Interesting Features Finder: A New Approach to Multispectral Image Analysis
Abstract
:1. Introduction
2. The Volumni Hypogeum
3. Acquisition of the Multispectral Image Set
4. Discussion
4.1. The Interesting Features Finder (IFF) Method
4.2. Application of the IFF Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morriss-Kay, G.M. The Evolution of Human Artistic Creativity. J. Anat. 2010, 216, 158–176. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Herraiz, M.; Jurado, V.; Cuezva, S.; Laiz, L.; Pallecchi, P.; Tiano, P.; Sanchez-Moral, S.; Saiz-Jimenez, C. The Actinobacterial Colonization of Etruscan Paintings. Sci. Rep. 2013, 3, 1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adinolfi, G.; Carmagnola, R.; Cataldi, M.; Marras, L.; Palleschi, V. Recovery of a Lost Wall Painting at the Etruscan Tomb of the Blue Demons in Tarquinia (Viterbo, Italy) by Multispectral Reflectometry and UV Fluorescence Imaging. Archaeometry 2019, 61, 450–458. [Google Scholar] [CrossRef]
- Sarti, S. Making Copies of Etruscan Paintings: The History of the Facsimile Gallery in Florence. In An Etruscan Affair: The Impact of Early Etruscan Discoveries on European Culture; Swaddling, J., Ed.; The British Museum: London, UK, 2018; pp. 72–82. [Google Scholar]
- Moltesen, M. From Decoration to Documentation. The Helbig-Jacobsen Facsimiles and Their Afterlife. Mélanges L’école Française Rome Antiq. 2019, 131, 313–322. [Google Scholar] [CrossRef]
- Saltini, G.F. Giuseppe Angelelli: Pittore Toscano Ricordo Biografico; Forgotten Books: Firenze, Italy, 1866. [Google Scholar]
- Fischer, C.; Kakoulli, I. Multispectral and Hyperspectral Imaging Technologies in Conservation: Current Research and Potential Applications. Rev. Conserv. 2006, 7, 3–16. [Google Scholar] [CrossRef]
- Liang, H. Advances in Multispectral and Hyperspectral Imaging for Archaeology and Art Conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Akar, O.; Tunc Gormus, E. Land Use/Land Cover Mapping from Airborne Hyperspectral Images with Machine Learning Algorithms and Contextual Information. Geocarto. Int. 2022, 37, 3963–3990. [Google Scholar] [CrossRef]
- Cosentino, A. Identification of Pigments by Multispectral Imaging; a Flowchart Method. Herit. Sci. 2014, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Toque, J.A.; Ide-Ektessabi, A. Investigation of the Degradation Mechanism and Discoloration of Traditional Japanese Pigments by Multispectral Imaging. Int. Soc. Opt. Photonics 2011, 7869, 78690E. [Google Scholar]
- Baronti, S.; Casini, A.; Lotti, F.; Porcinai, S. Multispectral Imaging System for the Mapping of Pigments in Works of Art by Use of Principal-Component Analysis. Appl. Opt. 1998, 37, 1299. [Google Scholar] [CrossRef]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Palmer, M.; Morales, K.M.; de la Rie, E.R.; Hoenigswald, A. Visible and Infrared Imaging Spectroscopy of Picasso’s Harlequin Musician: Mapping and Identification of Artist Materials in Situ. Appl. Spectrosc. 2010, 64, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.R.; Attas, M.; Majzels, C.; Cloutis, E.; Collins, C.; Mantsch, H.H. Near Infrared Spectroscopic Reflectance Imaging: A New Tool in Art Conservation. Vib. Spectrosc. 2002, 28, 59–66. [Google Scholar] [CrossRef]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Morales, K.M.; Palmer, M.; de la Rie, E.R. Visible and Infrared Reflectance Imaging Spectroscopy of Paintings: Pigment Mapping and Improved Infrared Reflectography. Proc. SPIE 2009, 7391, 739103. [Google Scholar] [CrossRef]
- Delaney, J.K.; Thoury, M.; Zeibel, J.G.; Ricciardi, P.; Morales, K.M.; Dooley, K.A. Visible and Infrared Imaging Spectroscopy of Paintings and Improved Reflectography. Herit. Sci. 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Saunders, D.; Billinge, R.; Cupitt, J.; Atkinson, N.; Liang, H. A New Camera for High-Resolution Infrared Imaging of Works of Art. Stud. Conserv. 2006, 51, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Bozzo, G.; Sapia, P. Physics Meets Fine Arts: A Project-Based Learning Path on Infrared Imaging. Eur. J. Phys. 2018, 39, 025805. [Google Scholar] [CrossRef]
