Study of Iron Gall Inks, Ingredients and Paper Composition Using Non-Destructive Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inks
2.2. Proton Induced X-ray Emission (PIXE)
2.3. Evaluation under UV and IR light
2.4. X-ray Diffraction (XRD)
2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
3. Results
3.1. Ingredients
3.2. Inks
3.3. Inks on Paper
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rouchon, V.; Bernard, S. Mapping iron gall ink penetration within paper fibres using scanning transmission X-ray microscopy. J. Anal. At. Spectrom. 2015, 30, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Hahn, O.; Malzer, W.; Kanngiesser, B.; Beckhoff, B. Characterization of iron-gall inks in historical manuscripts and music compositions using x-ray fluorescence spectrometry. X-Ray Spectrom. 2004, 33, 234–239. [Google Scholar] [CrossRef]
- Zaccaron, S.; Potthast, A.; Henniges, U.; Draxler, J.; Prohaska, T.; McGuiggan, P. The disastrous copper. Comparing extraction and chelation treatments to face the threat of copper-containing inks on cellulose. Carbohydr. Polym. 2019, 206, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Strlič, M.; Kolar, J.; Šelih, V.S.; Kočar, D.; Pihlar, B. A comparative study of several transition metals in fenton-like reaction systems at circum-neutral pH. Acta Chim. Slov. 2003, 50, 619–632. [Google Scholar]
- Mitchell, C.A.; Hepworth, T.C. Inks: Their Composition and Manufacture; Charles Griffin & Company, Ltd.: London, UK, 1904. [Google Scholar]
- Remazeilles, C.; Rouchon, V.; Bernard, J.; Calligaro, T.; Dran, J.; Pichon, L.; Salomon, J.; Eveno, M. Influence of Gum Arabic on iron-gall ink corrosion. Restaurator 2005, 26, 118–133. [Google Scholar]
- Rouchon, V.; Duranton, M.; Burgaud, C.; Pellizzi, E.; Lavédrine, B.; Janssens, K.; de Nolf, W.; Nuyts, G.; Vanmeert, F.; Hellemans, K. Room-Temperature Study of Iron Gall Ink Impregnated Paper Degradation under Various Oxygen and Humidity Conditions: Time-Dependent Monitoring by Viscosity and X-ray Absorption Near-Edge Spectrometry Measurements. Anal. Chem. 2011, 83, 2589–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csefalvayová, L.; Havlínová, B.; Čeppan, M.; Jakubíková, Z. The Influence of Iron Gall Ink on Paper Ageing. Restaurator 2007, 28, 129–139. [Google Scholar] [CrossRef]
- Ferrer, N.; Sistach, M.C. Characterisation by FTIR Spectroscopy of Ink Components in Ancient Manuscripts. Restaurator 2005, 26, 105–117. [Google Scholar]
- Strlič, M.; Menart, E.; Cigić, I.K.; Kolar, J.; de Bruin, G.; Cassar, M. Emission of reactive oxygen species during degradation of iron gall ink. Polym. Degrad. Stab. 2010, 95, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Kakuee, O.; Fathollahi, V.; Oliaiy, P.; Lamehi-Rachti, M.; Taheri, R.; Jafarian, H.A. External PIXE analysis of an Iranian 15th century poetry book, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 273, 178–181. [Google Scholar] [CrossRef]
- Viegas, R.; Corregidor, V.; Peña, M.T.; Alves, E.; Alves, L.C. Preliminary studies on iron gall inks composition using an external ion beam. Int. J. Conserv. Sci. 2013, 4, 593–602. [Google Scholar]
- Remazeilles, C.; Quillet, V.; Calligaro, T.; Dran, J.C.; Pichon, L.; Salomon, J. PIXE elemental mapping on original manuscripts with an external microbeam. Application to manuscripts damaged by iron-gall ink corrosion. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 181, 681–687. [Google Scholar] [CrossRef]
- Librando, V.; Minniti, Z.; Lorusso, S. Ancient and modern paper characterization by FTIR and Micro-Raman spectroscopy. Conserv. Sci. Cult. Herit. 2011, 11, 249–268. [Google Scholar]
- Ursescu, M.; Malutan, T.; Ciovica, S. Iron gall inks influence on papers´thermal degradation FTIR spectroscopy applications. Eur. J. Sci. Theol. 2009, 5, 71–85. [Google Scholar]
- Zotti, M.; Ferroni, A.; Calvini, P. Microfungal biodeterioration of historic paper: Preliminary FTIR and microbiological analyses. Int. Biodeterior. Biodegrad. 2008, 62, 186–194. [Google Scholar] [CrossRef]
- Kaminari, A.-A.; Boyatzis, S.C.; Alexopoulou, A. Linking Infrared Spectra of Laboratory Iron Gall Inks Based on Traditional Recipes with their Material Components. Appl. Spectrosc. 2018, 72, 1511–1527. [Google Scholar] [CrossRef]
- Burgaud, C.; Rouchon, V.; Wattiaux, A.; Bleton, J.; Sabot, R.; Refait, P. Determination of the Fe(II)/Fe(III) ratio in iron gall inks by potentiometry: A preliminary study. J. Electroanal. Chem. 2010, 650, 16–23. [Google Scholar] [CrossRef]
- Dzinavatonga, K.; Bharuth-Ram, K.; Medupe, T.R. Mössbauer spectroscopy analysis of valence state of iron in historical documents obtained from the National Library of South Africa. J. Cult. Herit. 2015, 16, 377–380. [Google Scholar] [CrossRef]
- Corregidor, V.; Alves, L.C.; Barradas, N.P.; Reis, M.A.; Marques, M.T.; Ribeiro, J.A. Characterization of mercury gilding art objects by external proton beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2011, 269, 3049–3053. [Google Scholar] [CrossRef]
- Maxwell, J.A.; Teesdale, W.J.; Campbell, J.L. The Guelph PIXE software package II. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1995, 95, 407–421. [Google Scholar] [CrossRef]
- Crystal Impact. 2019. Available online: https://www.crystalimpact.de (accessed on 10 September 2019).
