Scientific Study of the Origin of the Painting from the Early 20th Century Leads to Pablo Picasso
Abstract
:1. Introduction
1.1. Art Historical Context
1.2. Description of the Painting
2. Materials and Methods
2.1. Digital X-ray Radiography
2.2. Fourier Transform Infrared Spectroscopy
2.3. Organic Elemental Analysis
2.4. X-ray Fluorescence
2.5. Raman Spectroscopy
3. Results and Discussion
3.1. Visual and X-ray Analysis of the Red Guitar Painting
3.2. White Paint
3.3. Black Paint
3.4. Blue Paint
3.5. Yellow Paints
3.6. Green Paint
3.7. Red Paints
3.8. Cardboard Analysis
3.9. Composition of the Back Area
3.9.1. Varnish Layer
3.9.2. Back Paint Layer
4. Significance and Conclusions
4.1. Use of Picasso’s Palette of Historic Pigments
4.2. Use of Industrial, Non-Artist Materials
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Color | Elements a | Painting Materials b |
White | Zn, Ca, Fe (Mn), Co, Ti, Pb, Sr | Zinc white; Calcite |
Black | Zn, Ca, Ba, Fe, Sr, Cu, Pb | Bone (ivory) black, Fe-pigments, Barium sulfate |
Blue | Zn, Ca, Co, Cu, Fe (Mn), Pb, Ti, Sr | Zinc white, calcite, Co and Cu blue pigments |
Yellow: | ||
Yellow I (bright) | Pb, Cr, Fe, Zn, Ca, Ti, Sr | Chrome yellow; Yellow ochre, Zinc white, Calcite |
Yellow II (dark) | Pb, Cr, Fe, Zn, Ca, Ti, Sr | Chrome yellow *; Yellow ochre, * |
Zinc white, Calcite *, Ultramarine * | ||
Green: | ||
Green I (bright) | Fe, Pb, Cr, Zn, Ca, Cu, Ti, Sr | Prussian blue, Chrome yellow, Zinc white, Calcite |
Green II (dark) | Fe, Pb, Cr, Zn, Ca, Cu, Ti, Sr | Chrome yellow, Yellow ochre, Zinc white, Calcite #* |
Drying oil #, Phthalocyanine green (retouch) * | ||
Red: | ||
Red I (bright) | Fe, Pb, Cr, Zn, Ca, Ti | Red Iron *, Chrome Yellow, Zinc white *, Calcite * |
Red II (orange) | Pb, Cr, Zn, Ca, Fe, Cu, Ti, Sr | Red Lead, Chrome yellow, Lead white |
Zinc white, Chalk, Yellow ochre (traces) | ||
Red III (brown-red) | Fe (Mn), Zn, Ca, Pb, Ti, Sr | Iron oxide (hematite)*, Zinc white, Calcite #*, Drying oil |
Preparation layer: | Calcite #*, Drying oil # | |
Back: | Ti, Zn, Fe (Mn), Ca, Pb, Cu Sr | Titanium white, Zinc white, Iron oxide |
Varnish | Nitrocellulose #*, Copal # Camphor *, Diethyl phthalate * | |
Ivory white | Titanium dioxide (anatase and rutile) * | |
Nitrocellulose #* | ||
Support: | Zn, Ca, Fe (Mn), Cu, Cr, Ti, Sr, Pb | Cellulose # (hemicellulose, lignin)# |
References
- Sessa, C.; de Garnica, R.J.; Rosi, F.; Fontana, R.; Garcia, J.F. A study of Picasso’s painting materials and techniques in six of his early portraits. J. Am. Inst. Conserv. 2016, 55, 198–216. [Google Scholar] [CrossRef]
- Favero, P.A.; Mass, J.; Delaney, J.K.; Woll, A.R.; Hull, A.M.; Dooley, K.A.; Finnefrock, A.C. Reflectance imaging spectroscopy and synchrotron radiation X-ray fluorescence mapping used in a technical study of The Blue Room by Pablo Picasso. Herit. Sci. 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Buti, D.; Pullano, M.; Papa, E.; Nygårds, E.; Ludvigsen, L.; Wadum, J. Picasso’s Acrobat Family in focus: An investigation of materials and techniques of an iconic work in the collection of the Gothenburg Museum of Art. SN Appl. Sci. 2020, 2, 1411. [Google Scholar] [CrossRef]
- Fuster-López, L.; Izzo, F.C.; Andersen, C.K.; Murray, A.; Vila, A.; Picollo, M.; Stefani, L.; Jiménez, R.; Aguado-Guardiola, E. Picasso’s 1917 paint materials and their influence on the condition of four paintings. SN Appl. Sci. 2020, 2, 2159. [Google Scholar] [CrossRef]
