Complex Relationships: A Materials Study of Édouard Vuillard’s Interior, Mother and Sister of the Artist
Abstract
:1. Introduction
1.1. Art Historical Context
1.2. Treatment History and Current State
1.3. Scientific Analysis
2. Materials and Methods
2.1. Imaging
2.2. Synthesis of Silver Nanoparticles for SERS
2.3. Instrumental Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Palette
3.2. Interpretation of Imaging
3.3. Artist Technique
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration
References
- Ritchie, A.C. Édouard Vuillard; Museum of Modern Art: New York, NY, USA, 1954. [Google Scholar]
- Kuenzli, K.M. The Nabis and Intimate Modernism: Painting and the Decorative at the Fin-de-Siècle; Routledge: Surrey, UK, 2016. [Google Scholar]
- Robbins, A.; Stonor, K. Past, Present, Memories: Analysing Edouard Vuillard’s “La Terrasse at Vasouy”. Natl Gallery Tech Bull. JSTOR 2012, 33, 82–112. [Google Scholar]
- Keck, S.; Keck, C. Vuillard, Mother and Sister of the Artist; Report No.: 543042; The Musuem of Modern Art: New York, NY, USA, 1954. [Google Scholar]
- Stoner, J.H. Conservation of Easel Paintings, 1st ed.; Routledge: Surrey, UK, 2013. [Google Scholar]
- Villers, C. (Ed.) Lining Paintings: Papers from the Greenwich Conference on Comparative Lining Techniques; Archetype: London, UK, 2003. [Google Scholar]
- Groom, G.L., III; Watkins, N.; Paoletti, J.; Barruel, T. Beyond the Easel: Decorative Painting by Bonnard, Vuillard, Denis, and Roussel, 1890–1930; Yale University Press: New Haven, CT, USA, 2001. [Google Scholar]
- Vuillard, T.M. Mother and Sister of the Artist; Treatment Report; Museum of Modern Art: New York, NY, USA, 1979. [Google Scholar]
- Salomon, A.; Vuillard, E. Vuillard, the Inexhaustible Glance: Critical Catalogue of Paintings and Pastels; Skira: Milan, Italy, 2003. [Google Scholar]
- Randolph, P.Y. History, analysis and treatment of “la salle a manger au chateau de clayes”, 1938, by edouard vuillard. In The Book and Paper Group Annual; ICCROM: Rome, Italy, 1984; Volume 3, pp. 112–121. [Google Scholar]
- Daly, N.S.; Sullivan, M.; Lee, L.; Trentelman, K. Multivariate analysis of Raman spectra of carbonaceous black drawing media for the in situ identification of historic artist materials. J. Raman Spectrosc. 2018, 49, 1497–1506. [Google Scholar] [CrossRef]
- Donais, M.K.; Wojtas, S.; Desmond, A.; Duncan, B.; George, D.B. Differentiation of Hypocaust and Floor Tiles at Coriglia, Castel Viscardo (Umbria, Italy) Using Principal Component Analysis (PCA) and Portable X-ray Fluorescence (XRF) Spectrometry. Appl. Spectrosc. 2012, 66, 1005–1012. [Google Scholar] [CrossRef]
- Mitchell, G.; France, F.; Nordon, A.; Tang, P.L.; Gibson, L.T. Assessment of historical polymers using attenuated total reflectance-Fourier transform infra-red spectroscopy with principal component analysis. Heritage Sci. 2013, 1, 28. [Google Scholar] [CrossRef] [Green Version]
- Vandenabeele, P.; Hardy, A.; Edwards, H.G.M.; Moens, L. Evaluation of a Principal Components-Based Searching Algorithm for Raman Spectroscopic Identification of Organic Pigments in 20th Century Artwork. Appl. Spectrosc. 2001, 55, 525–533. [Google Scholar] [CrossRef]
- Romero-Pastor, J.; Cardell, C.; Yebra-Rodríguez, Á.; Rodríguez-Navarro, A.B. Validating chemical and structural changes in painting materials by principal component analysis of spectroscopic data using internal mineral standards. J. Cult. Heritage 2013, 14, 509–514. [Google Scholar] [CrossRef]
- Hall, M.; Amraatuvshin, C.; Erdenbat, E. X-ray fluorescence analysis of pottery from Northern Mongolia. J. Radioanal. Nucl. Chem. 1999, 240, 763–773. [Google Scholar] [CrossRef]
