Sustainable Hybrid Lime Mortars for Historic Building Conservation: Incorporating Wood Biomass Ash as a Low-Carbon Secondary Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Binder Formulation
2.2. Mortar Mixtures: Preparation and Curing Conditions
- (a)
- humid curing (HC) at a controlled temperature of T = 20 ± 5 °C and relative humidity RH = 90 ± 5%, with an average CO2 content between 300 and 400 ppm;
- (b)
- dry curing (DC) under controlled temperature of T = 20 ± 5 °C and a relative humidity RH = 60 ± 10%, with an average CO2 content ranging from 300 to 400 ppm;
- (c)
- accelerated curing (ACC) at a controlled temperature of T = 20 ± 5 °C and a relative humidity RH = 60 ± 5%, and a CO2 content of 30,000 ppm.
2.3. Methods
3. Results and Discussion
3.1. Binder Assessment
3.1.1. Physical Properties
3.1.2. Chemical and Mineralogical Properties
3.2. AHL Paste Assessment
3.2.1. Hydration Kinetics
3.2.2. Setting Time, Standard Consistency, and Soundness
3.3. AHL Mortar Assessment
3.3.1. Fresh-State Properties
3.3.2. Mechanical Properties
3.3.3. Pore Structure
3.3.4. Mineralogical and Morphological Features of AHL Mortars
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Government of the Republic of Croatia. Croatia Earthquake—Rapid Damage Assessment and Needs 2020; Government of the Republic of Croatia: Zagreb, Croatia, 2020. [Google Scholar]
- European Union. Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC, consolidated text. Off. J. Eur. Union 2021, 4.4.2011, 5–43. [Google Scholar]
- European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives, consolidated text. Off. J. Eur. Union 2018, 22.11.2008, 3–30. [Google Scholar]
- European Commission Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—New European Bauhaus. Beautiful, Sustainable, Together. Brussels, Belgium. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021DC0573 (accessed on 3 April 2023).
- Monaco, M.; Aurilio, M.; Tafuro, A.; Guadagnuolo, M. Sustainable Mortars for Application in the Cultural Heritage Field. Materials 2021, 14, 598. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, M.; Guo, Q.; Zhao, L.; Li, Z. Study on the Mechanical Properties and Durability of Hydraulic Lime Mortars Based on Limestone and Potassium Feldspar. Appl. Sci. 2023, 13, 2412. [Google Scholar] [CrossRef]
- Ranesi, A.; Faria, P.; Veiga, M.d.R. Traditional and Modern Plasters for Built Heritage: Suitability and Contribution for Passive Relative Humidity Regulation. Heritage 2021, 4, 2337–2355. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Wang, D.; Wang, Y.; Ma, X. Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars. Constr. Build. Mater. 2020, 244, 118360. [Google Scholar] [CrossRef]
- Branco, F.G.; Belgas, M.d.L.; Mendes, C.; Pereira, L.; Ortega, J.M. Mechanical Performance of Lime Mortar Coatings for Rehabilitation of Masonry Elements in Old and Historical Buildings. Sustainability 2021, 13, 3281. [Google Scholar] [CrossRef]
- Ergenç, D.; Gómez-villalba, L.S.; Fort, R. Materials Characterization Crystal development during carbonation of lime-based mortars in di ff erent environmental conditions. Mater. Charact. 2018, 142, 276–288. [Google Scholar] [CrossRef]
- Groot, C.; Veiga, R.; Papayianni, I.; Van Hees, R.; Secco, M.; Alvarez, J.I.; Faria, P.; Stefanidou, M. RILEM TC 277-LHS report: Lime-based mortars for restoration–a review on long-term durability aspects and experience from practice. Mater. Struct. 2022, 55, 245. [Google Scholar] [CrossRef]
- Diaz-Basteris, J.; Sacramento Rivero, J.C.; Menéndez, B. Life cycle assessment of restoration mortars and binders. Constr. Build. Mater. 2022, 326, 126863. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019; Volume 58. [Google Scholar]
- European Commission. The Green Deal Industrial Plan: Putting Europe’s Net-Zero Industry in the Lead; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Bing, L.; Ma, M.; Liu, L.; Wang, J.; Niu, L.; Xi, F. An investigation of the global uptake of CO2 by lime from 1963 to 2020. Earth Syst. Sci. Data 2022, 7112485, 1–21. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: Commission Proposes Transformation of EU Economy and Society to Meet Climate Ambitions. Eur. Comm. Press Release 2021, 14. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541 (accessed on 4 April 2023).
