Yellow Lake Pigments from Weld in Art: Investigating the Winsor & Newton 19th Century Archive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Methods for Weld Lake Pigments
2.3. Paint References
2.4. Equipment and Characterization Methods
2.4.1. Colorimetry
2.4.2. High-Performance Liquid Chromatography with a Diode Array Detector (HPLC-DAD)
2.4.3. Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-DAD-HRMS)
2.4.4. Fourier Transform Infrared Spectroscopy (FTIR)
3. Results and Discussion
3.1. Weld Lake Pigment Recipes in the Winsor & Newton 19th Century Archive Database
3.2. Extraction Method
3.3. Characterization of the Weld Lake Pigments
3.3.1. HPLC-DAD Analysis
3.3.2. FTIR Analysis
3.4. Infrared Markers of Weld Lake Pigments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cardon, D. Natural Dyes: Sources, Tradition, Technology and Science; Archetype Publications: London, UK, 2007. [Google Scholar]
- Kirby, J.; van Bommel, M.; Verhecken, A. Natural Colorants for Dyeing and Lake Pigments: Practical Recipes and Their Historical Sources; Archetype Publications: London, UK, 2014. [Google Scholar]
- Clarke, M. Colours versus colorants in art history: Evaluating lost manuscript yellows. Rev. História Arte 2011, 1, 138–151. [Google Scholar]
- Zhang, X.; Good, I.; Laursen, R. Characterization of dyestuffs in ancient textiles from Xinjiang. J. Archaeol. Sci. 2008, 35, 1095–1103. [Google Scholar] [CrossRef]
- Liu, J.; Guo, D.; Zhou, Y.; Wu, Z.; Li, W.; Zhao, F.; Zheng, X. Identification of ancient textiles from Yingpan, Xinjiang, by multiple analytical techniques. J. Archaeol. Sci. 2011, 38, 1763–1770. [Google Scholar] [CrossRef]
- Marques, R.; Sousa, M.M.; Oliveira, M.C.; Melo, M.J. Characterization of Weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography-diode array detection-mass spectrometry in Arraiolos historical textiles. J. Chromatog. A 2009, 1216, 1395–1402. [Google Scholar] [CrossRef]
- Nyström, I. Spectroscopic analysis of artists’ pigments and materials used in southern Swedish painted wall hangings from the eighteenth and nineteenth centuries. Stud. Conservat. 2015, 60, 353–367. [Google Scholar] [CrossRef]
- Moiteiro, C.; Gaspar, H.; Rodrigues, A.I.; Lopes, J.F.; Carnide, V. HPLC quantification of dye flavonoids in Reseda luteola L. from Portugal. J. Sep. Sci. 2008, 31, 3683–3687. [Google Scholar] [CrossRef] [PubMed]
- Cristea, D.; Bareau, I.; Vilarem, G. Identification and quantitative HPLC analysis of the main flavonoids present in Weld (Reseda luteola L.). Dyes Pigment. 2003, 57, 267–272. [Google Scholar] [CrossRef]
- Ferreira, E. New Approaches Towards the Identification of Yellow Dyes in Ancient Textiles. Ph.D. Thesis, University of Edinburgh, Edinburgh, Scotland, 2002. [Google Scholar]
- Amat, A.; Clementi, C.; Miliani, C.; Romani, A. Complexation of apigenin and luteolin in weld lake: A DFT/TDDFT investigation. Phys. Chem. 2010, 12, 6672–6684. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Yang, X.; He, J.; Cai, S.; Xiao, K.; Zhu, L. Enhanced antioxidant activity, antibacterial activity and hypoglycemic effect of luteolin by complexation with manganese (II) and its inhibition kinetics on xanthine oxidase. RSC Adv. 2017, 7, 53385–53395. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.G.; Wang, H.; Song, X.L.; Cao, W. Research on the chelation between luteolin and Cr (III) ion through infrared spectroscopy, UV-vis spectrum and theoretical calculations. J. Mol. Struct. 2013, 1034, 386–391. [Google Scholar] [CrossRef]
- Smith, G.J.; Thomsen, S.J.; Markham, K.R.; Andary, C.; Cardon, D. The photostabilities of naturally occurring 5-hydroxyflavones, flavonols, their glycosides and their aluminium complexes. J. Photoch. Photobio. A 2000, 136, 87–91. [Google Scholar] [CrossRef]
