Quaternary Sediments in Geosites: Evidence from the Western Caucasus
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Approach
3. Results
3.1. Rufabgo Canyon
3.2. Dakh–Sakhray Confluence
3.3. Stonesea Range
4. Discussion
4.1. General Geoheritage Interpretations
4.2. Geoheritage Utility
5. Conclusions
- (1)
- the three localities exhibit notable peculiarities of Late Quaternary alluvial, colluvial, and eluvial–deluvial sediments;
- (2)
- these localities are geoheritage points within larger geosites, and the knowledge about Quaternary sediments from the former contributes to the value of the latter;
- (3)
- Quaternary sediments with geoheritage value can be used for research, education, and tourism.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef]
- Guilbaud, M.-N.; Ortega-Larrocea, M.P.; Cram, S.; van Wyk de Vries, B. Xitle Volcano Geoheritage, Mexico City: Raising Awareness of Natural Hazards and Environmental Sustainability in Active Volcanic Areas. Geoheritage 2021, 13, 6. [Google Scholar]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and Geosites: A Bibliometric Analysis and Literature Review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Jácome Paz, M.P.; Gómez Piña, V.M.; Prol Ledesma, R.M.; Gonzalez Romo, I.; Estrada Murillo, A.; Hernandez Hernandez, M.A.; González Alfaro, A.; Gómez Torres, M. Geoheritage in Thermal Springs of Puruándiro, Michoacán, México. Geoheritage 2021, 13, 68. [Google Scholar] [CrossRef]
- Neto, K.; Henriques, M.H. Geoconservation in Africa: State of the art and future challenges. Gondwana Res. 2022, 110, 107–113. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Torres-Bernhard, L.; Ruiz-Alvarez, M.A.; Rodriguez-Maradiaga, M.; Velazquez-Espinoza, G.; Espinosa-Vega, C.; Toral, J.; Rodríguez-Bolaños, H. Geodiversity, Geoconservation, and Geotourism in Central America. Land 2022, 11, 48. [Google Scholar]
- Quesada-Román, A.; Zangmo, G.T.; Pérez-Umaña, D. Geomorphosite Comparative Analysis in Costa Rica and Cameroon Volcanoes. Geoheritage 2020, 12, 90. [Google Scholar] [CrossRef]
- Reynard, E.; Brilha, J. (Eds.) Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Urban, J.; Radwanek-Bąk, B.; Margielewski, W. Geoheritage Concept in a Context of Abiotic Ecosystem Services (Geosystem Services)—How to Argue the Geoconservation Better? Geoheritage 2022, 14, 54. [Google Scholar] [CrossRef]
- Corvea, J.L.; Gutiérrez, R.; Pascual-Aguilar, J.A.; de Bustamante, I.; Blanco, A. Geoheritage Integration in the Management of the Cuban Protected Areas. Geoheritage 2020, 12, 67. [Google Scholar] [CrossRef]
- Dowling, R.; Newsome, D. Handbook of Geotourism; Edward Elgar: Cheltenham, UK, 2018. [Google Scholar]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Apolo-Masache, B.; Jaya-Montalvo, M. Research trends in geotourism: A bibliometric analysis using the Scopus database. Geosciences 2020, 10, 379. [Google Scholar] [CrossRef]
- Pérez-Umaña, D.; Quesada-Román, A.; Zangmo Tefogoum, G. Geomorphological heritage inventory of Irazú Volcano, Costa Rica. Int. J. Geoheritage Park. 2020, 8, 31–47. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. Tropical Paleoglacial Geoheritage Inventory for Geotourism Management of Chirripó National Park, Costa Rica. Geoheritage 2020, 12, 58. [Google Scholar] [CrossRef]
- Reyes, C.A.R.; Amorocho-Parra, R.; Villarreal-Jaimes, C.A.; Meza-Ortiz, J.A.; Castallanos-Alarcon, O.M.; Madero-Pinzon, H.D.; Casadiego-Quintero, E.; Carvajal-Díaz, J.D. Geotourism in Regions with Influence from the Oil Industry: A Study Case of the Middle Magdalena Valley Basin (Colombia). Geoheritage 2021, 13, 107. [Google Scholar] [CrossRef]
- Tiago, F.; Correia, P.; Briciu, V.-A.; Borges-Tiago, T. Geotourism destinations online branding co-creation. Sustainability 2021, 13, 8874. [Google Scholar] [CrossRef]