- Ec.europa.eu. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_23_2061 (accessed on 24 April 2023).
- Carević, I.; Baričević, A.; Štirmer, N.; Šantek Bajto, J. Correlation between physical and chemical properties of wood biomass ash and cement composites performances. Constr. Build. Mater. 2020, 256, 14. [Google Scholar] [CrossRef]
- Mühlenhoff, J.; Bonadio, J. Building a Paris Agreement Compatible (PAC) Energy Scenario; Climate Action Network: Bonn, Germany, 2020. [Google Scholar]
- Scarlat, N.; Dallemand, J.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union; Sanchez Lopez, J., Avraamides, M., Eds.; Publications Office of the European Union: Luxembourg, 2019; JRC109354; ISBN 978-92-79-77234-4. [Google Scholar] [CrossRef]
- Agrela, F.; Cabrera, M.; Morales, M.M.; Zamorano, M.; Alshaaer, M. Biomass fly ash and biomass bottom ash. In New Trends in Eco-Efficient and Recycled Concrete; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 23–58. ISBN 9780081024805. [Google Scholar]
- ETIP Bioenergy. Bioenergy in Europe; ETIP Bioenergy: Brussels, Belgium, 2020. [Google Scholar]
- Cowie, A.L.; Berndes, G.; Bentsen, N.S.; Brandão, M.; Cherubini, F.; Egnell, G.; George, B.; Gustavsson, L.; Hanewinkel, M.; Harris, Z.M.; et al. Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy 2021, 13, 1210–1231. [Google Scholar] [CrossRef]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.F. Biomass for energy in the EU—The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- Odzijewicz, J.I.; Wołejko, E.; Wydro, U.; Wasil, M.; Jabłońska-Trypuć, A. Utilization of Ashes from Biomass Combustion. Energies 2022, 15, 9653. [Google Scholar] [CrossRef]
- European Union. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste. Off. J. Eur. Union 2018, 14.6.2018, 109–140, ISSN 1977-0677. (Electronic edition). [Google Scholar]
- European Union. Directive 2018/850 of the European parliament and of the council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste. Off. J. Eur. Union 2018, 14.6.2018, 100–108, ISSN 1977-0677. (Electronic edition). [Google Scholar]
- Fořt, J.; Čáchová, M.; Vejmelková, E.; Černý, R. Mechanical and hygric properties of lime plasters modified by biomass fly ash. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 032059. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Pokorný, J.; Záleská, M.; Jankovský, O.; Lojka, M. Zbyšek Pavlík Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars. Materials 2019, 12, 2227. [Google Scholar] [CrossRef] [Green Version]
- Almeida, N.G.D.; Faria, P. Lime mortars with rice husk ash for ancient masonry. In Proceedings of the HMC08—1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, Lisbon, Portugal, 24–26 September 2008. [Google Scholar]
- Logoń, D.; Kobaka, J.; Domski, J. Modifying Water—Frost Resistance and Mechanical Properties of Lime Mortar Using Siliceous and Fluidised Bed Fly Combusted Ashes Activated with Cement. Materials 2023, 16, 3013. [Google Scholar] [CrossRef] [PubMed]
- Vlavogilakis, A. Experiments with Lime Mortars containing Charcoal and Ashes. EXARC J. 2022, 2022/1, 1–15. [Google Scholar]
- Tampus, R.M.; Lardizabal, J.; Acena, D.L.; Uy, M.A.; Arcenal, K. Proportion and property specifications and strength behavior of mortar using wood ash as partial replacement of lime. Int. J. GEOMATE 2020, 18, 44–55. [Google Scholar] [CrossRef]
- Baričević, A.; Carević, I.; Bajto, J.Š.; Štirmer, N.; Bezinović, M.; Kristović, K. Potential of using wood biomass ash in low-strength composites. Materials 2021, 14, 1250. [Google Scholar] [CrossRef] [PubMed]
- Fusade, L.; Orr, S.A.; Wood, C.; O’Dowd, M.; Viles, H. Drying response of lime-mortar joints in granite masonry after an intense rainfall and after repointing. Herit. Sci. 2019, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Ashour, A.; Shaban, W.M.; Elbaz, K. Physical and Mechanical Properties of Lime and Wood Ash Plastering Mortars. In Advances in Geoengineering along the Belt and Road; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 978-981-16-9962-7. [Google Scholar] [CrossRef]
- Arizzi, A.; Cultrone, G. Mortars and plasters—How to characterise hydraulic mortars. Archaeol. Anthropol. Sci. 2021, 13, 144. [Google Scholar] [CrossRef]
- García-González, J.; Faria, P.; Pereira, A.S.; Lemos, P.C.; Juan-Valdés, A. A sustainable production of natural hydraulic lime mortars through bio-amendment. Constr. Build. Mater. 2022, 340, 127812. [Google Scholar] [CrossRef]
- EN 459-1:2015; Building Lime—Part 1: Definitions, Specifications and Conformity Criteria. The European Committee for Standardization: Brussels, Belgium, 2015.