- Castro, R.; Miranda, A.; Melo, M.J. Interpreting lac dye in medieval written sources: New knowledge from the reconstruction of recipes relating to illuminations in Portuguese manuscripts. In Sources in Art Technology: Back to Basics; Clarke, M., Townsend, J., Stijnman, A., Eds.; Archetype Publications: London, UK, 2016; pp. 88–99. [Google Scholar]
- Vitorino, T.; Melo, M.J.; Carlyle, L.; Otero, V. New insights into brazilwood manufacture through the use of historically accurate reconstructions. Stud. Conserv. 2015, 61, 255–273. [Google Scholar] [CrossRef]
- Melo, M.J.; Castro, R.; Nabais, P.; Vitorino, T. The book on how to make all the colour paints for illuminating books: Unravelling a Portuguese Hebrew illuminators’ manual. Herit. Sci. 2018, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Vitorino, T.; Otero, V.; Carlyle, L.; Melo, M.J.; Parola, A.J.; Picollo, M. Nineteenth-century cochineal lake pigments from Winsor & Newton: Insight into their methodology through reconstructions. In Proceedings of the ICOM-CC 18th Triennial Conference Preprints, Copenhagen, Denmark, 4–8 September 2017; Bridgland, J., Ed.; Paper 0107. [Google Scholar]
- Nabais, P.; Oliveira, J.; Pina, F.; Teixeira, N.; de Freitas, V.; Brás, N.F.; Clemente, A.; Rangel, M.; Silva, A.M.S.; Melo, M.J. A 1000-year-old mystery solved: Unlocking the molecular structure for the medieval blue from Chrozophora tinctoria, also known as folium. Sci. Adv. 2020, 6, eaaz7772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, M.; Carlyle, L. Page-image recipe databases, a new approach for accessing art technological manuscripts and rare printed sources: The Winsor & Newton archive prototype. In Proceedings of the ICOM-CC 14th Triennial Meeting, The Hague, The Netherlands, 12–16 September 2005; Bridgland, J., Ed.; James & James: London, UK, 2005; Volume 1, pp. 24–29. [Google Scholar]
- Clarke, M.; Carlyle, L. Page-image recipe databases: A new approach to making art technological manuscripts and rare printed sources accessible. In Art of the Past—Sources and Reconstructions; Clarke, M., Townsend, J., Stijnman, A., Eds.; Archetype Publications: London, UK, 2005; pp. 49–52. [Google Scholar]
- Carlyle, L.; Alves, P.; Otero, V.; Melo, M.J.; Vilarigues, M. A question of scale and terminology, extrapolating from past practices in commercial manufacture to current laboratory experience: The Winsor & Newton 19th century artists’ materials archive database. In Proceedings of the ICOM-CC 16th Triennial Meeting, Lisbon, Portugal, 19–23 September 2011; Bridgland, J., Ed.; Paper 0102. [Google Scholar]
- Carlyle, L. The Artist’s Assistant: Oil Painting Instruction Manuals and Handbooks in Britain, 1800–1900, with Reference to Selected Eighteenth-Century Sources; Archetype Publications: London, UK, 2001. [Google Scholar]
- Otero, V.; Pinto, J.V.; Carlyle, L.; Vilarigues, M.; Cotte, M.; Melo, M.J. Nineteenth century chrome yellow and chrome deep from Winsor & NewtonTM. Stud. Conservat. 2017, 62, 123–149. [Google Scholar]
- Otero, V.; Campos, M.F.; Pinto, J.V.; Vilarigues, M.; Carlyle, L.; Melo, M.J. Barium, zinc & strontium yellows in late 19th-early 20th century oil paintings. Herit. Sci. 2017, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Mouri, C.; Mozaffarian, V.; Zhang, X.; Laursen, R. Characterization of flavonols in plants used for textile dyeing and the significance of flavonol conjugates. Dyes Pigment. 2014, 100, 135–141. [Google Scholar] [CrossRef]