- Clifford, P.; Semeniuk, V. Sedimentary processes, stratigraphic sequences and middens: The link between archaeology and geoheritage—A case study from the Quaternary of the Broome region, Western Australia. Aust. J. Earth Sci. 2019, 66, 955–972. [Google Scholar] [CrossRef]
- Dempster, M.; Enlander, I.J. Conserving Quaternary geoheritage in Northern Ireland. Proc. Geol. Assoc. 2022. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, X.; Zhou, C.; Yu, M.-G.; Chu, P.-L.; Hong, W.-T. Characteristics and Geological Significance of Quaternary Volcanic Geoheritages in Northern Hainan Island. Acta Geosci. Sin. 2021, 42, 111–123. [Google Scholar]
- Górska-Zabielska, M.; Wieczorek, D.; Zabielski, R.; Stoiński, A. Erratic boulders from the Przedbórz Region as objects important for Quaternary geology and geoheritage. Prz. Geol. 2022, 70, 34–49. [Google Scholar]
- Németh, K.; Wu, J.; Sun, C.; Liu, J. Update on the Volcanic Geoheritage Values of the Pliocene to Quaternary Arxan–Chaihe Volcanic Field, Inner Mongolia, China. Geoheritage 2017, 9, 279–297. [Google Scholar] [CrossRef]
- Niculiță, M. The Need for Protecting, Promoting, and Managing a Quaternary Geoheritage Site: Bahluieț Valley at Costești Village (Moldavian Plateau, North-Eastern Romania). Geoheritage 2022, 14, 21. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Yashalova, N.N. Valuable geoheritage resources: Potential versus exploitation. Resour. Policy 2022, 77, 102665. [Google Scholar] [CrossRef]
- Bedanokov, M.K.; Chich, S.K.; Chetyz, D.Y.; Trepet, S.A.; Lebedev, S.A.; Kostianoy, A.G. Physicogeographical characteristics of the Republic of Adygea. Handb. Environ. Chem. 2020, 106, 19–55. [Google Scholar]
- Lozovoy, S.P. Lagonaki Highland; Krasnodarskoe Knizhnoe Izdatel’stvo: Krasnodar, Russia, 1984; p. 160. (In Russian) [Google Scholar]
- Nazarenko, O.V.; Mikhailenko, A.V.; Smagina, T.A.; Kutilin, V.S. Natural Conditions of Mountainous Adygeya; SFU: Rostov-on-Don, Russia, 2020. (In Russian) [Google Scholar]
- Ruban, D.A.; Mikhailenko, A.V.; Ermolaev, V.A. Inverted Landforms of the Western Caucasus: Implications for Geoheritage, Geotourism, and Geobranding. Heritage 2022, 5, 2315–2331. [Google Scholar] [CrossRef]
- Adamia, S.; Zakariadze, G.; Chkhotua, T.; Sadradze, N.; Tsereteli, N.; Chabukiani, A.; Gventsadze, A. Geology of the Caucasus: A review. Turk. J. Earth Sci. 2011, 20, 489–544. [Google Scholar] [CrossRef]
- Mosar, J.; Mauvilly, J.; Koiava, K.; Gamkrelidae, I.; Enna, N.; Lavrishev, V.; Kalberguenova, V. Tectonics in the Greater Caucasus (Georgia—Russia): From an intracontinental rifted basin to a doubly verging fold-and-thrust belt. Mar. Pet. Geol. 2022, 140, 105630. [Google Scholar] [CrossRef]
- Rolland, Y. Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Res. 2017, 49, 130–146. [Google Scholar] [CrossRef]
- Adamia, S.; Alania, V.; Chabukiani, A.; Kutelia, Z.; Sadradze, N. Great Caucasus (Cavcasioni): A long-lived north-tethyan back-arc basin. Turk. J. Earth Sci. 2011, 20, 611–628. [Google Scholar] [CrossRef]
- Ruban, D.A. The Greater Caucasus—A Galatian or Hanseatic terrane? Comment on “The formation of Pangea” by GM Stampfli, C. Hochard, C. Vérard, C. Wilhem and J. von Raumer [Tectonophysics 593 (2013) 1–19]. Tectonophysics 2013, 608, 1442–1444. [Google Scholar]
- Plyusnina, E.E.; Ruban, D.A.; Zayats, P.P. Thematic dimension of geological heritage: An evidence from the Western Caucasus. J. Geogr. Inst. “Jovan Cvijic” SASA 2015, 65, 59–76. [Google Scholar] [CrossRef]
- Ruban, D.A. Islands in the Caucasian Sea in Three Mesozoic Time Slices: Novel Dimension of Geoheriatge and Geotourism. J. Mar. Sci. Eng. 2022, 10, 1300. [Google Scholar] [CrossRef]
- Scherbakova, E.M. Ancient Glaciation of the Greater Caucasus; Moscow University Press: Moscow, Russia, 1973. (In Russian) [Google Scholar]
- International Commission on Stratigraphy (ICS). International Chronostratigraphic Chart v2022/02. Available online: https://stratigraphy.org/chart (accessed on 23 September 2022).
