of a Tethyan active margin. Geol. Soc. Spec. Publ. 2006, 260, 179–200. [Google Scholar] [CrossRef]
- McCann, T.; Chalot-Prat, F.; Saintot, A. The Early Mesozoic evolution of the Western Greater Caucasus (Russia): Triassic-Jurassic sedimentary and magmatic history. Geol. Soc. Spec. Publ. 2010, 340, 181–238. [Google Scholar] [CrossRef]
- Okay, A.I.; Nikishin, A.M. Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int. Geol. Rev. 2015, 57, 1051–1076. [Google Scholar] [CrossRef]
- Trifonov, V.G.; Sokolov, S.Y.; Sokolov, S.A.; Hessami, K. Mesozoic–Cenozoic Structure of the Black Sea–Caucasus–Caspian Region and Its Relationships with the Upper Mantle Structure. Geotectonics 2020, 54, 331–355. [Google Scholar] [CrossRef]
- Darin, M.H.; Umhoefer, P.J. Diachronous initiation of Arabia–Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. Int. Geol. Rev. 2022, 64, 2653–2681. [Google Scholar] [CrossRef]
- Rostovtsev, K.O.; Agaev, V.B.; Azarian, N.R.; Babaev, R.G.; Besnosov, N.V.; Hassanov, N.A.; Zesashvili, V.I.; Lomize, M.G.; Paitschadze, T.A.; Panov, D.I.; et al. Jurassic of the Caucasus; Nauka: St. Petersburg, Russia, 1992. (In Russian) [Google Scholar]
- Yasamanov, N.A. Landscape-Climatic Conditions of the Jurassic, the Cretaceous and the Paleogene of the South of the USSR; Nedra: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Ruban, D.A. The palaeogeographic outlines of the Caucasus in the Jurassic: The Caucasian Sea and the Neotethys Ocean. Geol. Anal. Balk. Poluostrva 2006, 67, 1–11. [Google Scholar] [CrossRef]
- Guo, L.; Vincent, S.J.; Lavrishchev, V. Upper Jurassic reefs from the Russian Western Caucasus: Implications for the eastern Black Sea. Turk. J. Earth Sci. 2011, 20, 629–653. [Google Scholar] [CrossRef]
- Kuznetsov, V.G. Late Jurassic—Early Cretaceous carbonate platform in the northern Caucasus and Precaucasus. Am. Assoc. Pet. Geol. Mem. 1993, 56, 455–463. [Google Scholar]
- Ruban, D.A.; Mikhailenko, A.V.; Zorina, S.O.; Yashalova, N.N. Geoheritage Resource of a Small Town: Evidence from Southwestern Russia. Geoheritage 2021, 13, 82. [Google Scholar] [CrossRef]
- Avdeev, B.; Niemi, N.A. Rapid Pliocene exhumation of the central Greater Caucasus constrained by low-temperature thermochronometry. Tectonics 2011, 30, TC2009. [Google Scholar] [CrossRef]
- Delgado, J.; López, J.; Zárate, I.; Montes, C. Modeling subduction on the kitchen table. J. Struct. Geol. 2023, 166, 104772. [Google Scholar] [CrossRef]
- Gutierrez, J.; Akciz, S.O.; Bursztyn, N.; Nichols, K.; Thurmond, J. Testing the efficacy of 3D-printed geologic models as tools for fostering spatial visualization abilities. Int. Geol. Rev. 2023, 65, 1320–1330. [Google Scholar] [CrossRef]
- Horota, R.K.; Senger, K.; Rodes, N.; Betlem, P.; Smyrak-Sikora, A.; Jonassen, M.O.; Kramer, D.; Braathen, A. West Spitsbergen fold and thrust belt: A digital educational data package for teaching structural geology. J. Struct. Geol. 2023, 167, 104781. [Google Scholar] [CrossRef]
- Joshi, A.U.; Gorania, P.; Limaye, M.A.; Chauhan, G.D.; Thakkar, M.G. Geoheritage Values of the Champaner-Pavagadh Archaeological Park, UNESCO World Heritage Site, Gujarat, Western India. Geoheritage 2022, 14, 88. [Google Scholar] [CrossRef]
- Puckette, J.O.; Suneson, N.H. Field camp: Using traditional methods to train the next generation of petroleum geologists. Spec. Pap. Geol. Soc. Am. 2009, 461, 25–34. [Google Scholar]
- Anderson, D.S.; Miskimins, J.L. Using field-camp experiences to develop a multidisciplinary foundation for petroleum engineering students. J. Geosci. Educ. 2006, 54, 172–178. [Google Scholar] [CrossRef]
- Balliet, R.N.; Riggs, E.M.; Maltese, A.V. Students’ problem solving approaches for developing geologic models in the field. J. Res. Sci. Teach. 2015, 52, 1109–1131. [Google Scholar] [CrossRef]
- Jolley, A.; Kennedy, B.M.; Brogt, E.; Hampton, S.J.; Fraser, L. Are we there yet? Sense of place and the student experience on roadside and situated geology field trips. Geosphere 2018, 14, 651–667. [Google Scholar] [CrossRef]