- Zhang, X.; Laursen, R.A. Development of mild extraction methods for the analysis of natural dyes in textiles of historical interest using LC-diode array detector-MS. Anal. Chem. 2005, 77, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Favaro, G.; Clementi, C.; Romani, A.; Vickackaite, V. Acidichromism and ionochromism of luteolin and apigenin, the main components of the naturally occurring yellow weld: A spectrophotometric and fluorimetric study. J. Fluoresc. 2007, 17, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Villela, A.; van der Klift, E.J.C.; Mattheussens, E.S.G.M.; Derksen, G.C.H.; Zuilhof, H.; van Beek, T.A. Fast chromatographic separation for the quantitation of the main flavone dyes in Reseda luteola (weld). J. Chromatogr. A 2011, 1218, 8544–8550. [Google Scholar] [CrossRef] [PubMed]
- Villela, A. Textile Dyeing with a Flavonoid Dye: Photo-Stability and Analytical Chemistry Methods. Ph.D. Thesis, Wageningen University, Wageningen, The Netherland, 2020. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Machado, N.F.L.; de Batista Carvalho, L.A.E.; Otero, J.C.; Marques, M.P.M. A conformational study of hydroxyflavones by vibrational spectroscopy coupled to DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 109, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranović, G.; Šegota, S. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 192, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Heneczkowski, M.; Kopacz, M.; Nowak, D.; Kuzniar, A. Infrared spectrum analysis of some flavonoids. Acta Pol. Pharm. Drug Res. 2001, 58, 415–420. [Google Scholar]
- Sanches, D.; Ramos, A.M.; Coelho, J.F.J.; Costa, C.S.M.F.; Vilarigues, M.; Melo, M.J. Correlating thermophysical properties with the molecular composition of 19th century chrome yellow oil paints. Polym. Degrad. Stab. 2017, 138, 201–211. [Google Scholar] [CrossRef]
Production Name | Unique Recipe Code § | Pigment Code | Synthesis Methods |
---|---|---|---|
Yellow from Weld | 4PP148AL01 (copy in P4P088L01) | WL1 | A. To 10 mL of boiling water add 0.2 g of CaCO3 and then slowly add 0.86 g of KAl(SO4)2·12H2O, always stirring. Leave it to rest and decant the solution; keep the precipitate. B. To 50 mL of boiling water add 2 g of weld flowers. Then add 0.014 g of KHCO3 and leave it to boil during 20 min. Filter it and keep the solution. Put the solution B to boil. When boiling, add the precipitate A and leave it boiling for 1 h, always stirring. Leave it to rest for 1 day and filter the yellow lake pigment. |
4PP148AL14 (copy in P4P089L14) | WL2 | A. To 10 mL of boiling water add 0.86 g of KAl(SO4)2·12H2O and then slowly add 0.2 g of CaCO3, always stirring. Leave it to rest and decant the solution; keep the precipitate. B. To 50 mL of boiling water add 2 g of weld flowers. Then add 0.014 g of KHCO3 and leave it to boil during 20 min. Filter it and keep the solution. Put the solution B to boil. When boiling, add the precipitate A and leave it boiling for 1 h, always stirring. Leave it to rest for 1 day and filter the yellow lake pigment. | |
Yellow Lake. Cool tint. | P1P348AL01 (copy in X6P228L01 ¥) | WL3 | To 50 mL of boiling water add 0.43 g of K2CO3. When dissolved add 2 g of weld flowers and leave it to boil during 20 min. Filter it and keep the solution. To the yellow solution add 0.86 g of KAl(SO4)2·12H2O, always stirring. Leave it to rest and filter the yellow lake pigment. |
Weld Yellow | P4P100L10 | WL4 | To 50 mL of boiling water add 0.018 g of K2CO3 and then 4 g of weld flowers. Boil 10 min. Filter it and keep the solution. To the yellow solution add 0.107 g of KAl(SO4)2·12H2O and then 0.07 g of Na2B4O7.10H2O, always stirring. Leave it to rest and filter the yellow lake pigment. |
WL5 | To 50 mL of boiling water add 0.018 g of K2CO3 and then 2 g of weld flowers. Boil 10 min. Filter it and keep the solution. To the yellow solution, add 0.177 g of Al(OH)3, always stirring. Leave it to rest and filter the yellow lake pigment. |
