Tapping into Synchrotron and Benchtop Circular Dichroism Spectroscopy for Expanding Studies of Complex Polysaccharides and their Interactions in Anoxic Archaeological Wood
Abstract
:1. Introduction
2. Principles of CD Spectroscopy
3. Synchrotron CD (SCD) Spectroscopy: Advantages over Conventional CD Spectroscopy
- (1)
- At wavelengths below 190 nm, the light flux from a synchrotron source is much more intense than that typically available in benchtop instruments. This means that spectra may be obtained well into the vacuum UV range (to 125 nm) where electronic transitions of some carbohydrates and polysaccharides occur. It also permits more accurate determinations of secondary structural features in mixed protein samples and contributes to the distinction of polyproline helix from unordered protein structures [27]. It also provides more information about protein CD spectra; the ability to acquire more reliable spectral data down to 178 nm permits more reliable distinction between protein secondary structures and down to 168 nm permits resolution of further structures including distinctive folds and supersecondary structures [27].
- (2)
- The greater intensity of the synchrotron light source means that the signal-to-noise ratios are much greater than those of spectra measured on conventional benchtop instruments.
- (3)
- The availability of a highly collimated and small cross section beam of synchrotron light allows measurements using very small volume capacity cells of a wide range of pathlengths, from a few microns to 10 cm. This is potentially highly advantageous for facilitating analyses of very small amounts of precious samples.
4. The Composition of Archaeological Wood and Implications for CD Studies
5. CD and SCD Spectroscopy Studies of Cellulose, Cellulose Esters and Cello-Oligosaccharides
6. CD Studies of Lignin
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McReynolds, K.D.; Gervay-Hague, J. Examining the secondary structures of unnatural peptides and carbohydrate-based compounds utilizing circular dichroism. Tetrahed. Asymm. 2000, 11, 337–362. [Google Scholar] [CrossRef]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 2005, 1751, 119–139. [Google Scholar] [CrossRef]
- Zhou, L.; Poh, R.P.C.; Marks, T.S.; Chowdhry, B.Z.; Smith, A.R.W. Structure and denaturation of 4-chlorobenzoyl coenzyme A dehalogenase from Arthrobacter sp. Strain TM1. Biodegradation 2008, 19, 65–75. [Google Scholar] [CrossRef]
- Serdyuk, I.N.; Zaccai, N.R.; Zaccai, J. Optical activity. In Methods in Molecular Biophysics: Structure, Dynamics & Function; Cambridge University Press: Cambridge, UK, 2007; Chapter E4; pp. 601–624. [Google Scholar]
- Ranjbar, B.; Gill, P. Circular dichroism techniques: Biomolecular and nanostructural analyses—A review. Chem. Biol. Drug Des. 2009, 74, 101–120. [Google Scholar] [CrossRef]
- Norden, B.; Rodger, A.; Dafforn, T. Circular dichroism of biomolecules. In Linear Dichroism & Circular Dichroism; Royal Society for Chemistry: Cambridge, UK, 2010; Chapter 2; pp. 15–32. [Google Scholar]
- Patching, S.G.; Edara, S.; Ma, P.; Nakayama, J.; Hussain, R.; Siligardi, G.; Phillips-Jones, M.K. Interactions of the intact FsrC membrane histidine kinase with its pheromone ligand GBAP revealed through synchrotron radiation circular dichroism. Biochim. Biophys. Acta 2012, 1818, 1595–1602. [Google Scholar] [CrossRef] [Green Version]
- Phillips-Jones, M.K.; Patching, S.G.; Edara, S.; Nakayama, J.; Hussain, R.; Siligardi, G. Interactions of the intact FsrC membrane histidine kinase with the tricyclic peptide inhibitor siamycin I revealed through synchrotron radiation circular dichroism. Phys. Chem. Chem. Phys. 2013, 15, 444–447. [Google Scholar] [CrossRef]
- Siligardi, G.; Hussain, R.; Patching, S.G.; Phillips-Jones, M.K. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy. Biochim. Biophys. Acta 2014, 1838, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Phillips-Jones, M.K.; Channell, G.; Kelsall, C.J.; Hughes, C.S.; Ashcroft, A.E.; Patching, S.G.; Dinu, V.; Gillis, R.B.; Adams, G.G.; Harding, S.E. Hydrodynamics of the VanA-type VanS histidine kinase: An extended solution conformation and first evidence for interactions with vancomycin. Sci. Rep. 2017, 7, 46180. [Google Scholar] [CrossRef]