- Kelley, D.F.; Sumrall, J.L.; Sumrall, J.B. Student-designed mapping project as part of a geology field camp. J. Geosci. Educ. 2015, 63, 198–209. [Google Scholar] [CrossRef]
- Kelley, D.F.; Uzunlar, N.; Lisenbee, A.; Beate, B.; Turner, H.E. A capstone course in ecuador: The andes/galápagos volcanology field camp program. J. Geosci. Educ. 2017, 65, 250–262. [Google Scholar] [CrossRef]
- Ettensohn, F.R. An experiment in collaborative mapping at geology field camp. J. Geosci. Educ. 1997, 45, 229–234. [Google Scholar] [CrossRef]
- Rodríguez-Oroz, D.; Gómez-Espina, R.; Pérez, M.J.B.; Truyol, M.E. Learning based on a gamification project: Connecting university education and Chilean geomorphology dissemination. Rev. Eureka 2019, 16, 2202. [Google Scholar]
- Shang, M.; Yi, W.; Xu, Q. The study of engineering geology teaching based on the creativity thinking training. Adv. Mater. Res. 2013, 655–657, 2194–2197. [Google Scholar] [CrossRef]
- Kanayama, K.; Ota, Y. Sharing scientific knowledge in the process of creating textbook for guide in Uradome Coast, Tottori Prefecture, Japan. Chikei/Trans. Jpn. Geomorphol. Union 2022, 43, 41–54. [Google Scholar]
- Singtuen, V.; Vivitkul, N.; Junjuer, T. Geoeducational assessments in Khon Kaen National Geopark, Thailand: Implication for geoconservation and geotourism development. Heliyon 2022, 8, e12464. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zouros, N. Educational Activities in Fangshan UNESCO Global Geopark and Lesvos Island UNESCO Global Geopark. Geoheritage 2021, 13, 51. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Yashalova, N.N. Valuable geoheritage resources: Potential versus exploitation. Resour. Policy 2022, 77, 102665. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Ermolaev, V.A. Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding. Heritage 2022, 5, 2315–2331. [Google Scholar] [CrossRef]
- Gaetani, M.; Garzanti, E.; Poline, R.; Kiricko, Y.; Korsakhov, S.; Cirilli, S.; Nicora, A.; Rettori, R.; Larghi, C.; Bucefalo Palliani, R. Stratigraphic evidence for Cimmerian events in NW Caucasus (Russia). Bull. De La Société Géologique De Fr. 2005, 176, 283–299. [Google Scholar] [CrossRef]
- Gale, L.; Rigaud, S.; Gennari, V.; Blau, J.; Rettori, R.; Martini, R.; Gaetani, M. Recognition of upper Triassic temperate foraminiferal assemblages: Insights from the Khodz Group (NW Caucasus, Russia). Glob. Planet. Chang. 2020, 188, 103152. [Google Scholar] [CrossRef]
- Álvarez, R.F. Geoparks and education: UNESCO global geopark Villuercas-Ibores-Jara as a case study in Spain. Geosciences 2020, 10, 27. [Google Scholar] [CrossRef]
- Marescotti, P.; Castello, G.; Briguglio, A.; Caprioglio, M.C.; Crispini, L.; Firpo, M. Geosite Assessment in the Beigua UNESCO Global Geopark (Liguria, Italy): A Case Study in Linking Geoheritage with Education, Tourism, and Community Involvement. Land 2022, 11, 1667. [Google Scholar] [CrossRef]
- Frey, M.-L.; Schmitz, P.; Weber, J. Messel Pit UNESCO World Heritage Fossil Site in the UGGp Bergstraße-Odenwald, Germany– Challenges of Geoscience Popularization in a Complex Geoheritage Context. Geoconservation Res. 2021, 4, 524–546. [Google Scholar]
- Norrish, L.; Sanders, D.; Dowling, R. Geotourism product development and stakeholder perceptions: A case study of a proposed geotrail in Perth, Western Australia. J. Ecotourism 2014, 13, 52–63. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Promoting and Interpreting Geoheritage at the Local Level—Bottom-up Approach in the Land of Extinct Volcanoes, Sudetes, SW Poland. Geoheritage 2019, 11, 1227–1236. [Google Scholar] [CrossRef]
- Pralong, J.-P. Geotourism: A new Form of Tourism utilising natural Landscapes and based on Imagination and Emotion. Tour. Rev. 2006, 61, 20–25. [Google Scholar] [CrossRef]
- Tiago, F.; Correia, P.; Briciu, V.-A.; Borges-Tiago, T. Geotourism destinations online branding co-creation. Sustainability 2021, 13, 8874. [Google Scholar] [CrossRef]