- OMNIC. 2019. Available online: https://www.thermofisher.com/order (accessed on 11 September 2019).
- Andrade, K.C.S.; Carvalho, W.W.P.; Takeiti, C.Y. Cashew Gum (Anacardium occidentale): Evaluation of Chemical and Physical Changes by Thermoplastic Extrusion. Polimeros 2012, 23, 667–671. [Google Scholar] [CrossRef]
- Pantoja-Castro, M.A.; González-Rodríguez, H. Study by infrared spectroscopy and thermogravimetric analysis of Tannins and Tannic acid. Revista latinoamericana de Química 2011, 39, 107–112. [Google Scholar]
- Silverstein, R.M.; Bassler, G.C.; Morril, T.C. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons Inc.: New York, NJ, USA, 1981. [Google Scholar]
- Legras, J.L.; Chuzel, G.; Arnaud, A.; Galzy, P. Natural nitriles and their metabolism. World J. Microbiol. Biotechnol. 1990, 6, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Shun, A.L.K.S.; Tykwinski, R.R. Synthesis of Naturally Occurring Polyynes. Angew. Chem. Int. Ed. 2006, 45, 1034–1057. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Duh, J.; Krstić, D.; Desnica, V.; Fazinić, S. Non-destructive study of iron gall inks in manuscripts. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 417, 96–99. [Google Scholar] [CrossRef]
- Lucarelli, F.; Mandò, P.A. Recent applications to the study of ancient inks with the Florence external-PIXE facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1996, 109–110, 644–652. [Google Scholar] [CrossRef]
- Viegas, R. Compositional Characterization of Iron Gall Inks in Manuscripts Using Non-Destructive Techniques; Instituto Superior Técnico: Lisbon, Portugal, 2014; p. 100. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Proietti, N.; Roselli, G.; Capitani, D.; Pettinari, C.; Pucciarelli, S.; Basileo, S.; Scognamiglio, F. Characterization of Handmade Papers (13th–15th century) from Camerino and Fabriano (Marche, Italy). J. Cult. Herit. 2019. [Google Scholar] [CrossRef]
- Montani, I.; Sapin, E.; Pahud, A.; Margot, P. Enhancement of writings on a damaged medieval manuscript using ultraviolet imaging. J. Cult. Herit. 2012, 13, 226–228. [Google Scholar] [CrossRef]
Paper | Ink #1 | Ink #2 | Ink #3 (Powder) | Ink #3 (Nut) | Ink #3 (Oak) | |
---|---|---|---|---|---|---|
CrI | 79.9 | 74.5 | 70.1 | 76.6 | 64.7 | 73.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corregidor, V.; Viegas, R.; Ferreira, L.M.; Alves, L.C. Study of Iron Gall Inks, Ingredients and Paper Composition Using Non-Destructive Techniques. Heritage 2019, 2, 2691-2703. https://doi.org/10.3390/heritage2040166
Corregidor V, Viegas R, Ferreira LM, Alves LC. Study of Iron Gall Inks, Ingredients and Paper Composition Using Non-Destructive Techniques. Heritage. 2019; 2(4):2691-2703. https://doi.org/10.3390/heritage2040166
Chicago/Turabian StyleCorregidor, Victoria, Rita Viegas, Luís M. Ferreira, and Luís C. Alves. 2019. "Study of Iron Gall Inks, Ingredients and Paper Composition Using Non-Destructive Techniques" Heritage 2, no. 4: 2691-2703. https://doi.org/10.3390/heritage2040166
APA StyleCorregidor, V., Viegas, R., Ferreira, L. M., & Alves, L. C. (2019). Study of Iron Gall Inks, Ingredients and Paper Composition Using Non-Destructive Techniques. Heritage, 2(4), 2691-2703. https://doi.org/10.3390/heritage2040166