Analyzing Near-Surface Regions of Hydrophobic and Long-Term Weathered Natural Stones at Microscopic Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Investigations
2.2.1. Color Measurements in the CIE System
2.2.2. Microscopic Examinations and X-ray Diffraction Measurements
3. Results and Discussion
3.1. Color Changes
3.2. Microscopic Examinations and X-Ray Diffraction Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia Pascua, N.N.; Sánchez De Rojas, M.I.I.; Frias, M. The Important Role of Colour Measurement in Restoration Works. Use of Consolidants and Water Repellents in Sandstone. In Proceedings of the 8th International Congress on Deterioration of Stone, In Proceedings of the 8th International Congress on Deterioration and Conservation of Stone, Berlin, Germany, 30 September–4 October 1996. [Google Scholar]
- Gibeaux, S.; Thomachot-Schneider, C.; Eyssautier-Chuine, S.; Marin, B.; Vazquez, P. Simulation of acid weathering on natural and artificial building stones according to the current atmospheric SO2/NOx rate. Environ. Earth Sci. 2018, 77, 327. [Google Scholar] [CrossRef]
- Braun, F.; Orlowsky, J. Non-destructive detection of the efficiency of long-term weathered hydrophobic natural stones using single-sided NMR. J. Cult. Herit. 2020, 41, 51–60. [Google Scholar] [CrossRef]
- Benavente, D.; Martínez-Verdú, F.; Bernabeu, A.; Viqueira, V.; Fort, R.; García del Cura, M.A.; Illucea, C.; Ordóñez, S. Influence of surface roughness on color changes in building stones. Color Res. Appl. 2003, 28, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Gorbushina, A.A. Life on the rocks. Environ. Microbiol. 2007, 9, 1613–1631. [Google Scholar] [CrossRef] [PubMed]
- Grossi, C.M.; Brimblecombe, P.; Esbert, R.M.; Alonso, F.J. Color changes in architectural limestones from pollution and cleaning. Color Res. Appl. 2007, 32, 320–331. [Google Scholar] [CrossRef]
- Polo, A.; Gulotta, D.; Santo, N.; Di Benedetto, C.; Fascio, U.; Toniolo, L.; Villa, F.; Cappitelli, F. Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: A molecular study. Biofouling 2012, 28, 1093–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson, C.; McCabe, S.; Warke, P.A.; McAllister, D.; Smith, B.J. The influence of aspect on the biological colonization of stone in Northern Ireland. Int. Biodeterior. Biodegrad. 2013, 84, 357–366. [Google Scholar] [CrossRef]
- Smith, B.J.; McCabe, S.; McAllister, D.; Adamson, C.; Viles, H.; Curran, J.M. A commentary on climate change, stone decay dynamics and the ‘greening’ of natural stone buildings: New perspectives on ‘deep wetting’. Environ. Earth Sci. 2010, 63, 1691–1700. [Google Scholar] [CrossRef]
- Mottershead, D.; Lucas, G. The Role of Lichens in Inhibiting Erosion of a Soluble Rock. Lichenologist 2000, 32, 601–609. [Google Scholar] [CrossRef]
- Barreiro, P.; Andreotti, A.; Colombini, M.; González, P.; Pozo-Antonio, J.S. Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal. Coatings 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Kessler, D.W.; Anderson, R.E. Stone Exposure Test Wall; Building Materials and Structures Report 125; United States Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1951.