- Bruno, B.C.; Wallace, A. Interpretive Panels for Geoheritage Sites: Guidelines for Design and Evaluation. Geoheritage 2019, 11, 1315–1323. [Google Scholar] [CrossRef]
- Coratza, P.; Vandelli, V.; Ghinoi, A. Increasing Geoheritage Awareness through Non-Formal Learning. Sustainability 2023, 15, 868. [Google Scholar] [CrossRef]
- Çiftçi, Y.; Güngör, Y. Proposals for the standard presentation of elements of natural and cultural heritage within the scope of Geopark projects. Bull. Miner. Res. Explor. 2016, 153, 223–238. [Google Scholar] [CrossRef]
- Palladino, G.; Prosser, G.; Bentivenga, M. The Geological Itinerary of Sasso di Castalda: A Journey into the Geological History of the Southern Apennine Thrust-belt (Basilicata, Southern Italy). Geoheritage 2013, 5, 47–58. [Google Scholar] [CrossRef]
Criteria | Grades | Scores |
---|---|---|
Number of teaching topics | >2 topics | 7 |
2 topics | 5 | |
1 topic | 3 | |
Teaching opportunities | Learning, practicing, challenging | 7 |
Learning, practicing/challenging | 5 | |
Learning | 3 | |
Remoteness from the nearest universities or their permanent field camps/stations | <1 h (chiefly hiking for small distance) | 3 |
1-day excursion (chiefly cars, excursion buses, boats) | 2 | |
>1 day of travel (complex transport solutions and need for hotel/temporary camp accommodation) | 1 | |
Connectivity by public transport (stops of buses, trains, ships) | Present | 3 |
Absent | 0 | |
On-site accommodation | Place for large buses (or ships) | 3 |
Place for cars and small buses (or boats) | 2 | |
Place for only visitors | 1 | |
Size of group (students and professors) | >25 persons | 3 |
5–25 persons | 2 | |
<5 persons | 1 | |
Dependence on weather conditions | Absent (weather conditions do not matter) | 3 |
Weak (bad weather conditions are rare) | ||
Moderate (bad weather conditions are rare in some season(s), but common in other season(s)) | 2 | |
Strong (bad weather conditions are rather common in some season(s), but very common in other season(s)) | 1 | |
Very strong (bad weather conditions are common) | 0 | |
Additional on-site features of interest (geological and geomorphological, other natural, cultural and historical) | Present | 1 |
Absent | 0 | |
Geoeducational potential | Total scores | |
Advanced | >23 | |
Moderate | 17–23 | |
Basic | <17 |
Criteria | Abmorghan Anticline | Skala Monocline |
---|---|---|
Number of teaching topics | 7 | 5 |
Teaching opportunities | 7 | 7 |
Remoteness from the nearest universities or their permanent field camps/stations | 2 | 2 |
Connectivity by public transport (stops of buses, trains, ships) | 0 | 0 |
On-site accommodation | 3 | 3 |
Size of group (students and professors) | 3 | 2 |
Dependence on weather conditions | 2 | 1 |
Additional on-site features of interest (geological and geomorphological, other natural, cultural and historical) | 1 | 1 |
Total scores | 25 (advanced potential) | 21 (moderate potential) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibi, T.; Ruban, D.A.; Ermolaev, V.A. Educational Potential of Geoheritage: Textbook Localities from the Zagros and the Greater Caucasus. Heritage 2023, 6, 5981-5996. https://doi.org/10.3390/heritage6090315
Habibi T, Ruban DA, Ermolaev VA. Educational Potential of Geoheritage: Textbook Localities from the Zagros and the Greater Caucasus. Heritage. 2023; 6(9):5981-5996. https://doi.org/10.3390/heritage6090315
Chicago/Turabian StyleHabibi, Tahereh, Dmitry A. Ruban, and Vladimir A. Ermolaev. 2023. "Educational Potential of Geoheritage: Textbook Localities from the Zagros and the Greater Caucasus" Heritage 6, no. 9: 5981-5996. https://doi.org/10.3390/heritage6090315
APA StyleHabibi, T., Ruban, D. A., & Ermolaev, V. A. (2023). Educational Potential of Geoheritage: Textbook Localities from the Zagros and the Greater Caucasus. Heritage, 6(9), 5981-5996. https://doi.org/10.3390/heritage6090315