- Rodger, A.; Ismail, M.A. Introduction to circular dichroism. In Spectrometry and Spectrofluorimetry: A Practical Approach; Gore, M., Ed.; Oxford University Press: Oxford, UK, 2000; Chapter 4; pp. 99–139. [Google Scholar]
- Lewis, D.G.; Johnson, W.C., Jr. Optical properties of sugars. VI. Circular dichroism of amylose and glucose oligomers. Biopolymers 1978, 17, 1439–1449. [Google Scholar] [CrossRef]
- Stipanovic, A.J.; Stevens, E.S. Vacuum UV circular dichroism of d-glucans. In Solution Properties of Polysaccharides; Brant, D.A., Ed.; American Chemical Society Symposium Series; ACS Publications: Washington, DC, USA, 1981; Chapter 21; Volume 150, pp. 303–315. [Google Scholar]
- Johnson, W.C., Jr. The circular dichroism of carbohydrates. Adv. Carbohydr. Chem. Biochem. 1987, 45, 73–124. [Google Scholar]
- Wulff, G.; Kubik, S. Circular dichroism and ultraviolet spectroscopy of complexes of amylose. Carbohydr. Res. 1982, 237, 1–10. [Google Scholar] [CrossRef]
- Taniguchi, T.; Monde, K. Chiroptical analysis of glycoconjugates by vibrational circular dichroism (VCD). Trends Glycosci. Glycotechnol. 2007, 19, 147–164. [Google Scholar] [CrossRef]
- Desplanques, S.; Grisel, M.; Malhiac, C.; Renou, F. Stabilizing effect of acacia gum on the xanthan helical conformation in aqueous solution. Food Hydrocol. 2014, 35, 181–188. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Wang, W.; Li, Q.; Feng, W.; Zheng, D.; Zhao, T.; Mao, G.; Yang, L.; Wu, X. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa. Int. J. Biol. Macromol. 2016, 93, 448–458. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Tang, Y.; Xu, Q.; Huang, S.; Yao, J.; Zhang, J.; Lei, Z. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Solution conformation and antioxidant activities in vitro. Carbohydr. Polym. 2016, 136, 527–536. [Google Scholar] [CrossRef]
- Shekarforoush, E.; Faralli, A.; Ndoni, S.; Mendes, A.C.; Chronakis, I.S. Electrospinning of xanthan polysaccharide. Macromol. Mater. Eng. 2017, 302, 1700067. [Google Scholar] [CrossRef]
- Drake, A.F. Circular dichroism. In Protein–Ligand Interactions: Structure and Spectroscopy A Practical Approach; Harding, S.E., Chowdhry, B.Z., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 123–168. [Google Scholar]
- Ralph, J.; Peng, J.; Lu, F.; Hatfield, R.D.; Helm, R.F. Are lignins optically active? J. Agric. Food Chem. 1999, 47, 2991–2996. [Google Scholar] [CrossRef]
- Sutherland, J.C.; Desmond, E.J.; Takacs, P.Z. Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm. Nucl. Instrum. Meth. 1980, 172, 195–199. [Google Scholar] [CrossRef]
- Snyder, P.A.; Rowe, E.M. The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements. Nucl. Instrum. Meth. 1980, 172, 345–349. [Google Scholar] [CrossRef]
- Wallace, B.A. Shining new light on protein structure and function through synchrotron radiation circular dichroism (SRCD) spectroscopy. Aust. Biochem. 2005, 36, 47–50. [Google Scholar]
- Matsuo, K.; Gekko, K. Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry. Carbohydr. Res. 2004, 339, 591–597. [Google Scholar] [CrossRef]
- Miles, A.J.; Wallace, B.A. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem. Soc. Rev. 2006, 35, 39–51. [Google Scholar] [CrossRef]
- Wu, P.; Yu, Y.; McGhee, C.E.; Tan, L.-H.; Lu, Y. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials. Adv. Mater. 2014, 26, 7849–7872. [Google Scholar] [CrossRef]
- Miles, A.J.; Wallace, B.A. Circular dichroism spectroscopy of membrane proteins. Chem. Soc. Rev. 2016, 45, 4859–4872. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, K. Vacuum-ultraviolet circular dichroism study of oligosaccharides using a synchrotron-radiation spectrophotometer. Biomed. Spectrosc. Imaging 2017, 6, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075–8098. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Björdal, C.G.; Felby, C. Bacterial degradation of archaeological wood in anoxic waterlogged environments. In Stability of Complex Carbohydrate Structures—Biofuel, Foods, Vaccines and Shipwrecks; Harding, S.E., Ed.; Royal Society of Chemistry: Cambridge, UK, 2012; pp. 160–187. [Google Scholar]
- Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 2015, 6, 7564. [Google Scholar] [CrossRef] [Green Version]
- Meissner, D.; Einfeldt, J.; Schareina, T. New results concerning the behaviour of cellulose acetate in solutions and films by means of CD measurements. Biopolymers 1999, 50, 163–166. [Google Scholar] [CrossRef]
- Johnson, W.C., Jr. A circular dichroism spectrometer for the vacuum ultraviolet. Rev. Sci. Instrum. 1971, 42, 1283–1286. [Google Scholar] [CrossRef]
- Stevens, E.S.; Morris, E.R.; Rees, D.A.; Sutherland, J.C. Synchrotron light source applied to measuring the vacuum ultraviolet circular dichroism of heparin. J. Am. Chem. Soc. 1985, 107, 2982–2983. [Google Scholar] [CrossRef]
- Ritcey, A.M.; Gray, D.G. Induced CD provides evidence for helical solution conformation in cellulosic chains. Biopolymers 1988, 27, 479–491. [Google Scholar] [CrossRef]
- Engle, A.R.; Purdie, N.; Hyatt, J.A. Induced circular dichroism study of the aqueous solution complexation of cello-oligosaccharides and related polysaccharides with aromatic dyes. Carbohydr. Res. 1994, 265, 181–195. [Google Scholar] [CrossRef]
- Dong, X.M.; Gray, D.G. Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 1997, 13, 3029–3034. [Google Scholar] [CrossRef]
- Woodcock, S.; Henrissat, B.; Sugiyama, J. Docking of Congo red to the surface of crystalline cellulose using molecular mechanics. Biopolymers 1995, 36, 201–210. [Google Scholar] [CrossRef]
- Mazeau, K.; Wyszomirski, M. Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 2012, 19, 1495–1506. [Google Scholar] [CrossRef] [Green Version]
- Conley, K.; Whitehead, M.A.; van de Ven, T.G.M. Probing the structural chirality of crystalline cellulose with induced circular dichroism. Cellulose 2017, 24, 479–486. [Google Scholar] [CrossRef]
- Miyamoto, H.; Yuguchi, Y.; Rein, D.M.; Cohen, Y.; Ueda, K.; Yamane, C. Structure of cellulose/direct dye complex regenerated from supercritical water. Cellulose 2016, 23, 2099–2115. [Google Scholar] [CrossRef]
- Conley, K.M.; Godbout, L.; Whitehead, M.A.; van de Ven, T.G.M. Reversing the structural chirality of cellulosic nanomaterials. Cellulose 2017, 24, 5455–5462. [Google Scholar] [CrossRef]
- Mortensen, M.N.; Egsgaard, H.; Hvilsted, S.; Shashoua, Y.; Glastrup, J. Characterisation of the polyethylene glycol impregnation of the Swedish warship Vasa and one of the Danish Skuldelev Viking ships. J. Archaeol. Sci. 2007, 34, 1211–1218. [Google Scholar] [CrossRef]
- Hocker, E.; Almkvist, G.; Sahlstedt, M. The Vasa experience with polyethylene glycol: A conservator’s perspective. J. Cult. Herit. 2012, 13, S175–S182. [Google Scholar] [CrossRef]
- Schofield, E.J. Illuminating the past: X-ray analysis of our cultural heritage. Nat. Rev. Mater. 2018, 3, 285–287. [Google Scholar] [CrossRef]
- McHale, E. Development of Lignin-Like Oligomers for the Consolidation of Waterlogged Archaeological Wood. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2018. [Google Scholar]
- Braovac, S.; Kutzke, H. The presence of sulfuric acid in alumconserved wood—Origin and consequences. J. Cult. Herit. 2012, 13, S203–S208. [Google Scholar] [CrossRef]
- Braovac, S. Alum-Treated Wood, Material Characterisation, a Case Study of the Oseberg Finds; The Royal Danish Academy of Fine Arts: Copenhagen, Denmark, 2015. [Google Scholar]
- Andriulo, F.; Braovac, S.; Kutzke, H.; Giorgi, R.; Baglioni, P. Nanotechnologies for the restoration of alum-treated archaeological wood. Appl. Phys. A 2016, 122, 322. [Google Scholar] [CrossRef]
- Wakefield, J.M.K.; Gillis, R.B.; Adams, G.G.; McQueen, C.M.A.; Harding, S.E. Controlled depolymerisation assessed by analytical ultracentrifugation of low molecular weight chitosan for use in archaeological conservation. Eur. Biophys. J. 2018, 47, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Walsh, Z.; Janeček, E.-R.; Hodgkinson, J.T.; Sedlmair, J.; Koutsioubas, A.; Spring, D.R.; Welch, M.; Hirschmugl, C.J.; Toprakcioglu, C.; Nitschke, J.R.; et al. Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation. Proc. Natl. Acad. Sci. USA 2014, 111, 17743–17748. [Google Scholar] [CrossRef] [Green Version]