- Luckat, S. Die Einwirkungen von Luftverunreinigung auf die Bausubstanz des Kölner Doms IV. Kölner Domblatt Köln 1977, 42, 151–181. [Google Scholar]
- Zappia, G.; Sabbioni, C.; Riontino, C.; Gobbi, G.; Favoni, O.; Cristina, S. Exposure tests of building materials in urban atmosphere. Sci. Total Environ. 1998, 224, 235–244. [Google Scholar] [CrossRef]
- Daly, C. Preliminary results from a legacy indicator tool for measuring climate change related impacts on built heritage. Heritage Sci. 2019, 7, 32. [Google Scholar] [CrossRef]
- Comite, V.; De Buergo, M.Á.; Barca, D.; Belfiore, C.; Bonazza, A.; La Russa, M.F.; Pezzino, A.; Randazzo, L.; Ruffolo, S. Damage monitoring on carbonate stones: Field exposure tests contributing to pollution impact evaluation in two Italian sites. Constr. Build. Mater. 2017, 152, 907–922. [Google Scholar] [CrossRef]
- Brüggerhoff, S.; Wagener-Lohse, C. Gesteinsverwitterung in Freilandversuchsfeldern—Erfahrungen mit ihrer Errichtung und Nutzung. Bautenschutz + Bausanierung 1989, 12, 76–80. [Google Scholar]
- Mirwald, P.W. Umweltbedingte Gesteinszerstörung untersucht mittels Freilandverwitterungsexperimenten. In Sonderheft Bausubstanzerhaltung in der Denkmalpflege. Bautenschutz + Bausanierung; Verlagsges: Oldenburg, Germany, 1986; pp. 24–27. [Google Scholar]
- Orlowsky, J.; Braun, F.; Groh, M. The Influence of 30 Years Outdoor Weathering on the Durability of Hydrophobic Agents Applied on Obernkirchener Sandstones. Buildings 2020, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Braun, F.; Orlowsky, J. Zustandsbewertung Hydrophobierter Natursteine. In Erhaltung von Bauwerken: 6. Kolloquium der Technischen Akademie Esslingen, 22. und 23.; Januar, M., Raupach, H., Eds.; Esslinger Verlag J. F. Schreiber Gmbh: Esslingen, Germany, 2019; pp. 243–250. [Google Scholar]
- Grimm, W.-D. Bildatlas Wichtiger Denkmalgesteine der Bundesrepublik Deutschland, Teil II Bildband, 2; Erweiterte Auflage, Ebner Verlag: Ulm, Germany, 2018; ISBN 978-3-87188-247-0. [Google Scholar]
- DIN 66133:1993-06—Determination of Pore Volume Distribution and Specific Surface Area of Solids by Mercury Intrusion; DIN German Institute for Standardization: Berlin, Germany, 1993.
- Nijland, T.G.; Dubelaar, C.W.; Van Hees, R.P.; Linden, T.J.M. Black weathering of Bentheim and Obernkirchen sandstone. Heron 2003, 48, 179–195. [Google Scholar]
- DIN EN 16581:2015-03—Conservation of Cultural Heritage—Surface Protection for Porous Inorganic Materials—Laboratory Test Methods for The Evaluation of The Performance of Water Repellent Products; DIN German Institute for Standardization: Berlin, Germany, 2014.
- DIN EN 15886:2010-12—Conservation of Cultural Property—Test Methods—Colour Measurement of Surfaces; DIN German Institute for Standardization: Berlin, Germany, 2010.
- Malaga, K.; Mueller, U. Validation and Improvement of Procedures for Performance Testing of Anti-Graffiti Agents on Concrete Surfaces. In Proceedings of the Sixth International Conference Concrete under Severe Conditions Environment & Loading—CONSEC10, Yucatan, Mexico, 7–9 June 2010; pp. 709–716. [Google Scholar]
- García, O.; Malaga, K. Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J. Cult. Heritage 2012, 13, 77–82. [Google Scholar] [CrossRef]
- WTA Merkblatt 3-17: Hydrophobierende Imprägnierung von mineralischen Baustoffen. WTA Merkblatt 3-17-10/D:2010-06; Fraunhofer IRB Verlag: Stuttgart, Germany, 2010.