- Blair, T.C.; McPherson, J.G. Grain-size and textural classification of coarse sedimentary particles. J. Sediment. Res. 1999, 69, 6–19. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Bruno, D.E.; Ruban, D.A. Something more than boulders: A geological comment on the nomenclature of megaclasts on extraterrestrial bodies. Planet. Space Sci. 2017, 135, 37–42. [Google Scholar] [CrossRef]
- Terry, J.P.; Goff, J. Megaclasts: Proposed revised nomenclature at the coarse end of the Udden-Wentworth gain-size scale for sedimentary particles. J. Sediment. Res. 2014, 84, 192–197. [Google Scholar] [CrossRef]
- Chauhan, G.; Biswas, S.K.; Thakkar, M.G.; Page, K.N. The Unique Geoheritage of the Kachchh (Kutch) Basin, Western India, and its Conservation. Geoheritage 2021, 13, 23. [Google Scholar] [CrossRef]
- Woo, K.S.; Chun, S.S.; Moon, K.O. Outstanding Geoheritage Values of the Island-Type Tidal Flats in Korea. Geoheritage 2020, 12, 8. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A.; Albertos, J.A.C. A statistical approach to the validation and optimisation of geoheritage assessment procedures. Geoheritage 2011, 3, 131–149. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Reynard, E.; Garcia, M.G.M. Geomorphosites Assessment Methods: Comparative Analysis and Typology. Geoheritage 2019, 11, 1799–1815. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Motta Garcia, M.D.G.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Quesada-Valverde, M.E.; Quesada-Román, A. Worldwide Trends in Methods and Resources Promoting Geoconservation, Geotourism, and Geoheritage. Geosciences 2023, 13, 39. [Google Scholar] [CrossRef]
- Štrba, L.; Rybar, P.; Balaz, B.; Molokac, M.; Hvizdak, L.; Krsak, B.; Lukac, M.; Muchova, L.; Tometzova, D.; Ferencikova, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- Corbí, H.; Fierro, I.; Aberasturi, A.; Sánchez Ferris, E.J. Potential Use of a Significant Scientific Geosite: The Messinian Coral Reef of Santa Pola (SE Spain). Geoheritage 2018, 10, 427–441. [Google Scholar] [CrossRef]
- Fernández, M.P.; Timón, D.L.; Marín, R.G. Geosites Inventory in the Geopark Villuercas-Ibores-Jara (Extremadura, Spain): A Proposal for a New Classification. Geoheritage 2014, 6, 17–27. [Google Scholar] [CrossRef]
- Pereira, D.I.; Pereira, P.; Brilha, J.; Cunha, P.P. The Iberian Massif Landscape and Fluvial Network in Portugal: A geoheritage inventory based on the scientific value. Proc. Geol. Assoc. 2015, 126, 252–265. [Google Scholar] [CrossRef]
- Reynard, E.; Perret, A.; Bussard, J.; Grangier, L.; Martin, S. Integrated Approach for the Inventory and Management of Geomorphological Heritage at the Regional Scale. Geoheritage 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Yusry, M.; Simon, N.; Unjah, T. Geodiversity and geoheritage assessment in Hulu Langat district, Selangor, Malaysia. Geoj. Tour. Geosites 2018, 23, 861–872. [Google Scholar]
- Lubova, K.A.; Zayats, P.P.; Ruban, D.A.; Tiess, G. Megaclasts in geoconservation: Sedimentological questions, anthropogenic influence, and geotourism potential. Geologos 2013, 19, 321–335. [Google Scholar] [CrossRef]
- Killingback, Z.; Holdsworth, R.E.; Walker, R.J.; Nielsen, S.; Dempsey, E.; Hardman, K. A Bigger Splat: The Catastrophic Geology of a 1.2-b.y.-old Terrestrial Megaclast, Northwest Scotland. Geology 2021, 49, 180–184. [Google Scholar] [CrossRef]
- Lorang, M.S. A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis. Mar. Geol. 2011, 283, 90–97. [Google Scholar] [CrossRef]