- Brocklebank, I. The Building Limes Forum. In Building Limes in Conservation, 1st ed.; Brocklebank, I., Ed.; Routledge: Oxfordshire, UK, 2012; ISBN 978-1-873394-95-3. [Google Scholar]
- Forster, A.M.; Scottish Lime Centre. Trust How Hydraulic Lime Binders Work—Hydraulicity for Beginners and the Hydraulic Lime Family; Masons Mortar: Edinburgh, UK, 2004; ISBN 1-905364-00-8. [Google Scholar]
- Lanas, J.; Sirerab, R.; Alvarez, J.I. Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under different conditions. Cem. Concr. Res. 2006, 36, 961–970. [Google Scholar] [CrossRef] [Green Version]
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. The European Committee for Standardization: Brussels, Belgium, 2016.
- EN 1015-11:2019; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. The European Committee for Standardization: Brussels, Belgium, 2019.
- Cizer, Ö.; Van Balen, K.; Van Gemert, D. Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv. Mater. Res. 2010, 133–134, 241–246. [Google Scholar] [CrossRef]
- Forster, A.M.; Valek, J.; Hughes, J.J. Lime binders for the repair of historic buildings: Considerations for CO2 abatement. J. Clean. Prod. 2020, 252, 119802. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A.; Candeias, A. Effects of natural and accelerated carbonation on the properties of lime-based materials. J. CO2 Util. 2021, 49, 101552. [Google Scholar] [CrossRef]
- El-Turki, A.; Ball, R.J.; Allen, G.C. The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime. Cem. Concr. Res. 2007, 37, 1233–1240. [Google Scholar] [CrossRef]
- Lanas, J.; Sirera, R.; Alvarez, J.I. Compositional changes in lime-based mortars exposed to different environments. Thermochim. Acta 2005, 429, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Cizer, Ö.; Rodriguez-Navarro, C.; Ruiz-Agudo, E.; Elsen, J.; Van Gemert, D.; Van Balen, K. Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime. J. Mater. Sci. 2012, 47, 6151–6165. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.I.; Veiga, R.; Martínez-Ramírez, S.; Secco, M.; Faria, P.; Maravelaki, P.N.; Ramesh, M.; Papayianni, I.; Válek, J. RILEM TC 277-LHS report: A review on the mechanisms of setting and hardening of lime-based binding systems. Mater. Struct. Constr. 2021, 54, 63. [Google Scholar] [CrossRef]
- EN 196-11:2019; Methods of Testing Cement—Part 11: Heat of Hydration—Isothermal Conduction Calorimetry Method. The European Committee for Standardization: Brussels, Belgium, 2019.
- Maurenbrecher, P.; Groot, C. (Eds.) Repair Mortars for Historic Masonry–State of the Art Report of RILEM Technical Committee TC 203-RHM; RILEM Publications SARL: Paris, France, 2016; p. 178. ISBN 978-2-35158-163-6. [Google Scholar]
- Hrnčířová, M.; Pospíšil, J.; Michalšpiláček, M.M. Size Analysis of Solid Particles Using Laser Diffraction and Sieve Analysis. Eng. Mech. 2013, 20, 309–318. [Google Scholar]
- Bagchi, S.S.; Ghule, S.V.; Jadhav, R.T. Fly ash fineness—Comparing residue on 45 micron sieve with Blaine’s surface area. Indian Concr. J. 2012, 86, 39–42. [Google Scholar]
- Ovčačíková, H.; Velička, M.; Vlček, J.; Topinková, M.; Klárová, M.; Burda, J. Corrosive Effect of Wood Ash Produced by Biomass Combustion on Refractory Materials in a Binary Al–Si System. Materials 2022, 15, 5796. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Petrova, N.L. Mineral Carbonation of Biomass Ashes in Relation to Their CO2 Capture and Storage Potential. ACS Omega 2021, 6, 14598–14611. [Google Scholar] [CrossRef]
- Ukrainczyk, N.; Vrbos, N.; Koenders, E.A.B. Reuse of Woody Biomass Ash Waste in Cementitious Materials. Chem. Biochem. Eng. Q. 2016, 30, 137–148. [Google Scholar] [CrossRef]
- Grubor, M.; Serdar, M.; Grubor, M.; Grubor, M.; Serdar, M. Shrinkage of mortar with the addition of wood biomass ash and recycled tyre polymer fibres. Građevinar 2023, 75, 367–378. [Google Scholar] [CrossRef]
