Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stones
2.2. Treatments
2.3. Assessment of the Treatments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grossi, C.M.; Brimblecombe, P. Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. Geol. Soc. Lond. Spec. Publ. 2007, 271, 117–130. [Google Scholar] [CrossRef]
- Ortiz, R.; Ortiz, P. Vulnerability Index: A New Approach for Preventive Conservation of Monuments. Int. J. Archit. Herit. 2016, 10, 1078–1100. [Google Scholar] [CrossRef]
- Marqueze, A.L.; Gutiérrez, C.C.; Rodríguez, F.J.A.; Domínguez, M.B.; González, R.F.; Cuenca, C.J.; Ferreiro, J.A.H.; Gómez, J.I.L.; Marcos, I.A.; Nuere, B.R.; et al. Criteria for intervening in stone materials. 2013 review. In COREMANS Project: “Criteria for Working in Stone Materials”; SECRETARÍA GENERAL TÉCNICA; Subdirección General de Documentación y Publicaciones: Madrid, Spain, 2013; pp. 39–108. [Google Scholar]
- ICOMOS. International Chapter for the Conservation and Restoration of Monumets and Sites (The Venice Chapter 1964). In Proceedings of the IInd International Congress of Architects and Technicians of Historic Monuments, Venive, Italy, 25–31 May 1964. [Google Scholar]
- ICOMOS Chapters Adopted by the General Assembly of ICOMOS. Available online: https://www.icomos.org/en/resources/charters-and-texts (accessed on 27 August 2019).
- Aranguren, J.M.L.; Alemany, R.M.E. Intervention criteria in masonry materials. Conclusions from the Conference organized by Spanish Institute for Historic Heritage (February 2002). Bienes Cult. Rev. Inst. Patrim. Hist. Esp. 2003, 76, 1–34. [Google Scholar]
- AENOR. UNE-EN 41810. Conservation of Cultural Heritage. Intervention Criteria for Stone Materials; AENOR: Madrid, Spain, 2017. [Google Scholar]
- AENOR. UNE-EN 15803. Conservation of Cultural Properties. Test Methods. Determination of Water Vapour Permeability; AENOR: Madrid, Spain, 2010. [Google Scholar]
- AENOR. UNE-EN 13755: Natural Stone Test Methods. Determination of Water Absorption at Atmospheric Pressure; AENOR: Madrid, Spain, 2008. [Google Scholar]
- AENOR. UNE-EN 1925, Natural Stone Test Methods. Determination of Water Absorption Coefficient by Capillarity; AENOR: Madrid, Spain, 1999. [Google Scholar]
- AENOR. UNE-EN 14579. Natural Stone Test Methods. Determination of Sound Speed Propagation; AENOR: Madrid, Spain, 2005. [Google Scholar]
- AENOR. UNE-EN 16085. Conservation of Cultural Property. Methodology for Sampling from Materials of Cultural Property. General Rules; AENOR: Madrid, Spain, 2014. [Google Scholar]
- AENOR. UNE-EN 16581. Conservation of Cultural Heritage. Surface Protection for Porous Inorganic Materials. Laboratory Test Methods for the Evaluation of the Performance of Water Repellent Products; AENOR: Madrid, Spain, 2016. [Google Scholar]
- López-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernández-Valle, M.E.; Álvarez de Buergo, M.; Fort, R. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Mater. Charact. 2010, 61, 168–184. [Google Scholar] [CrossRef] [Green Version]
- Zornoza-Indart, A.; Lopez-Arce, P. Silica nanoparticles (SiO2): Influence of relative humidity in stone consolidation. J. Cult. Herit. 2016, 18, 258–270. [Google Scholar] [CrossRef]
- Gheno, G.; Badetti, E.; Brunelli, A.; Ganzerla, R.; Marcomini, A. Consolidation of Vicenza, Arenaria and Istria stones: A comparison between nano-based products and acrylate derivatives. J. Cult. Herit. 2018, 32, 44–52. [Google Scholar] [CrossRef]
- Vicini, S.; Margutti, S.; Moggi, G.; Pedemonte, E. In situ copolymerisation of ethylmethacrylate and methylacrylate for the restoration of stone artefacts. J. Cult. Herit. 2001, 2, 143–147. [Google Scholar] [CrossRef]