- Gautier, G.; Bezur, A.; Muir, K.; Casadio, F.; Fiedler, I. Chemical fingerprinting of ready-mixed house paints of relevance to artistic production in the first half of the twentieth century. Part I: Inorganic and organic pigments. App. Spectrosc. 2009, 63, 597–603. [Google Scholar] [CrossRef]
- Muir, K.; Langley, A.; Bezur, A.; Casadio, F.; Delaney, J.; Gautier, G. Scientifically investigating Picasso’s suspected use of ripolin house paints in Still life, 1922 and The Red armchair, 1931. J. Am. Inst. Conserv. 2013, 52, 156–172. [Google Scholar] [CrossRef]
- Standeven, H.A.L. Oil-Based House Paints from 1900 to 1960: An Examination of Their History and Development, with Particular Reference to Ripolin Enamels. J. Am. Inst. Conserv. 2013, 52, 127–139. [Google Scholar] [CrossRef]
- Langley, A.; Muir, K.; Sutherland, K. Scenes from the life of Picasso’s Still Life (1922): History, materials, and conservation. SN Appl. Sci. 2020, 2, 1384. [Google Scholar] [CrossRef]
- Casadio, F.; Rose, V. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: Hard X-ray nanoprobe applications to the paints of Pablo Picasso. Appl. Phys. A 2013, 111, 1–8. [Google Scholar] [CrossRef]
- Larsen, R.; Coluzzi, N.; Cosentino, A. Free XRF spectroscopy database of pigments Checker. Int. J. Conserv. Sci. 2016, 7, 659–669. [Google Scholar]
- Conservation and Art Materials Encyclopedia. Available online: http://cameo.mfa.org/wiki/Main_Page (accessed on 10 May 2022).
- Schnetz, K.; Gambardella, A.A.; van Elsas, R.; Rosier, J.; Steenwinkel, E.E.; Wallert, A.; Iedema, P.D.; Keune, K. Evidence for the catalytic properties of ultramarine pigment. J. Cult. Her. 2020, 45, 25–32. [Google Scholar] [CrossRef]
- Townsend, J.H.; Fox, C.; Sacher, B. A Picasso paper collage of 1913–14: Assessment of fragility and sensitivity to light. SN Appl. Sci. 2021, 3, 669. [Google Scholar] [CrossRef]
- Defeyt, C.; Walter, P.; Rousselière, H.; Vandenabeele, P.; Vekemans, B.; Samain, L.; Strivay, D. New insights on Picasso’s Blue period painting La famille Soler. Stud. Conserv. 2018, 63, 24–35. [Google Scholar] [CrossRef]
- Casadio, F.; Miliani, C.; Rosi, F.; Romani, A.; Anselmi, C.; Brunetti, B.; Sgamellotti, A.; Andral, J.-L.; Gautier, G. Scientific investigation of an important corpus of Picasso paintings in Antibes: New insights into technique, condition, and chronological sequence. J. Am. Inst. Conserv. 2013, 52, 184–204. [Google Scholar] [CrossRef]
- Paris, C.; Coupri, C. Fourier transform Raman spectroscopic study of the first cellulose-based artificial materials in heritage. J. Raman Spectrosc. 2005, 36, 77–82. [Google Scholar] [CrossRef]
- Phinichka, N.; Kaenthong, S. Regenerated cellulose from high alpha cellulose pulp of steam-exploded sugarcane bagasse. J. Mater. Res. Technol. 2018, 7, 55–65. [Google Scholar] [CrossRef]
- Doncea, S.M.; Ion, R.M.; Fierascui, R.C.; Bacalum, E.; Bunaciu, A.A.; Aboul-Enein, H.Y. Spectral methods for historical paper analysis: Composition and age approximation. Instrum. Sci. Technol. 2009, 38, 96–106. [Google Scholar] [CrossRef]
- Casoli, A.; Fornaciari, S. An analytical study on an early twentieth-century Italian photographs collection by means of microscopic and spectroscopic techniques. Microchem. J. 2014, 116, 24–30. [Google Scholar] [CrossRef]
- Quye, A.; Littlejohn, D.; Pethrick, R.A.; Stewart, R.A. Investigation of inherent degradation in cellulose nitrate museum artefacts. Polym. Degrad. Stab. 2011, 96, 1369–1376. [Google Scholar] [CrossRef]