- Callebaut, K.; Elsen, J.; Van Balen, K.; Viaene, W. Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium): Natural hydraulic lime or cement? Cem. Concr. Res. 2001, 31, 397–403. [Google Scholar] [CrossRef]
- Milinovic, J.; Dias, Á.A.; Janeiro, A.I.; Pereira, M.F.C.; Martins, S.; Petersen, S.; Barriga, F.J.A.S. XRD identification of ore minerals during cruises: Refinement of extraction procedure with sodium acetate buffer. Minerals 2020, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, A.F.; Viani, A.; Montanari, C. Quantitative phase analysis of hydraulic limes using the Rietveld method. Cem. Concr. Res. 2006, 36, 401–406. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, S.O.; Hong, S.G.; Kwon, Y.H. Historical and scientific investigations into the use of hydraulic lime in Korea and preventive conservation of historic masonry structures. Sustainability 2019, 11, 5169. [Google Scholar] [CrossRef] [Green Version]
- Eckel, E. Cements, Limes and Plasters: Their Materials, Manufacture and Properties, 1st ed.; Routledge: Oxfordshire, UK, 2005; ISBN 9781873394731. [Google Scholar]
- Thirumalini, S.; Ravi, R.; Rajesh, M. Experimental investigation on physical and mechanical properties of lime mortar: Effect of organic addition. J. Cult. Herit. 2018, 31, 97–104. [Google Scholar] [CrossRef]
- Figueiredo, C.; Lawrence, M.; Ball, R.J. Chemical and physical characterisation of three NHL 2 binders and the relationship with the mortar properties. In Proceedings of the REHABEND 2016 Euro-American Congress: Construction Pathology, Rehabilitation Technology and Heritage Management (6th REHABEND Congress), Burgos, Spain, 24–27 May 2016. [Google Scholar]
- Figueiredo, C.P.; Lawrence, M.; Ball, R.J. Mechanical properties of standard and commonly formulated NHL mortars used for retrofitting. In Proceedings of the International Conference on Integrated Design, Bath, UK, 30 May–1 July 2016. [Google Scholar]
- Grilo, J.; Santos Silva, A.; Faria, P.; Gameiro, A.; Veiga, R.; Velosa, A. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr. Build. Mater. 2014, 51, 287–294. [Google Scholar] [CrossRef]
- Bamogo, H.; Ouedraogo, M.; Sanou, I.; Aubert, J.; Millogo, Y. Physical, Hydric, Thermal and Mechanical Properties of Earth Renders Amended with Dolomitic Lime. Materials 2022, 15, 4014. [Google Scholar] [CrossRef]
- Protić, M.; Miltojević, A.; Zoraja, B.; Raos, M.; Krstić, I. Application of Thermogravimetry for Determination of Carbon Content in Biomass Ash as an Indicator of the Efficiency of the Combustion Process. Tech. Gaz. 2021, 28, 1762–1768. [Google Scholar] [CrossRef]
- Scrivener, K.; Snellings, R.; Lothenbach, B. A Practical Guide to Microstructural Analysis of Cementitious Materials, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781138747234-CAT#K32538. [Google Scholar]
- Zunino, F.; Bentz, D.P.; Castro, J. Reducing setting time of blended cement paste containing high-SO3 fly ash (HSFA) using chemical/physical accelerators and by fly ash pre-washing. Cem. Concr. Compos. 2018, 90, 14–26. [Google Scholar] [CrossRef]
- Banfill, P.F.G.; Forster, A.M.; Mackenzie, S.; Sanz, M.P.; Szadurski, E.M. Natural hydraulic limes for masonry repair: Hydration and workability. In Proceedings of the 34th Annual Cement and Concrete Science Conference and Workshop on Waste Cementation, Sheffield, UK, 14–17 September 2014. [Google Scholar]
- Jaafri, R.; Aboulayt, A.; Alam, S.Y.; Roziere, E.; Loukili, A. Natural hydraulic lime for blended cement mortars: Behavior from fresh to hardened states. Cem. Concr. Res. 2019, 120, 52–65. [Google Scholar] [CrossRef]
- Cheah, C.B.; Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar] [CrossRef]