- Favaro, M.; Mendichi, R.; Ossola, F.; Simon, S.; Tomasin, P.; Vigato, P.A. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part II: Photo-oxidative and salt-induced weathering of acrylic-silicone mixtures. Polym. Degrad. Stab. 2007, 92, 335–351. [Google Scholar] [CrossRef]
- Carretti, E.; Dei, L. Physicochemical characterization of acrylic polymeric resins coating porous materials of artistic interest. Prog. Org. Coat. 2004, 49, 282–289. [Google Scholar] [CrossRef]
- Dei, L.; Salvadori, B. Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J. Cult. Herit. 2006, 7, 110–115. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Santos Silva, A. Understanding the transport of nanolime consolidants within Maastricht limestone. J. Cult. Herit. 2016, 18, 242–249. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Pozo, J.; Esquivias, L. Stress during Drying of Two Stone Consolidants Applied in Monumental Conservation. J. Sol-Gel Sci. Technol. 2003, 26, 1227–1231. [Google Scholar] [CrossRef]
- Scherer, G.W.; Wheeler, G.S. Silicate consolidants for stone. Key Eng. Mater. 2009, 391, 1–25. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Santos Silva, A. Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Constr. Build. Mater. 2017, 142, 385–394. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Rosatelli, G.; Sfarra, S.; Mascolo, M.C.; Mondelli, C. Eco-compatible protective treatments on an Italian historic mortar (XIV century). J. Cult. Herit. 2017, 25, 135–141. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Suzuki, A.; Ruiz-Agudo, E. Alcohol Dispersions of Calcium Hydroxide Nanoparticles for Stone Conservation. Langmuir 2013, 29, 11457–11470. [Google Scholar] [CrossRef]
- IPCE. The COREMANS Project: ‘Intervention Criteria for Earthen Architecture’; Draft Text; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2017.
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Santos Silva, A. Application Protocol for the Consolidation of Calcareous Substrates by the Use of Nanolimes: From Laboratory Research to Practice. Restor. Build. Monum. 2018, 22, 99–109. [Google Scholar] [CrossRef]
- Pinto, A.P.F.; Rodrigues, J.D. Stone consolidation: The role of treatment procedures. J. Cult. Herit. 2008, 9, 38–53. [Google Scholar] [CrossRef]
- Snethlage, R. Stone Conservation. In Stone in Architecture, 5th ed.; Siegesmund, S., Snethlage, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 415–550. [Google Scholar]
- Jang, J.; Matero, F.G. Performance evaluation of commercial nanolime as a consolidant for friable lime-based plaster. J. Am. Inst. Conserv. 2018, 57, 95–111. [Google Scholar] [CrossRef] [Green Version]
- da Fonseca, B.S.; Pinto, A.P.F.; Piçarra, S.; Montemor, M.F. Artificial aging route for assessing the potential efficacy of consolidation treatments applied to porous carbonate stones. Mater Des. 2017, 120, 10–21. [Google Scholar] [CrossRef]
- De Rosario, I.; Elhaddad, F.; Pan, A.; Benavides, R.; Rivas, T.; Mosquera, M.J. Effectiveness of a novel consolidant on granite: Laboratory and in situ results. Constr. Build. Mater. 2015, 76, 140–149. [Google Scholar] [CrossRef]
- Zornoza-Indart, A.; Lopez-Arce, P.; Leal, N.; Simão, J.; Zoghlami, K. Consolidation of a Tunisian bioclastic calcarenite: From conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Constr. Build. Mater. 2016, 116, 188–202. [Google Scholar] [CrossRef]
- Borsoi, G.; Van Hees, R.; Lubelli, B.; Veiga, R.; Santos Silva, A. Nanolime deposition in Maastricht limestone: Back-migration or accumulation at the absorption surface? In EMABM 2015: Proceedings of the 15th Euroseminar on Microscopy Applied to Building Materials, Delft, The Netherlands, 17–19 June 2015; Delft University of Technology: Delft, The Netherlands, 2015; pp. 77–86. [Google Scholar]