- Gale, S.J.; Ibrahim, Z.Z.; Lal, J.; Sicinilawa, U.B.T. Downstream fining in a megaclast-dominated fluvial system: The Sabeto River of western Viti Levu, Fiji. Geomorphology 2019, 330, 151–162. [Google Scholar] [CrossRef]
- Rostovtsev, K.O.; Agaev, V.B.; Azarian, N.R.; Babaev, R.G.; Besnosov, N.V.; Hassanov, N.A.; Zesashvili, V.I.; Lomize, M.G.; Paitschadze, T.A.; Panov, D.I.; et al. Jurassic of the Caucasus; Nauka: St. Petersburg, Russia, 1992. (In Russian) [Google Scholar]
- Teodorovitch, G.I.; Pokhvisneva, E.A. Lithology and Diagenesis of the Jurassic Deposits of the North-Western Caucasus; Nauka: Moscow, Russia, 1964. (In Russian) [Google Scholar]
- Gavrilov, Y.O. Dynamics of Formation of the Jurassic Terrigeneous Complex of the Greater Caucasus; GEOS: Moskva, Russia, 2004. (In Russian) [Google Scholar]
- Al-Dhwadi, Z.; Sallam, E.S. Spheroidal “Cannonballs” calcite-cemented concretions from the Faiyum and Bahariya depressions, Egypt: Evidence of differential erosion by sand storms. Int. J. Earth Sci. 2019, 108, 2291–2293. [Google Scholar] [CrossRef]
- Konigsmark, T. Geologic Trips, Sea Ranch and Bowling Ball Beach; GeoPress: Medford, MA, USA, 2005. [Google Scholar]
- Posilović, H.; Galović, L.; Stejić, P.; Pandurov, M.; Gajić, R. Quaternary depositional environments in the Vrgoračko Polje/Lake (SE Croatia). Geol. Croat. 2018, 71, 147–162. [Google Scholar] [CrossRef]
- Duszyński, F.; Migoń, P.; Strzelecki, M.C. Escarpment retreat in sedimentary tablelands and cuesta landscapes—Landforms, mechanisms and patterns. Earth-Sci. Rev. 2019, 196, 102890. [Google Scholar] [CrossRef]
- Ruban, D.A.; Zorina, S.O.; Rebezov, M.B. Dispersed geoheritage points of the Lagonaki Highland, SW Russia: Contribution to local geoheritage resource. Geosciences 2019, 9, 367. [Google Scholar] [CrossRef]
- Hjort, J.; Tukiainen, H.; Salminen, H.; Kemppinen, J.; Kiilunen, P.; Snåre, H.; Alahuhta, J.; Maliniemi, T. A methodological guide to observe local-scale geodiversity for biodiversity research and management. J. Appl. Ecol. 2022, 59, 1756–1768. [Google Scholar] [CrossRef]
- Frost, W.; Steingötter, K. Geotrope survey of Rheinland-Palatinate. Mainz. Geowiss. Mitt. 2001, 30, 271–302. [Google Scholar]
- Šilhán, K.; Feher, R. Geotope of boulder accumulations: Possible source of noise in the dendrogeomorphic dating of landslides. Catena 2022, 213, 106142. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H. Kalymnos island, SE Aegean Sea: From fishing sponges and rock climbing to geotourism perspective. Heritage 2021, 4, 3126–3146. [Google Scholar] [CrossRef]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Jonauskaite, D.; Abu-Akel, A.; Dael, N.; Oberfeld, D.; Abdel-Khalek, A.M.; Al-Rasheed, A.S.; Antonietti, J.-P.; Bogushevskaya, V.; Chamseddine, A.; Chkonia, E.; et al. Universal patterns in color-emotion associations are further shaped by linguistic and geographic proximity. Psychol. Sci. 2020, 31, 1245–1260. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. The most valuable erratic boulders in the Wielkopolska region of western Poland and their potential to promote geotourism. Geoj. Tour. Geosites 2020, 29, 694–714. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Geoheritage in a Forest: Traces of Ice Sheets in Pałuki, Western Poland. Sustainability 2022, 14, 7190. [Google Scholar] [CrossRef]