- Fapohunda, C.; Akinbile, B.; Oyelade, A. A Review of the properties, structural characteristics and application potentials of concrete containing wood waste as partial replacement of one of its constituent materials. YBL J. Built Environ. 2018, 6, 63–85. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, R.; Jagadesh, P.; Zaid, O.; Șerbănoiu, A.A.; Fraile-Fernández, F.J.; de Prado-Gil, J.; Qaidi, S.M.A.; Grădinaru, C.M. The Present State of the Use of Waste Wood Ash as an Eco-Efficient Construction Material: A Review. Materials 2022, 15, 5349. [Google Scholar] [CrossRef]
- Weeks, C.; Hand, R.J.; Sharp, J.H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr. Compos. 2008, 30, 970–978. [Google Scholar] [CrossRef]
- Teker Ercan, E.E.; Andreas, L.; Cwirzen, A.; Habermehl-Cwirzen, K. Wood Ash as Sustainable Alternative Raw Material for the Production of Concrete—A Review. Materials 2023, 16, 2557. [Google Scholar] [CrossRef]
- Yang, Z.; Huddleston, J.; Brown, H. Effects of Wood Ash on Properties of Concrete and Flowable Fill. J. Mater. Sci. Chem. Eng. 2016, 4, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.A.; Neto, J.S.A.; Cilla, M.S.; Ribeiro, D.V. Influence of the Content of Alkalis (Na2O and K2O), MgO, and SO3 Present in the Granite Rock Fine in the Production of Portland Clinker. J. Mater. Civ. Eng. 2022, 34, 04021464. [Google Scholar] [CrossRef]
- Branco, F.G.; Belgas, M.d.L.; Mendes, C.; Pereira, L.; Ortega, J.M. Characterization of fresh and durability properties of different lime mortars for being used as masonry coatings in the restoration of ancient constructions. Sustainability 2021, 13, 4909. [Google Scholar] [CrossRef]
- EN 1015-6:2000; Methods of Test for Mortar for Masonry—Part 6: Determination of Bulk Density of Fresh Mortar. The European Committee for Standardization: Brussels, Belgium, 1999.
- EN 459-2:2021; Building Lime—Part 2: Test Methods. The European Committee for Standardization: Brussels, Belgium, 2021.
- Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; Baxter, L. Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Fuel 2008, 87, 365–371. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014, 72, 208–218. [Google Scholar] [CrossRef]
- Fusade, L.; Viles, H.; Wood, C.; Burns, C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019, 212, 500–513. [Google Scholar] [CrossRef]
- Arizzi, A.; Martinez-Huerga, G.; Sebastián-Pardo, E.; Cultrone, G. Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions. Mater. Constr. 2015, 65, e053. [Google Scholar] [CrossRef] [Green Version]
- EN 450-1:2013; Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. The European Committee for Standardization: Brussels, Belgium, 2012.
- Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Compos. 2005, 27, 289–294. [Google Scholar] [CrossRef]
- Olaniyan, S.A. Pore Structure as a Determinant of Flexibility in Sustainable Lime-Cement Mortar Composites. Eur. J. Eng. Technol. Res. 2021, 6, 113–122. [Google Scholar] [CrossRef]
- Gulotta, D.; Goidanich, S.; Tedeschi, C.; Nijland, T.G.; Toniolo, L. Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: Compositional and mechanical characterisation. Constr. Build. Mater. 2013, 38, 31–42. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Bakolas, A.; Kotsainas, M. Mechanical and physical performance of natural hydraulic lime mortars. Constr. Build. Mater. 2021, 290, 123272. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015, 94, 346–360. [Google Scholar] [CrossRef]
- Thomson, M.; Lindqvist, J.E.; Elsen, J.; Groot, C. Chapter 2.5 Characterisation: Porosity of mortars. In Characterisation of Old Mortars with Respect to their Repair; RILEM publications SARL: Paris, France, 2007. [Google Scholar]
- Nogueira, R.; Paula, A.; Pinto, F.; Gomes, A. AC SC. Cem. Concr. Compos. 2018, 89, 192–204. [Google Scholar] [CrossRef]
- EN 998-2:2016; Specification for Mortar for Masonry—Part 2: Masonry Mortar. The European Committee for Standardization: Brussels, Belgium, 2017.