- Taglieri, G.; Otero, J.; Daniele, V.; Gioia, G.; Macera, L.; Starinieri, V.; Elena Charola, A. The biocalcarenite stone of Agrigento (Italy): Preliminary investigations of compatible nanolime treatments. J. Cult. Herit. 2018, 30, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Silva, A.S. Optimization of nanolime solvent for the consolidation of coarse porous limestone. Appl. Phys. A 2016, 122, 846. [Google Scholar] [CrossRef] [Green Version]
- Becerra, J.; Ortiz, P.; Martín, J.M.; Zaderenko, A.P. Nanolimes doped with quantum dots for stone consolidation assessment. Constr. Build. Mater. 2019, 199, 581–593. [Google Scholar] [CrossRef]
- Calvo, J.P.; Regueiro, M. Carbonate rocks in the Mediterranean region—From classical to innovative uses of building stone. Geol. Soc. Lond. Spec. Publ. 2010, 331, 27–35. [Google Scholar] [CrossRef]
- Bello, M.A.; Martín, A. Microchemical Characterization of Building Stone from Seville Cathedral, Spain. Archaeometry 1992, 34, 21–29. [Google Scholar] [CrossRef]
- Guerrero, M.A. Diagnóstico del Estado de Alteración de la Piedra del Palacio Consistorial de Sevilla. Causas y Mecanismos. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 1990. [Google Scholar]
- Ortiz, P.; Guerrero, M.A.; Vázquez, M.A.; Ortiz, R.; Martín, J.M.; Peña, M.C. Accelerated weathering test as environmental behaviour trials on calcareous stone. In Proceedings of the 11th International Congress on Deterioration and Conservation of Stone, Toruń, Poland, 15–20 September 2008; pp. 223–232. [Google Scholar]
- Girginova, P.I.; Galacho, C.; Veiga, R.; Santos Silva, A.; Candeias, A. Inorganic Nanomaterials for Restoration of Cultural Heritage: Synthesis Approaches towards Nanoconsolidants for Stone and Wall Paintings. ChemSusChem 2018, 11, 4168–4182. [Google Scholar] [CrossRef]
- Luna, J.B.; Partida, A.P.Z.; Calderón, P.O. Composición Para la Consolidación de Materiales Carbonatados, Método y Usos. Spain Petent P201831200, 11 December 2018. [Google Scholar]
- Wypych, A. Databook of Solvents; ChemTec Publishing: Toronto, ON, Canada, 2014. [Google Scholar]
- Pinho, L.; Mosquera, M.J. Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings: Influence of particle size and loading. Appl. Catal. B Environ. 2013, 134–135, 205–221. [Google Scholar] [CrossRef]
- Drdácký, M.; Lesák, J.; Niedoba, K.; Valach, J. Peeling tests for assessing the cohesion and consolidation characteristics of mortar and render surfaces. Mater. Struct. Constr. 2015, 48, 1947–1963. [Google Scholar] [CrossRef]
- Sanmartín, P.; Villa, F.; Polo, A.; Silva, B.; Prieto, B.; Cappitelli, F. Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes. Ann. Microbiol. 2015, 65, 1153–1158. [Google Scholar] [CrossRef]
- Graziani, L.; Quagliarini, E.; D’Orazio, M. The role of roughness and porosity on the self-cleaning and anti-biofouling efficiency of TiO2-Cu and TiO2-Ag nanocoatings applied on fired bricks. Constr. Build. Mater. 2016, 129, 116–124. [Google Scholar] [CrossRef]
- García, O.; Malaga, K. Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J. Cult. Herit. 2012, 13, 77–82. [Google Scholar] [CrossRef]
- Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J.R.; Gómez, M.A.; Hortal, A.R.; Martínez-Haya, B. Comparative study of pulsed laser cleaning applied to weathered marble surfaces. Appl. Surf. Sci. 2013, 283, 193–201. [Google Scholar] [CrossRef]
- Franzoni, E.; Pigino, B.; Pistolesi, C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cem. Concr. Compos. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- van Hees, R.; Veiga, R.; Slížková, Z. Consolidation of renders and plasters. Mater. Struct. 2017, 50, 65. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Elert, K.; Ševčík, R. Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: Implications in heritage conservation. CrystEngComm 2016, 18, 6594–6607. [Google Scholar] [CrossRef]