- Ricciardi, P.; Delaney, J.K.; Glinsman, L.; Thoury, M.; Facini, M.; de la Rie, E.R. Use of Visible and Infrared Reflectance and Luminescence Imaging Spectroscopy to Study Illuminated Manuscripts: Pigment Identification and Visualization of Underdrawings. Proc. SPIE—Int. Soc. Opt. Eng. 2009, 7391, 739106. [Google Scholar]
- Hollaus, F.; Gau, M.; Sablatnig, R. Multispectral Image Acquisition of Ancient Manuscripts. In Progress in Cultural Heritage Preservation, Proceedings of the 4th International Conference, EuroMed 2012, Lemessos, Cyprus, 29 October–3 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 30–39. [Google Scholar]
- Čamba, A.; Gau, M.; Hollaus, F.; Fiel, S.; Sablatnig, R. Multispectral Imaging, Image Enhancement, and Automated Writer Identification in Historical Manuscripts. Manuscr. Cult. 2014, 7, 83–91. [Google Scholar]
- Chabries, D.M.; Booras, S.W.; Bearman, G.H. Imaging the Past: Recent Applications of Multispectral Imaging Technology to Deciphering Manuscripts. Antiquity 2003, 77, 359–372. [Google Scholar] [CrossRef]
- Tonazzini, A.; Bianco, G.; Salerno, E. Registration and Enhancement of Double-Sided Degraded Manuscripts Acquired in Multispectral Modality. In Proceedings of the 2009 10th International Conference on Document Analysis and Recognition, Barcelona, Spain, 26–29 July 2009; pp. 546–550. [Google Scholar]
- le Quellec, J.L.; Duquesnoy, F.; Defrasne, C. Digital Image Enhancement with DStretch®: Is Complexity Always Necessary for Efficiency? Digit. Appl. Archaeol. Cult. Herit. 2015, 2, 55–67. [Google Scholar] [CrossRef]
- Defrasne, C. Digital Image Enhancement for Recording Rupestrian Engravings: Applications to an Alpine Rockshelter. J. Archaeol. Sci. 2014, 50, 31–38. [Google Scholar] [CrossRef]
- Evans, L.; Mourad, A.L. DStretch® and Egyptian Tomb Paintings: A Case Study from Beni Hassan. J. Archaeol. Sci. Rep. 2018, 18, 78–84. [Google Scholar] [CrossRef]
- Tonazzini, A.; Salerno, E.; Abdel-Salam, Z.A.; Harith, M.A.; Marras, L.; Botto, A.; Campanella, B.; Legnaioli, S.; Pagnotta, S.; Poggialini, F.; et al. Analytical and Mathematical Methods for Revealing Hidden Details in Ancient Manuscripts and Paintings: A Review. J. Adv. Res. 2019, 17, 31–42. [Google Scholar] [CrossRef]
- Legnaioli, S.; Grifoni, E.; Lorenzetti, G.; Marras, L.; Pardini, L.; Palleschi, V.; Salerno, E.; Tonazzini, A. Enhancement of Hidden Patterns in Paintings Using Statistical Analysis. J. Cult. Herit. 2013, 14, S66–S70. [Google Scholar] [CrossRef]
- Salerno, E.; Tonazzini, A. Extracting Erased Text from Palimpsests by Using Visible Light. In Proceedings of the 4th International Congress Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Cairo, Egypt, 6–8 December 2009; pp. 532–535. [Google Scholar]
- Salerno, E.; Tonazzini, A.; Bedini, L. Digital Image Analysis to Enhance Underwritten Text in the Archimedes Palimpsest. Int. J. Doc. Anal. Recognit. (IJDAR) 2007, 9, 79–87. [Google Scholar] [CrossRef]
- Tonazzini, A.; Bedini, L.; Salerno, E. Digital Analysis of Damaged Documents by ICA Techniques. In Artificial Neural Networks in Pattern Recognition; Gori, M., Marinai, S., Eds.; Springer: Boston, MA, USA, 2003; pp. 33–38. ISBN 88-7957-221-0. [Google Scholar]
- Salerno, E.; Martinelli, F.; Tonazzini, A. Nonlinear Model Identification and See-through Cancelation from Recto–Verso Data. Int. J. Doc. Anal. Recognit. (IJDAR) 2013, 16, 177–187. [Google Scholar] [CrossRef]
- Tonazzini, A.; Savino, P.; Salerno, E. A Non-Stationary Density Model to Separate Overlapped Texts in Degraded Documents. Signal Image Video Process. 2015, 9, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Tonazzini, A.; Salerno, E.; Bedini, L. Fast Correction of Bleed-through Distortion in Grayscale Documents by a Blind Source Separation Technique. Int. J. Doc. Anal. Recognit. (IJDAR) 2007, 10, 17–25. [Google Scholar] [CrossRef]
- Tonazzini, A.; Bedini, L.; Salerno, E. Independent Component Analysis for Document Restoration. Doc. Anal. Recognit. 2004, 7, 17–27. [Google Scholar] [CrossRef]