Stone Type | Baumberger Sandstone (BST) | Schleeriether Sandstone (SST) | Obernkirchener Sandstone (OKS) |
---|---|---|---|
color | yellowish-grey | light green to grey | beige to yellowish-grey |
10 YR 8/2 – 5 Y 7/2 | 5Y 7/2 | 5 Y 8/1 – 5 Y 7/2 | |
mineral content | calcite 55% | quartz 65% | quartz 85% |
quartz 25% | feldspar 5% | rock fragments 10% | |
clay minerals 5% | rock fragments 20% | muscovite 5% | |
glauconite 15% | muscovite 10% | ||
matrix | calcareous-clayey | clayey-chloritic | quartzitic, kaolinitic |
characterization | fine pored fine-grained sandy limestone | fine-grained, moderately sorted sandstone | fine-grained, well sorted quartzitic sandstone |
classification | Wackestone | Litharenite | Quartzarenite |
weathering damages | black gypsum crusts, scaling, sanding | scaling, sanding, salt damage | black crusts, spalling |
total porosity [%] | 20 | 19 | 20 |
bulk density [g/cm3] | 2.17 | 2.15 | 2.16 |
apparent density [g/cm3] | 2.73 | 2.64 | 2.71 |
average pore radius [µm] | 0.5 | 4.1 | 3.4 |
Identification Number | Protective Agent | Chemical Classification |
---|---|---|
0 | untreated | - |
1 | 34% propyl-, 5% octyltrimethoxysilane | silane |
2 | 35% isobutyltrimethoxysilane | silane |
3 | 20% isobutyltrimethoxysilane, 20% tetraethoxysilanhydrolysat | silane + SAE |
4 | 20% isobutyltrimethoxysilane, 20% tetraethoxysilane | silane + SAE |
5 | 75% low-molecular methylethoxysiloxane + tetraethoxysilane | siloxane + SAE |
6 | 7.5% low-molecular methylethoxysiloxane | siloxane |
7 | 6.7% oligomeric methylethoxysiloxane | siloxane |
8 | 5% methyl-/isooctyl silicone resin | silicone resin |
9 | 6.7% oligomeric methyl-/isooctylmethoxysiloxane | siloxane |
10 | 8.3% oligomeric methyl-/isooctylmethoxysiloxane + tetraethoxysilane | siloxane + SAE |
11 | 8% polymeric methylmethoxysiloxane | silicone resin |
Sample | Biogenic Rooting | Penetration Depth Hydrophobing Agent |
---|---|---|
Mean Value [mm] | Mean Value [mm] | |
Agent 5-24a DO | 1.3 (± 0.2) | 2.4 (± 0.2) |
Agent 6-24a DO | 1.2 (± 0.2) | 2.0 (± 0.2) |
Agent 9-24a DO | 1.2 (± 0.4) | 1.1 (± 0.6) |
Agent 5-24a DUI | 1.4 (± 0.2) | 2.6 (± 0.2) |
Agent 6-24a EI | 0.6 (± 0.2) | 1.0 (± 0.1) |
Agent 8-24a EI | 1.2 (± 0.2) | 0.7 (± 0.1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, F.; Orlowsky, J.; Brüggerhoff, S. Analyzing Near-Surface Regions of Hydrophobic and Long-Term Weathered Natural Stones at Microscopic Scale. Heritage 2020, 3, 457-473. https://doi.org/10.3390/heritage3020027
Braun F, Orlowsky J, Brüggerhoff S. Analyzing Near-Surface Regions of Hydrophobic and Long-Term Weathered Natural Stones at Microscopic Scale. Heritage. 2020; 3(2):457-473. https://doi.org/10.3390/heritage3020027
Chicago/Turabian StyleBraun, Franziska, Jeanette Orlowsky, and Stefan Brüggerhoff. 2020. "Analyzing Near-Surface Regions of Hydrophobic and Long-Term Weathered Natural Stones at Microscopic Scale" Heritage 3, no. 2: 457-473. https://doi.org/10.3390/heritage3020027
APA StyleBraun, F., Orlowsky, J., & Brüggerhoff, S. (2020). Analyzing Near-Surface Regions of Hydrophobic and Long-Term Weathered Natural Stones at Microscopic Scale. Heritage, 3(2), 457-473. https://doi.org/10.3390/heritage3020027