Dye Source | Extraction Method | Complexing Agent | Additives | |||
---|---|---|---|---|---|---|
Weld | Potassium bicarbonate KHCO3 | Potassium carbonate K2CO3 | Alum KAl(SO4) 2 | Hydrated alumina Al(OH)3 | Calcium carbonate CaCO3 | Sodium Borate Na2B4O7 |
Production name | Code | Synthesis | pH extraction 1 | pH final | η (%) 2 | |
Yellow from Weld | WL1 | 6.18 | 4.05 | ηW&N = 25% ηEXP = 31% | ||
WL2 | 6.27 | 3.36 | ηW&N = 18% ηEXP = 32% | |||
Yellow Lake. Cool tint. | WL3 | 9.46 | 3.63 | ηW&N = 12.5% ηEXP = 12% | ||
Weld Yellow | WL4 | 6.02 | 5.07 | ηW&N = n.a. ηEXP = 6% | ||
WL5 | 6.35 | 6.15 | ηW&N = n.a. ηEXP = 9% |
Recipe | HPLC | Infrared |
---|---|---|
WL1 L* = 86.25 ± 0.06 a* = 1.56 ± 0.19 b* = 81.82 ± 1.00 gypsum (●) | ||
WL2 L* = 82.28 ± 0.21 a* = 5.78 ± 0.29 b* = 82.91 ± 0.57 gypsum (●) | ||
WL3 L* = 86.49 ± 0.27 a* = 2.78 ± 0.27 b* = 80.2 ± 0.24 | ||
WL4 L* = 76.93 ± 0.69 a* = 8.81 ± 0.58 b* = 74.93 ± 0.92 | ||
WL5 L* = 85.66 ± 0.13 a* = 0.96 ± 0.15 b* = 75.75 ± 0.06 Al(OH)3 (◆) |
Lut | Lut-7-O-glu | WL3 | WL4 | Literature [32] | |
---|---|---|---|---|---|
Lut | Assignments | ||||
3398 | 3451 | 3390 | 3375 | ~3400 | ν(O3’—H), ν(O7—H), ν(O4′—H) |
3227 | - | - | - | ν(O5—H) | |
- | - | 2931 | 2924 | ||
1666 | 1657 | 1632 | 1632 | 1656 | ν(C=O), ν(C2—C3), δ(O3—H) |
1613 | 1608 | 1589 | 1589 | 1612 | ν(C=O), δ(O—H), δ(O4′—H) |
1575 | - | - | - | 1575 | ν(C=O), δ(O—H), δ(O—H) |
- | 1561 | - | - | 1561 | ν(C2=C3), δ(O5—H), δ(O4′—H), δ(O7—H) |
- | - | 1535 | 1535 | 1518 | δ(O7—H), δ(O—H)A |
1509 | 1499 | 1484 | 1489 | 1507 | δ(O5—H) |
1446 | 1445 | 1456 | δ(O—H)B | ||
- | - | 1438 | 1438 | 1439 | δ(O—H)B, δ(O3—H) |
1383 | 1385 | 1364 | 1360 | 1367 | νs(C—O1—C2), δ(O4′—H) |
1341 | 1346 | - | - | - | n.a. |
- | 1314 | 1313 | δ(O—H), ν(C4′—O) | ||
1307 | - | - | - | 1303 | ν(C4′—O) |
- | 1297 | - | - | 1284 | ν(C4′—O) |
1262 | 1272 | 1263 | 1263 | 1263 | δ(C2—H), ν(C2—O1), ν(C—C), δ(O5—H) |
- | 1226 | - | - | - | n.a. |
1210 | 1208 | - | 1206 | 1210 | δ(O—H)A, ν(C2—O1) |
1186 | 1179 | 1178 | 1173 | 1194 | δ(C6—H), δ(O7—H) |
1160 | - | -- | - | 1162 | δ(O—H)B, δ(O7—H) |
1117 | 1128 | 1106 | 1109 | 1120 | δ(C2—H), δ(O—H)B |
1096 | 1089 | 1077 | 1068 | 1094 | νs(C—O1—C2), ν(C—O1), ν(C3—C4), ϕipA,B, δ(O—H), δ(O7—H) |
1034 | 1030 | 1049 | 1043 | 1031 | νs(C—O1—C2), ϕipA,B, δ(C2—H) |
1003 | - | - | - | 999 | ϕA + ϕipB |
945 | - | - | - | 946 | ϕA,B, Δ(C3—C4=O), ν(O1—C2) |
848 | 840 | 823 | 843 | 839 | γ(C2—H) |
805 | 790 | - | - | n.a. | |
768 | 755 | 765 | 765 | 766 | ϕA |
725 | - | - | - | 728 | ϕopA, Γ(C3—C4=O), γ(O5—H) |
685 | 688 | - | - | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veneno, M.; Nabais, P.; Otero, V.; Clemente, A.; Oliveira, M.C.; Melo, M.J. Yellow Lake Pigments from Weld in Art: Investigating the Winsor & Newton 19th Century Archive. Heritage 2021, 4, 422-436. https://doi.org/10.3390/heritage4010026
Veneno M, Nabais P, Otero V, Clemente A, Oliveira MC, Melo MJ. Yellow Lake Pigments from Weld in Art: Investigating the Winsor & Newton 19th Century Archive. Heritage. 2021; 4(1):422-436. https://doi.org/10.3390/heritage4010026
Chicago/Turabian StyleVeneno, Maria, Paula Nabais, Vanessa Otero, Adelaide Clemente, M. Conceição Oliveira, and Maria João Melo. 2021. "Yellow Lake Pigments from Weld in Art: Investigating the Winsor & Newton 19th Century Archive" Heritage 4, no. 1: 422-436. https://doi.org/10.3390/heritage4010026
APA StyleVeneno, M., Nabais, P., Otero, V., Clemente, A., Oliveira, M. C., & Melo, M. J. (2021). Yellow Lake Pigments from Weld in Art: Investigating the Winsor & Newton 19th Century Archive. Heritage, 4(1), 422-436. https://doi.org/10.3390/heritage4010026