Level | Property | Test Period | Unit | Standard |
---|---|---|---|---|
Binder | Density | Prior to mixing of pastes and mortars | g/cm3 | ASTM C-188-17 |
Bulk density | kg/dm3 | EN 459-2:2021 | ||
Free water | wt.% | |||
Particle size distribution | % | EN 459-2:2021 (Air-jet sieving) | ||
μm | Laser diffraction method (ISO 13320:2020) | |||
Chemical composition | wt.% | ISO/TS 16996:2015 | ||
Loss on ignition (LOI) | ASTM D 7348-13 | |||
pH value | - | EN ISO 10523:2005 | ||
Heavy metal concentrations | mg/kg | ISO/TS 16996:2015 | ||
Phase/composition identification | wt.% | Thermogravimetric analysis (TGA) | ||
- | X-ray diffraction analysis (XRD) |
Level | Property | Test Period | Unit | Standard |
---|---|---|---|---|
Paste | Standard consistency | Immediately upon mixing of pastes | % | EN 459-2:2021 |
Setting time | h | |||
Soundness | mm | |||
Reactivity (Hydration kinetics) | W/g | EN 196-11:2019 |
Level | Property | Test Period | Unit | Standard |
---|---|---|---|---|
Fresh mortar | Bulk density | Immediately upon mixing of mortars | kg/m3 | EN 1015-6:2000 |
Temperature | °C | EN 12350-1:2019 | ||
Air content | % | EN 459-2:2021 | ||
Consistency of fresh mortar (by flow table) | mm | |||
Hardened mortar | Compressive strength | After 28 days of different curing regimes | MPa | EN 1015-11:2019 |
Flexural strength | ||||
Pozzolanic reactivity | % | ASTM C618-22 | ||
Carbonation degree | mm | ‘Repair Mortars for Historic Masonry’ [45] | ||
Phase/composition identification | - | X-ray diffraction (XRD) analysis | ||
Scanning electron microscopy (SEM) | ||||
Porosity | % | Mercury intrusion porosimetry (MIP) |
NHL/WBA ID | NHL 3.5 | WBA1 | WBA3 | EN 459-1 Criteria for NHL/FL |
---|---|---|---|---|
Specific gravity (g/cm3) | 2.68 | 2.66 | 2.69 | - |
Bulk density (kg/dm3) | 0.789 | 0.288 | 0.413 | - |
Residue on 90 µm (%) | 13.1 | 0.8 | 11.4 | ≤15 |
Residue on 120 µm (%) | 2.0 | 0.3 | 0.4 | ≤5 |
Free water (%) | 0.2 | 0 | 0 | ≤2 |
D10 (μm) | D50 (μm) | D90 (μm) | |
---|---|---|---|
NHL 3.5 | 0.87 | 13.67 | 123.44 |
WBA1 | 1.69 | 10.97 | 51.19 |
WBA3 | 1.69 | 10.97 | 45.86 |
Chemical Composition | Mineralogical Composition | ||||||
---|---|---|---|---|---|---|---|
NHL/WBA ID | NHL 3.5 | WBA1 | WBA3 | NHL 3.5 | WBA1 | WBA3 | |
Element | Percentage [wt.%] | Phase | Presence * | ||||
SiO2 | 35.06 | 24.36 | 18.43 | calcite | ++++ | ++++ | ++++ |
CaO | 52.81 | 35.42 | 41.90 | portlandite | +++ | + | + |
SO3 | 0.73 | 6.28 | 11.49 | quartz | ++ | ++ | - |
Al2O3 | 5.39 | 5.64 | 3.32 | hatrurite, monoclinic/M3-alite | ++ | - | - |
Fe2O3 | 2.66 | 2.60 | 1.63 | hatrurite/alite | ++ | + | - |
MgO | 1.97 | 4.60 | 4.88 | gehlenite | + | ++ | ++ |
P2O5 | <0.01 | 4.56 | 4.81 | calcium oxide | - | +++ | +++ |
Na2O | 0.55 | 0.89 | 1.03 | periclase | - | + | ++ |
K2O | 0.51 | 14.87 | 11.90 | calcio olivine | - | ++ | +++ |