- Donais, M.K.; Duncan, B.; George, D.; Bizzarri, C. Comparisons of ancient mortars and hydraulic cements through in situ analyses by portable X-ray fluorescence spectrometry. X-ray Spectrom. 2010, 39, 146–153. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- de Juan, A.; Jaumot, J.; Tauler, R. Multivariate Curve Resolution (MCR). Solving the mixture analysis problem. Anal Methods 2014, 6, 4964–4976. [Google Scholar] [CrossRef]
- Windig, W.; Shaver, J.; Keenan, M.R.; Wise, B.M. Simplification of alternating least squares solutions with contrast enhancement. Chemom. Intell. Lab. Syst. 2012, 117, 159–168. [Google Scholar] [CrossRef]
- Martins, A.; Albertson, C.; McGlinchey, C.; Dik, J. Piet Mondrian’s Broadway Boogie Woogie: Non invasive analysis using macro X-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least square (MCR-ALS). Heritage Sci. 2016, 4, 418. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.; Coddington, J.; Van Der Snickt, G.; Van Driel, B.; McGlinchey, C.; Dahlberg, D.; Janssens, K.; Dik, J. Jackson Pollock’s Number 1A, 1948: A non-invasive study using macro-x-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least squares (MCR-ALS) analysis. Heritage Sci. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Alfeld, M.; Janssens, K. Strategies for processing mega-pixel X-ray fluorescence hyperspectral data: A case study on a version of Caravaggio’s painting Supper at Emmaus. J. Anal. At. Spectrom. 2015, 30, 777–789. [Google Scholar] [CrossRef]
- Alfeld, M.; Wahabzada, M.; Bauckhage, C.; Kersting, K.; Wellenreuther, G.; Falkenberg, G. Non-negative factor analysis supporting the interpretation of elemental distribution images acquired by XRF. J. Physics: Conf. Ser. 2014, 499, 012013. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.; Caliri, C.; Pappalardo, L.; Catalano, R.; Orlando, A.; Rizzo, F.; Romano, F.P. Identification of forgeries in historical enamels by combining the non-destructive scanning XRF imaging and alpha-PIXE portable techniques. Microchem. J. 2016, 124, 241–246. [Google Scholar] [CrossRef]
- Lux, C.; Lubio, A.; Ruediger, A.; Robert, S.; Muehlethaler, C. Optimizing the analysis of dyes by Surface-Enhanced Raman Spectroscopy (SERS) using a conventional-microwave silver nanoparticles synthesis. Forensic Chem. 2019, 16, 100186. [Google Scholar] [CrossRef]
- Price, B.A.; Pretzel, B.; Lomax, S. (Eds.) Infrared and Raman Users Group Spectral Database, 2007 ed.; IRUG: Philadelphia, PA, USA, 2009; Volume 1–2. [Google Scholar]
- Bell, I.M.; Clark, R.J.; Gibbs, P.J. Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 2159–2179. [Google Scholar] [CrossRef]
- Keenan, M.R.; Kotula, P. Optimal scaling of TOF-SIMS spectrum-images prior to multivariate statistical analysis. Appl. Surf. Sci. 2004, 231–232, 240–244. [Google Scholar] [CrossRef]
- Derrick, M.R.; Stulik, D.; Landry, J.M. Infrared Spectroscopy in Conservation Science; Getty Conservation Institute: Los Angeles, CA, USA, 1999. [Google Scholar]
- Helwig, K. Iron Oxide. In Artists Pigments Handb Their Hist Charact Vol 4; Berrie, B., Ed.; National Gallery of Art: Washington, DC, USA, 2007. [Google Scholar]
- Hermans, J.J.; Keune, K.; Van Loon, A.; Iedema, P.D. An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. J. Anal. At. Spectrom. 2015, 30, 1600–1608. [Google Scholar] [CrossRef] [Green Version]
- Hermans, J.J.; Keune, K.; Van Loon, A.; Stols-Witlox, M.J.; Corkery, R.W.; Iedema, P.D. The synthesis of new types of lead and zinc soaps: A source of information for the study of oil paint degradation. In Proceedings of the ICOM Comm Conserv 17th Trienn Conf Prepr Melb, Melbourne, Australia, 5–19 September 2014; pp. 15–19. [Google Scholar]
- McGlinchey, C. Handheld XRF for the examination of paintings: Proper use and limitations. In Handheld XRF Art Archaeol; Shugar, A.N., Mass, J.L., Smith, D., Eds.; Leuven University Press: Leuven, Belgium, 2012. [Google Scholar]