- Martinelli, F.; Salerno, E.; Gerace, I.; Tonazzini, A. Nonlinear Model and Constrained ML for Removing Back-to-Front Interferences from Recto–Verso Documents. Pattern Recognit. 2012, 45, 596–605. [Google Scholar] [CrossRef]
- Tonazzini, A.; Salerno, E.; Mochi, M.; Bedini, L. Blind Source Separation Techniques for Detecting Hidden Texts and Textures in Document Images. In Image Analysis and Recognition, Proceedings of the International Conference ICIAR 2004, Porto, Portugal, 29 September–1 October 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 241–248. [Google Scholar]
- Legnaioli, S.; Lorenzetti, G.; Cavalcanti, G.H.; Grifoni, E.; Marras, L.; Tonazzini, A.; Salerno, E.; Pallecchi, P.; Giachi, G.; Palleschi, V. Recovery of Archaeological Wall Paintings Using Novel Multispectral Imaging Approaches. Herit. Sci. 2013, 1, 33. [Google Scholar] [CrossRef] [Green Version]
- Salerno, E.; Tonazzini, A.; Grifoni, E.; Lorenzetti, G.; Legnaioli, S.; Lezzerini, M.; Palleschi, V. Analysis of Multispectral Images in Cultural Heritage and Archaeology. J. Appl. Laser Spectrosc. 2014, 1, 22–27. [Google Scholar]
- Giancristofaro, C.; Marras, L.; Palleschi, V. Surveying and 3D Visualization of Diagnostic Data with Open Source Instruments: The Case of the Tomb of the Monkey. Archeomatica-Tecnol. Per I Beni Cult. 2014, 5, 10–15. [Google Scholar]
- Turchetti, M.A.; Marras, L.; Palleschi, V. La “Porta Dell’Ade” Nell’Ipogeo Dei Volumni: Note in Margine a Una Recente Indagine Multispettrale Sulle Pitture. Studi Etruschi, 2022; in press. [Google Scholar]
- Vermiglioli, G.B. Ll Sepolcro Dei Volumni. In De’ Monumenti di Perugia Etrusca e Romana, Della Letteratura e Bibliografia Perugina; Conestabile, G., Ed.; Tipografia Bartelli: Perugia, Italy, 1855; Volume 2. [Google Scholar]
- Kohonen, T. The Self-Organizing Map. Neurocomputing 1998, 21, 1–6. [Google Scholar] [CrossRef]
- Wu, Q.; Marina-Montes, C.; Cáceres, J.O.; Anzano, J.; Motto-Ros, V.; Duponchel, L. Interesting Features Finder (IFF): Another Way to Explore Spectroscopic Imaging Data Sets Giving Minor Compounds and Traces a Chance to Express Themselves. Spectrochim. Acta Part B At. Spectrosc. 2022, 195, 106508. [Google Scholar] [CrossRef]
- Jolivet, L.; Leprince, M.; Moncayo, S.; Sorbier, L.; Lienemann, C.-P.; Motto-Ros, V. Review of the Recent Advances and Applications of LIBS-Based Imaging. Spectrochim. Acta Part B At. Spectrosc. 2019, 151, 41–53. [Google Scholar] [CrossRef]
- Fabre, C.; Devismes, D.; Moncayo, S.; Pelascini, F.; Trichard, F.; Lecomte, A.; Bousquet, B.; Cauzid, J.; Motto-Ros, V. Elemental Imaging by Laser-Induced Breakdown Spectroscopy for the Geological Characterization of Minerals. J. Anal. At. Spectrom. 2018, 33, 1345–1353. [Google Scholar] [CrossRef]
- Sancey, L.; Motto-Ros, V.; Busser, B.; Kotb, S.; Benoit, J.M.; Piednoir, A.; Lux, F.; Tillement, O.; Panczer, G.; Yu, J. Laser Spectrometry for Multi-Elemental Imaging of Biological Tissues. Sci. Rep. 2014, 4, 6065. [Google Scholar] [CrossRef] [Green Version]
- Moncayo, S.; Duponchel, L.; Mousavipak, N.; Panczer, G.; Trichard, F.; Bousquet, B.; Pelascini, F.; Motto-Ros, V. Exploration of Megapixel Hyperspectral LIBS Images Using Principal Component Analysis. J. Anal. At. Spectrom. 2018, 33, 210–220. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palleschi, V.; Marras, L.; Turchetti, M.A. Interesting Features Finder: A New Approach to Multispectral Image Analysis. Heritage 2022, 5, 4089-4099. https://doi.org/10.3390/heritage5040211
Palleschi V, Marras L, Turchetti MA. Interesting Features Finder: A New Approach to Multispectral Image Analysis. Heritage. 2022; 5(4):4089-4099. https://doi.org/10.3390/heritage5040211
Chicago/Turabian StylePalleschi, Vincenzo, Luciano Marras, and Maria Angela Turchetti. 2022. "Interesting Features Finder: A New Approach to Multispectral Image Analysis" Heritage 5, no. 4: 4089-4099. https://doi.org/10.3390/heritage5040211
APA StylePalleschi, V., Marras, L., & Turchetti, M. A. (2022). Interesting Features Finder: A New Approach to Multispectral Image Analysis. Heritage, 5(4), 4089-4099. https://doi.org/10.3390/heritage5040211