TiO2 | 0.09 | 0.24 | 0.16 | larnite/ β-belite | +++ | - | - |
MnO | 0.25 | 0.58 | 0.46 | dolomite | - | + | - |
+ | minor presence | ||||||
++ | moderate presence | ||||||
LOI | 16.10 | 16.60 | 8.30 | +++ | major presence | ||
++++ | massive presence | ||||||
- | not present |
Heavy Metal (mg/kg) | NHL/WBA ID | ||
---|---|---|---|
NHL 3.5 | WBA1 | WBA3 | |
Zn | <1.0 | 2590.0 | 3520.0 |
Pb | 1.5 | 10.5 | 20.4 |
Cu | <1.0 | 95.0 | 64.2 |
Ba | 84.5 | 1000.5 | 1850.0 |
Cd | <1.0 | 6.9 | 23.6 |
Cr | 12.9 | 21.9 | 12.2 |
Hg | 0.038 | 0.168 | <0.005 |
Mn | 1755.0 | 5015.0 | 3885.0 |
Ni | <1.0 | <1.0 | 4.3 |
Bi | <1.0 | <1.0 | <1.0 |
Sr | 344.0 | 339.0 | 698.5 |
Binder Mix ID | AHL0 | AHL1-20 | AHL1-30 | AHL3-20 | AHL3-30 |
---|---|---|---|---|---|
Element | Weighted Average [wt.%] | ||||
SiO2 | 35.06 | 32.92 | 31.85 | 31.73 | 30.07 |
CaO | 52.81 | 49.33 | 47.59 | 50.63 | 49.54 |
SO3 | 0.73 | 1.84 | 2.40 | 2.88 | 3.96 |
Al2O3 | 5.39 | 5.44 | 5.47 | 4.98 | 4.77 |
Fe2O3 | 2.66 | 2.65 | 2.64 | 2.45 | 2.35 |
MgO | 1.97 | 2.50 | 2.76 | 2.55 | 2.84 |
P2O5 | <0.01 | 0.91 | 1.37 | 0.96 | 1.44 |
Na2O | 0.55 | 0.62 | 0.65 | 0.65 | 0.69 |
K2O | 0.51 | 3.38 | 4.82 | 2.79 | 3.93 |
TiO2 | 0.09 | 0.12 | 0.14 | 0.10 | 0.11 |
MnO | 0.25 | 0.32 | 0.35 | 0.29 | 0.31 |
Na2Oeq | 0.89 | 2.84 | 3.82 | 2.48 | 3.28 |
HI | 0.79 | 0.79 | 0.79 | 0.74 | 0.71 |
CI | 1.91 | 1.89 | 1.89 | 1.77 | 1.70 |
CaCO3 (%) | Ca(OH)2 (%) | |||
---|---|---|---|---|
NHL/WBA ID | XRD | TG | XRD | TGA |
NHL 3.5 | massive presence | 23.7 | major presence | 18.3 |
WBA1 | 36.9 | minor presence | 6.1 | |
WBA3 | 18.0 | 4.4 |
AHL ID | AHL0 | AHL1-20 | AHL1-30 | AHL3-20 | AHL3-30 | EN 459-1 Criteria | |
---|---|---|---|---|---|---|---|
Water requirement for standard consistency (%) | 40 | 44 | 45 | 41 | 42 | - | |
Setting time (h) | Initial set | 5 | 7.5 | 13 | 15 | 21 | >1 |
Final set | 10 | 20 | 25 | 29 | 42 | <30 | |
Soundness (mm) | 5.22 | 7.39 | 9.23 | 6.64 | 8.70 | ≤20 |
Lime Mortar ID | LM0 | LM1-20 | LM1-30 | LM3-20 | LM3-30 |
---|---|---|---|---|---|
Air-entraining agent (wt.%) | 0.02 | ||||
Polycarboxylate super p. (wt.%) | 0.11 | 1.0 | 1.0 | 0.44 | 0.84 |
w/b ratio | 0.60 | ||||
Bulk density (kg/m3) | 2055.2 | 2040.2 | 2055.2 | 2046.3 | 1996.1 |
Air content (%) | 7 | 7.6 | 6 | 8 | 9.4 |
Flow (mm) | 161 | 158 | 150 | 161 | 167 |
Temperature (°C) | 23.8 | 24.2 | 25.3 | 25 | 25.1 |
Mix ID | NHL-Content in Binder Blends (%) | Compressive Strength, fC (MPa) | Flexural Strength, fF (MPa) | Compressive to Flexural Strength Ratio fC/fF | SAI (%) |
---|---|---|---|---|---|
HC conditions | |||||
LM0 | 100 | 4.22 (±0.06) | 1.27 (±0.08) | 3.31 | - |
LM1-20 | 80 | 5.45 (±0.12) | 2.08 (±0.14) | 2.61 | 129.15 |
LM3-20 | 5.56 (±0.12) | 1.99 (±0.03) | 2.80 | 131.75 | |
LM1-30 | 70 | 6.32 (±0.38) | 2.70 (±0.10) | 2.34 | 149.76 |
LM3-30 | 5.99 (±0.16) | 2.08 (±0.12) | 2.88 | 141.94 | |