- Kuhn, H.; Chase, T.W. Lead white. In Artists Pigments Handb Their Hist Charact Vol 4; Gettens, R.J., Ed.; National Gallery of Art: Washington, DC, USA, 1993. [Google Scholar]
- Kirby, K.; Saunders, D. Fading and Colour Change of Prussian Blue: Methods and Manufacture and the Influence of Extenders. Natl Gallery Tech Bull. 2004, 25, 73–99. [Google Scholar]
- Kuhn, H.; Curran, M. Chrome Yellow and Other Chromate Pigments. In Artists Pigments Handb Their Hist Charact Vol 1; Feller, R.L., Ed.; Cambridge University Press: New York, NY, USA, 1987. [Google Scholar]
- Cesaratto, A.; Leona, M.; Pozzi, F. Recent Advances on the Analysis of Polychrome Works of Art: SERS of Synthetic Colorants and Their Mixtures With Natural Dyes. Front. Chem. 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Centeno, S.A.; Hale, C.; Carò, F.; Cesaratto, A.; Shibayama, N.; Delaney, J.; Dooley, K.; Van Der Snickt, G.; Janssens, K.; Stein, S.A. Van Gogh’s Irises and Roses: The contribution of chemical analyses and imaging to the assessment of color changes in the red lake pigments. Heritage Sci. 2017, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, F.; Eis, E.; Degano, I.; Thoury, M.; Bonaduce, I.; Lluveras-Tenorio, A. The issue of eosin fading: A combined spectroscopic and mass spectrometric approach applied to historical lakes. Dye. Pigment. 2020, 180, 108436. [Google Scholar] [CrossRef]
- Chieli, A.; Miliani, C.; Degano, I.; Sabatini, F.; Tognotti, P.; Romani, A. New insights into the fading mechanism of Geranium lake in painting matrix. Dye Pigment. 2020, 181, 108600. [Google Scholar] [CrossRef]
- Thoury, M.; Elias, M.; Frigerio, J.M.; Barthou, C. Nondestructive Varnish Identification by Ultraviolet Fluorescence Spectroscopy. Appl. Spectrosc. 2007, 61, 1275–1282. [Google Scholar] [CrossRef]
- Stuart, B. Analytical Techniques in Materials Conservation; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007. [Google Scholar]
- Favero, P.A.; Mass, J.; Delaney, J.K.; Woll, A.R.; Hull, A.M.; Dooley, K.A.; Finnefrock, A.C. Reflectance imaging spectroscopy and synchrotron radiation X-ray fluorescence mapping used in a technical study of The Blue Room by Pablo Picasso. Heritage Sci. 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Cogeval, G.; Vuillard, E.; Jones, K.; Des Cars, L.; Gamboni, D.; Stevens, M.A. Édouard Vuillard; Yale University Press: New Haven, CT, USA, 2003. [Google Scholar]
Pigment | UVF | IRR | p-XRF | Raman | µ-FTIR |
---|---|---|---|---|---|
Zinc White | x | x | |||
Lead White | x | x | x | ||
Bone Black | x | x | |||
Umber | x | ||||
Ochre | x | x | |||
Chrome Yellow | x | x * | x | ||
Strontium Yellow | x | ||||
Cadmium Yellow | x | x | |||
Zinc Yellow | x * | x | |||
Chrome Orange | x * | x | |||
Vermilion | x | x | |||
Red Lead | x | ||||
Eosin | x | x ** | |||
Chromium Oxide Green | x | ||||
Prussian Blue | x | x * | |||
Ultramarine | x | x | |||
Cobalt Blue | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, A.; Hartman, D.; Martins, A. Complex Relationships: A Materials Study of Édouard Vuillard’s Interior, Mother and Sister of the Artist. Heritage 2021, 4, 2903-2917. https://doi.org/10.3390/heritage4040162
Haddad A, Hartman D, Martins A. Complex Relationships: A Materials Study of Édouard Vuillard’s Interior, Mother and Sister of the Artist. Heritage. 2021; 4(4):2903-2917. https://doi.org/10.3390/heritage4040162
Chicago/Turabian StyleHaddad, Abed, Diana Hartman, and Ana Martins. 2021. "Complex Relationships: A Materials Study of Édouard Vuillard’s Interior, Mother and Sister of the Artist" Heritage 4, no. 4: 2903-2917. https://doi.org/10.3390/heritage4040162
APA StyleHaddad, A., Hartman, D., & Martins, A. (2021). Complex Relationships: A Materials Study of Édouard Vuillard’s Interior, Mother and Sister of the Artist. Heritage, 4(4), 2903-2917. https://doi.org/10.3390/heritage4040162