- Patra, M.K.; Manoth, M.; Singh, V.K.; Gowd, G.S.; Choudhry, V.S.; Vadera, S.R.; Kumar, N. Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow. J. Lumin. 2009, 129, 320–324. [Google Scholar] [CrossRef]
- Moan, J. Visible light and UV radiation. In Radiation at Home, Outdoors and in the Workplace; Scandinavian Publisher: Oslo, Norway, 2004; pp. 69–85. [Google Scholar]
- Lee, H.J.; Kim, D.G.; Lee, J.H.; Cho, M.S. A Study for Carbonation Degree on Concrete using a Phenolphthalein Indicator and Fourier-Transform Infrared Spectroscopy. World Acad. Sci. Eng. Technol. 2012, 6, 2–25. [Google Scholar]
- Zoghlami, K. Las Areniscas Miocénicas de la Formación Fortuna Utilizadas en la Construcción del Acueducto Romano de Zaghouan-Cartago. Caracterización Petrofisica, Alterabilidad y Ensayos de Control de Idoneidad de Tratamientos de Restauración. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2003; pp. 163–166. [Google Scholar]
- Macchia, A.; Bettucci, O.; Gravagna, E.; Ferro, D.; Albini, R.; Mazzei, B.; Campanella, L. Calcium hydroxide nanoparticles and hypogeum environment: Test to understand the best way of application. J. Nanomater. 2014, 2014, 167540. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G.; Quaresima, R. The nanolimes in Cultural Heritage conservation: Characterisation and analysis of the carbonatation process. J. Cult. Herit. 2008, 9, 294–301. [Google Scholar] [CrossRef]
Stone | Treatment | Sequence | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Espera | Untreated | MAX | 0.39 | 0.30 | 0.19 | 0.17 | 0.28 | 0.19 | 0.22 | 0.14 | 0.11 | 0.14 |
MIN | 0.11 | 0.14 | 0.11 | 0.03 | 0.08 | 0.06 | 0.00 | 0.03 | 0.08 | 0.03 | ||
SD | 0.14 | 0.08 | 0.04 | 0.07 | 0.10 | 0.07 | 0.12 | 0.14 | 0.02 | 0.06 | ||
SiO2 NPs | MAX | 0.22 | 0.19 | 0.28 | 0.11 | 0.22 | 0.17 | 0.19 | 0.17 | 0.14 | 0.06 | |
MIN | 0.11 | 0.11 | 0.06 | 0.03 | 0.00 | 0.03 | 0.00 | 0.00 | 0.03 | 0.03 | ||
SD | 0.06 | 0.05 | 0.12 | 0.04 | 0.12 | 0.07 | 0.10 | 0.08 | 0.06 | 0.02 | ||
Ca(OH)2/ZnO NPs | MAX | 0.25 | 0.22 | 0.19 | 0.33 | 0.25 | 0.11 | 0.11 | 0.17 | 0.14 | 0.08 | |
MIN | 0.14 | 0.03 | 0.03 | 0.00 | 0.03 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | ||
SD | 0.06 | 0.12 | 0.09 | 0.18 | 0.12 | 0.02 | 0.06 | 0.09 | 0.07 | 0.05 | ||
Puerto de Santa María | Untreated | MAX | 2.33 | 0.97 | 1.11 | 1.05 | 2.24 | 1.41 | 1.14 | 1.52 | 1.61 | 0.39 |
MIN | 0.14 | 0.06 | 0.11 | 0.25 | 0.11 | 0.08 | 0.19 | 0.03 | 0.17 | 0.00 | ||
SD | 1.20 | 0.48 | 0.56 | 0.40 | 1.22 | 0.76 | 0.52 | 0.85 | 0.87 | 0.20 | ||
SiO2 NPs | MAX | 0.14 | 0.08 | 0.14 | 0.06 | 0.17 | 0.06 | 0.11 | 0.08 | 0.19 | 0.11 | |
MIN | 0.11 | 0.06 | 0.03 | 0.03 | 0.03 | 0.00 | 0.08 | 0.06 | 0.03 | 0.00 | ||
SD | 0.02 | 0.02 | 0.07 | 0.02 | 0.07 | 0.03 | 0.02 | 0.02 | 0.08 | 0.06 | ||
Ca(OH)2/ZnO NPs | MAX | 0.58 | 0.39 | 0.30 | 0.28 | 0.61 | 0.47 | 0.22 | 0.22 | 0.06 | 0.14 | |
MIN | 0.47 | 0.17 | 0.17 | 0.19 | 0.25 | 0.11 | 0.06 | 0.08 | 0.03 | 0.03 | ||
SD | 0.06 | 0.11 | 0.07 | 0.04 | 0.19 | 0.18 | 0.10 | 0.08 | 0.02 | 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra, J.; Zaderenko, A.P.; Ortiz, P. Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage. Heritage 2019, 2, 2712-2724. https://doi.org/10.3390/heritage2040168
Becerra J, Zaderenko AP, Ortiz P. Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage. Heritage. 2019; 2(4):2712-2724. https://doi.org/10.3390/heritage2040168
Chicago/Turabian StyleBecerra, Javier, Ana Paula Zaderenko, and Pilar Ortiz. 2019. "Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage" Heritage 2, no. 4: 2712-2724. https://doi.org/10.3390/heritage2040168
APA StyleBecerra, J., Zaderenko, A. P., & Ortiz, P. (2019). Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage. Heritage, 2(4), 2712-2724. https://doi.org/10.3390/heritage2040168