DC conditions | |||||
LM0 | 100 | 3.47 (±0.26) | 0.96 (±0.04) | 3.61 | - |
LM1-20 | 80 | 6.23 (±0.23) | 1.77 (±0.23) | 3.53 | 179.54 |
LM3-20 | 7.11 (±0.12) | 2.10 (±0.03) | 3.39 | 204.89 | |
LM1-30 | 70 | 6.80 (±0.11) | 1.68 (±0.04) | 4.05 | 195.97 |
LM3-30 | 6.62 (±0.05) | 2.26 (±0.01) | 2.93 | 190.78 | |
ACC conditions | |||||
LM0 | 100 | 9.29 (±0.09) | 2.19 (±0.08) | 4.23 | - |
LM1-20 | 80 | 10.09 (±0.45) | 2.84 (±0.14) | 3.55 | 108.73 |
LM3-20 | 10.45 (±0.55) | 2.92 (±0.14) | 3.58 | 112.61 | |
LM1-30 | 70 | 9.31 (±0.32) | 1.95 (±0.04) | 4.78 | 100.32 |
LM3-30 | 10.98 (±0.16) | 2.60 (±0.32) | 4.22 | 118.19 |
Mortar Mix ID | HC | DC | ACC | |||
---|---|---|---|---|---|---|
LM0 | up to 5% | 44% | 100% | |||
LM1-20 | 32% | |||||
LM3-20 | 29% | |||||
LM1-30 | 39% | |||||
LM3-30 | 37% |
Critical Pore Entry Radius | Median Pore Diameter | Average Pore Diameter | Permeable Porosity | |||
---|---|---|---|---|---|---|
Volume | Area | |||||
Curing Conditions | µm | µm | µm | µm | % | |
HC | LM0-NCR | 0.84 | 0.554 | 0.016 | 0.059 | 28.75 |
LM1-30-NCR | 0.05 | 0.052 | 0.027 | 0.041 | 26.63 | |
LM3-30-NCR | 0.06 | 0.075 | 0.026 | 0.048 | 27.51 | |
ACC | LM0-CR | 0.68 | 0.435 | 0.024 | 0.091 | 25.19 |
LM1-30-CR | 0.15 | 0.156 | 0.023 | 0.065 | 24.11 | |
LM3-30-CR | 0.55 | 0.297 | 0.024 | 0.081 | 25.44 |
NCR | CR | |||||
---|---|---|---|---|---|---|
Ranges of Pore Radius | LM0 | LM1-30 | LM3-30 | LM0 | LM1-30 | LM3-30 |
<0.01 μm | 4% | 3% | 3% | 2% | 3% | 2% |
0.01–0.05 μm | 23% | 46% | 32% | 14% | 18% | 15% |
0.05–0.1 μm | 3% | 27% | 24% | 9% | 15% | 11% |
0.1–0.5 μm | 20% | 11% | 23% | 33% | 45% | 45% |
0.5–1 μm | 24% | 2% | 3% | 23% | 6% | 14% |
>1 μm | 26% | 12% | 15% | 20% | 14% | 13% |
Total | 100% | 100% | 100% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šantek Bajto, J.; Štirmer, N.; Baričević, A. Sustainable Hybrid Lime Mortars for Historic Building Conservation: Incorporating Wood Biomass Ash as a Low-Carbon Secondary Binder. Heritage 2023, 6, 5242-5269. https://doi.org/10.3390/heritage6070278
Šantek Bajto J, Štirmer N, Baričević A. Sustainable Hybrid Lime Mortars for Historic Building Conservation: Incorporating Wood Biomass Ash as a Low-Carbon Secondary Binder. Heritage. 2023; 6(7):5242-5269. https://doi.org/10.3390/heritage6070278
Chicago/Turabian StyleŠantek Bajto, Jelena, Nina Štirmer, and Ana Baričević. 2023. "Sustainable Hybrid Lime Mortars for Historic Building Conservation: Incorporating Wood Biomass Ash as a Low-Carbon Secondary Binder" Heritage 6, no. 7: 5242-5269. https://doi.org/10.3390/heritage6070278
APA StyleŠantek Bajto, J., Štirmer, N., & Baričević, A. (2023). Sustainable Hybrid Lime Mortars for Historic Building Conservation: Incorporating Wood Biomass Ash as a Low-Carbon Secondary Binder. Heritage, 6(7), 5242-5269. https://doi.org/10.3390/heritage6070278