- Schofield, E.J.; Delaveris, C.; Sarangi, R. Alkaline earth carbonates for the treatment of problematic sulfur associated with marine archaeological wood. J. Archaeol. Sci. 2015, 4, 427–433. [Google Scholar]
- Schofield, E.J.; Sarangi, R.; Mehta, A.; Jones, A.M.; Smith, A.; Mosselmans, J.F.W.; Chadwick, A.V. Strontium carbonate nanoparticles for the surface treatment of problematic sulfur and iron in waterlogged archaeological wood. J. Cult. Herit. 2016, 18, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.; Larnøy, E.; Kutzke, H.; Hansen, F.K. Treatment of waterlogged archaeological wood using chitosan- and modifed chitosan solutions. Part 1: Chemical compatibility and microstructure. J. Am. Inst. Conserv. 2015, 54, 3–13. [Google Scholar] [CrossRef]
- Walsh, Z.; Janeček, E.-R.; Jones, M.; Scherman, O.A. Natural polymers as alternative consolidants for the preservation of waterlogged archaeological wood. Stud. Conserv. 2017, 62, 173–183. [Google Scholar] [CrossRef]
- McHale, E.; Braovac, S.; Steindal, C.C.; Gillis, R.B.; Adams, G.G.; Harding, S.E.; Benneche, T.; Kutzke, H. Synthesis and characterization of lignin-like oligomers as a bio-inspired consolidant for waterlogged archaeological wood. Pure Appl. Chem. 2016, 88, 969–977. [Google Scholar] [CrossRef]
- McHale, E.; Steindal, C.C.; Kutzke, H.; Benneche, T.; Harding, S.E. In situ polymerization of isoeugenol as a green consolidation method for waterlogged archaeological wood. Sci. Rep. 2017, 7, 46481. [Google Scholar] [CrossRef] [PubMed]
- Kaya, F.; Heitmann, J.A.; Joyce, T.W. Influence of lignin and its degradation products on enzymatic hydrolysis of xylan. J. Biotechnol. 2000, 80, 241–247. [Google Scholar] [CrossRef]
- Durán, N.; Mansilla, H.; Leite, L.C.C.; Faljoni-Alario, A. Peroxidase-hydrogen peroxide system acting on lignin. J. Inorg. Biochem. 1988, 34, 105–115. [Google Scholar] [CrossRef]
Cellulose Form. | Solution or Film (Solid State) CD | Solvent | Number of Spectral Peak Maxima | Positive or Negative CD | Approx Wavelength of Spectral Maxima (nm) | Reference |
---|---|---|---|---|---|---|
Cellulose triacetate | Film | Trifluoroethanol | 1 | Large negative | 170 | [13] |
Cellulose acetate | Film | Acetonitrile | 1 | Positive | 225 | [35] |
Acetone | 1 | Negative | 218 | [35] | ||
Dioxane | 1 | Negative | 215 | [35] | ||
Solution | Dioxane | 1 | Positive | 213 | [35] | |
Dioxane/acetonitrile (3:1) | 1 | Positive | 213 | [35] | ||
Dioxane/acetonitrile (1:1) | 1 | Negative | 213 | [35] | ||
Acetonitrile | 1 | Negative | 213 | [35] | ||
Acetonitrile/Water (8:2) | 1 | Negative | 213 | [35] | ||
Cellulose triacetate | Film | Trifluoroethanol | 2 | Large negative | 175, 150 | [13,14] |
Cello-oligosaccharides | Solution | Water | 1 | Positive | 174 | [12,26,30] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips-Jones, M.K.; Harding, S.E. Tapping into Synchrotron and Benchtop Circular Dichroism Spectroscopy for Expanding Studies of Complex Polysaccharides and their Interactions in Anoxic Archaeological Wood. Heritage 2019, 2, 121-134. https://doi.org/10.3390/heritage2010009
Phillips-Jones MK, Harding SE. Tapping into Synchrotron and Benchtop Circular Dichroism Spectroscopy for Expanding Studies of Complex Polysaccharides and their Interactions in Anoxic Archaeological Wood. Heritage. 2019; 2(1):121-134. https://doi.org/10.3390/heritage2010009
Chicago/Turabian StylePhillips-Jones, Mary K., and Stephen E. Harding. 2019. "Tapping into Synchrotron and Benchtop Circular Dichroism Spectroscopy for Expanding Studies of Complex Polysaccharides and their Interactions in Anoxic Archaeological Wood" Heritage 2, no. 1: 121-134. https://doi.org/10.3390/heritage2010009
APA StylePhillips-Jones, M. K., & Harding, S. E. (2019). Tapping into Synchrotron and Benchtop Circular Dichroism Spectroscopy for Expanding Studies of Complex Polysaccharides and their Interactions in Anoxic Archaeological Wood. Heritage, 2(1), 121-134. https://doi.org/10.3390/heritage2010009