- Górska-Zabielska, M.; Witkowska, K.; Pisarska, M.; Musiał, R.; Jońca, B. The Selected Erratic Boulders in the Świętokrzyskie Province (Central Poland) and Their Potential to Promote Geotourism. Geoheritage 2020, 12, 30. [Google Scholar] [CrossRef]
- De Waele, J.; Di Gregorio, F.; Gasmi, N.; Melis, M.T.; Talbi, M. Geomorphosites of Tozeur region (south-west Tunisia). Alp. Mediterr. Quat. 2005, 18, 223–232. [Google Scholar]
- Lokier, S.W. Coastal Sabkha Preservation in the Arabian Gulf. Geoheritage 2013, 5, 11–22. [Google Scholar] [CrossRef]
- Pérez-Hernández, E.; Peña-Alonso, C.; Fernández-Cabrera, E.; Hernández-Calvento, L. Assessing the scenic quality of transgressive dune systems on volcanic islands. The case of Corralejo (Fuerteventura island, Spain). Sci. Total Environ. 2021, 784, 147050. [Google Scholar] [CrossRef] [PubMed]
- Tikhonenkov, D.V.; Jamy, M.; Borodina, A.S.; Belyaev, A.O.; Zagumyonnyi, D.G.; Prokina, K.I.; Mylnikov, A.P.; Burki, F.; Karpov, S.A. On the origin of TSAR: Morphology, diversity and phylogeny of Telonemia. Open Biol. 2022, 12, 210325. [Google Scholar] [CrossRef]
- Bibin, A.S.; Trepet, S.A.; Grabenko, E.A.; Akatov, T.V. Shaposhnikov Caucasian State Nature Biosphere Reserve. Handb. Environ. Chem. 2020, 106, 603–631. [Google Scholar]
- Litvinskaya, S.A. Florophytocenotic diversity of the Western Caucasus. South Russ. Ecol. Dev. 2020, 15, 37–48. [Google Scholar] [CrossRef]
Parameter | Essence | Special Notes |
---|---|---|
Location | Where is the locality, and how does it look physically? | - |
Geological setting | Composition and age of “parent” rocks | The ICS’s developments [36] are followed. |
Quaternary feature | General view of sediments (with an emphasis on their composition and distribution) | See classifications by Blair and McPherson [37], Blott and Pye [38], Bruno and Ruban [39], and Terry and Goff [40], from which [39] is derived. |
Origin | Genesis of sediments | Old-fashioned but still suitable terms such as “alluvium”, “colluvium”, “deluvium”, and “eluvium” are used. |
Possible age | When did sediments start to form? | Only very approximate judgments are possible. |
Significance | Why should this locality be interesting to specialists? | - |
Accessibility | How easy is to access the locality and to move within it? | - |
Characteristic | Geoheritage Points | ||
---|---|---|---|
Rufabgo Canyon | Dakh–Sakhray Confluence | Stonesea Range | |
Spatial correspondence to geosite (parent Geosite) * | Khadzhokh canyon system and Rufabgo waterfalls | Sakhray canyon | Lagonaki Highland |
Portion of geosite * | ~25% | <5% | <5% |
Relative uniqueness ** | High | Low | High |
Degree of scientific investigation ** | High | Moderate | Low |
Accessibility * | High (entrance fee required) | High (unpaved road) | High (hiking, entrance fee required) |
Vulnerability ** | Absent | Absent | Minimal |
Aesthetic value ** | High | Minimal | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A. Quaternary Sediments in Geosites: Evidence from the Western Caucasus. Heritage 2023, 6, 3903-3920. https://doi.org/10.3390/heritage6050207
Ruban DA. Quaternary Sediments in Geosites: Evidence from the Western Caucasus. Heritage. 2023; 6(5):3903-3920. https://doi.org/10.3390/heritage6050207
Chicago/Turabian StyleRuban, Dmitry A. 2023. "Quaternary Sediments in Geosites: Evidence from the Western Caucasus" Heritage 6, no. 5: 3903-3920. https://doi.org/10.3390/heritage6050207
APA StyleRuban, D. A. (2023). Quaternary Sediments in Geosites: Evidence from the Western Caucasus. Heritage, 6(5), 3903-3920. https://doi.org/10.3390/heritage6050207