- Jiménez, R. A Fresh look: Technical analysis and treatment of Picasso’s Science and Charity at the Museu Picasso. SN Appl. Sci. 2021, 3, 507. [Google Scholar] [CrossRef]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Palmer, M.; Morales, K.M.; de la Rie, E.R.; Hoenigswald, A. Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: Mapping and identification of artist materials in situ. Appl. Spectrosc. 2010, 64, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Hanspach-Bernal, E.; Bezur, A. Mixed media: An example of Pablo Picasso’s combination of non-artist’s paints with tube colors from the Menil collection. J. Am. Inst. Conserv. 2013, 52, 173–183. [Google Scholar] [CrossRef]
- Pozzi, F.; Lombardi, J.R.; Leona, M. Winsor & Newton original handbooks: A surface-enhanced Raman scattering (SERS) and Raman spectral database of dyes from modern watercolor pigments. Herit. Sci. 2013, 1, 23. [Google Scholar] [CrossRef] [Green Version]
- Steger, S.; Stege, H.; Bretz, S.; Hahn, O. A complementary spectroscopic approach for the non-invasive in-situ identification of synthetic organic pigments in modern reverse paintings on glass (1913–1946). J. Cult. Herit. 2019, 38, 20–28. [Google Scholar] [CrossRef]
- Berrie, B.H.; Lomax, S.Q. Azo pigments: Their history, synthesis, properties and use in artists’ materials. Stud. Hist. Art 1997, 57, 8–33. [Google Scholar]
- Neves, A.; Ramos, A.; Callapez, M.E.; Friedel, R.; Réfrégiers, M.; Thoury, M.; Melo, M.J. Novel markers to early detect degradation on cellulose nitrate-based heritage at the submicrometer level using synchrotron UV–VIS multispectral luminescence. Sci. Rep. 2021, 11, 20208. [Google Scholar] [CrossRef]
- Van Driel, B.A.; Berg, K.J.V.D.; Gerretzen, J.; Dik, J. The white of the 20th century: An explorative survey into Dutch modern art collections. Herit. Sci. 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Muir, K.; Gautier, G.; Casadio, F.; Vila, A. Interdisciplinary investigation of early house paints: Picasso, Picabia and their “Ripolin” paintings. In Proceedings of the ICOM Committee for Conservation 16th Triennial Meeting, Lisbon, Portugal, 19–23 September 2011. [Google Scholar]
- McGlinchey, C.; Aviram, A.; Zetina, S.; Arroyo, E.; Sil, J.L.R.; Pesqueira, M.E.E.; David, A. Siqueiros: His modification of oil and cellulose nitrate-based paint and his advocacy for innovation, 1931–1949. J. Am. Inst. Conserv. 2013, 52, 278–289. [Google Scholar] [CrossRef]
- Dredge, P. Sidney Nolan’s adventures in paint—An analytical study of the artist’s use of commercial paints in the 1940s and ’50s. AICCM Bull. 2013, 34, 15–23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakovic, M.; Karapandza, S.; Mcheik, S.; Pejović-Milić, A. Scientific Study of the Origin of the Painting from the Early 20th Century Leads to Pablo Picasso. Heritage 2022, 5, 1120-1140. https://doi.org/10.3390/heritage5020060
Bakovic M, Karapandza S, Mcheik S, Pejović-Milić A. Scientific Study of the Origin of the Painting from the Early 20th Century Leads to Pablo Picasso. Heritage. 2022; 5(2):1120-1140. https://doi.org/10.3390/heritage5020060
Chicago/Turabian StyleBakovic, Marica, Slobodanka Karapandza, Sajed Mcheik, and Ana Pejović-Milić. 2022. "Scientific Study of the Origin of the Painting from the Early 20th Century Leads to Pablo Picasso" Heritage 5, no. 2: 1120-1140. https://doi.org/10.3390/heritage5020060
APA StyleBakovic, M., Karapandza, S., Mcheik, S., & Pejović-Milić, A. (2022). Scientific Study of the Origin of the Painting from the Early 20th Century Leads to Pablo Picasso. Heritage, 5(2), 1120-1140. https://doi.org/10.3390/heritage5020060