On Underdispersed Count Kernels for Smoothing Probability Mass Functions
Abstract
:1. Introduction
2. Some Properties of Underdispersed Count Distributions
- The double Poisson pmf is defined by
- The gamma-count pmf for the number of events within the time interval is given, with , throughSee Winkelmann [16] for further details, Zeviani et al. [17] for an application to regression model, and also [15].Numerically and from Figure 1, we can observe that the mean of the gamma-count distribution is almost always a constant around ; specifically, by zooming in, we notice that the shape of the curve is logarithmic or approximately linear in for fixed . The same fact is observed for its mode, as shown in Figure 2. We also note that Figure 2 highlights the role of as a shape or location parameter and as a scale or dispersion parameter of the gamma-count distribution. Hence, the variance of the gamma-count distribution can be seen as a function of .
- The CoM-Poisson distribution with location parameter and dispersion parameter ( for underdispersion) such that its pmf is defined by
3. Associated Kernel Versions
- (i)
- the mode m of always belongs to ;
- (ii)
- if μ is the mean of , then , where denotes the integer part.
4. Simulation Studies and an Application to Real Data
- Scenario A is generated by using the Poisson distribution
- Scenario B comes from the zero-inflated Poisson distribution
- Scenario C is from a mixture of two Poisson distributions
- Scenario D comes from a mixture of three Poisson distributions
5. Summary and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
cmp | CoM-Poisson |
dp | Double Poisson |
gc | gamma-count |
iid | Independent and identically distributed |
ISE | Integrated squared error |
pmf | Probability mass functions |
Appendix A. Some Other Underdispersed Count Distributions for Kernels Attempts
- The BerPoi distribution has its pmf,
- The generalized Poisson (GP) is defined through its pmf asWe thus obtain underdispersion for .
- The pmf of the so-called Underdispersed Poisson distribution of Singh et al. [27] is given, for and , by
- The BerG distribution is defined byThis model presents overdispersion, equidispersion and underdispersion for , and , respectively. See Bourguignon and de Medeiros [28] for further details.
- The hyper-Poisson distribution, initially proposed by Bardwell and Crow [29], is defined as follows:
Appendix B. Local Bayesian Bandwidths of Discrete Kernels
References
- Harfouche, L.; Adjabi, S.; Zougab, N.; Funke, B. Multiplicative bias correction for discrete kernels. Stat. Methods Appl. 2018, 27, 253–276. [Google Scholar] [CrossRef]
- Somé, S.M.; Kokonendji, C.C.; Belaid, N.; Adjabi, S.; Abid, R. Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics. Stat. Methods Appl. 2023, 32, 843–865. [Google Scholar] [CrossRef]
- Racine, J.S.; Li, Q. Nomparametric estimation of regression functions with both categorical and continuous data. J. Econom. 2004, 119, 99–130. [Google Scholar] [CrossRef]
- Kokonendji, C.C.; Senga Kiessé, T. Discrete associated kernels method and extensions. Stat. Methodol. 2011, 8, 497–516. [Google Scholar] [CrossRef]
- Aitchison, J.; Aitken, C.G.G. Multivariate binary discrimination by the kernel method. Biometrika 1976, 63, 413–420. [Google Scholar] [CrossRef]
- Wang, M.; Van Ryzin, J. A class of smooth estimators for discrete distributions. Biometrika 1981, 68, 301–309. [Google Scholar] [CrossRef]
- Huang, A.; Sippel, L.; Fung, T. Consistent second-order discrete kernel smoothing using dispersed Conway-Maxwell-Poisson kernels. Comput. Stat. 2022, 37, 551–563. [Google Scholar] [CrossRef]
- Esstafa, Y.; Kokonendji, C.C.; Somé, S.M. Asymptotic properties of the normalised discrete associated-kernel estimator for probability mass function. J. Nonparametric Stat. 2023, 35, 355–372. [Google Scholar] [CrossRef]
- Sánchez-Borrego, I.; Opsomer, J.D.; Rueda, M.; Arcos, A. Nonparametric estimation with mixed data types in survey sampling. Rev. Mat. Complut. 2014, 27, 685–700. [Google Scholar] [CrossRef]
- Hsiao, C.; Li, Q.; Racine, J.S. A consistent model specification test with mixed discrete and continuous data. J. Econ. 2007, 140, 802–826. [Google Scholar] [CrossRef]
- Li, Q.; Racine, J.S. Nonparametric Econometrics: Theory and Practice; Princeton University Press: Princeton, NJ, USA, 2023. [Google Scholar]
- Kokonendji, C.C.; Somé, S.M. On multivariate associated kernels to estimate general density functions. J. Korean Stat. Soc. 2018, 47, 112–126. [Google Scholar] [CrossRef]
- Chu, C.Y.; Henderson, D.J.; Parmeter, C.F. Plug-in bandwidth selection for kernel density estimation with discrete data. Econometrics 2015, 3, 199–214. [Google Scholar] [CrossRef]
- Efron, B. Double exponential families and their use in generalized linear regression. J. Am. Stat. Assoc. 1986, 81, 709–721. [Google Scholar] [CrossRef]
- Toledo, D.; Umetsu, C.A.; Camargo, A.F.M.; Rodrigues De Lara, I.A. Flexible models for non-equidispersed count data: Comparative performance of parametric models to deal with underdispersion. AStA Adv. Stat. Anal. 2022, 106, 473–497. [Google Scholar] [CrossRef]
- Winkelmann, R. Duration dependence and dispersion in count-data models. J. Bus. Econ. Stat. 1995, 3, 467–474. [Google Scholar]
- Zeviani, W.M.; Ribeiro, P.J., Jr.; Bonat, W.H.; Shimakura, S.E.; Muniz, J.A. The Gamma-count distribution in the analysis of experimental underdispersed data. J. Appl. Stat. 2014, 41, 2616–2626. [Google Scholar] [CrossRef]
- Jin, X.; Kawczak, J. Birnbaum-Saunder and lognormal kernel estimators for modelling durations in high frequency financial data. Ann. Econom. Financ. 2003, 4, 103–1024. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://cran.r-project.org/ (accessed on 28 March 2023).
- Swihart, B.; Lindsey, J. Rmutil: Utilities for Nonlinear Regression and Repeated Measurements Models, R Package Version 1.1.0. 2017. Available online: https://CRAN.R-project.org/package=rmutil (accessed on 28 March 2023).
- Wansouwé, W.E.; Somé, S.M.; Kokonendji, C.C. Ake: An R package for discrete and continuous associated kernel estimations. R J. 2016, 8, 258–276. [Google Scholar] [CrossRef]
- Fung, T.; Alwan, A.; Wishart, J.; Huang, A. Mpcmp: Mean-Parametrized Conway-Maxwell Poisson (COM-Poisson) Regression, R Package Version 0.3.6. 2020. Available online: https://cran.r-project.org/web/packages/mpcmp/index.html (accessed on 28 March 2023).
- Cahoy, D.; Di Nardo, E.; Polito, F. Flexible models for overdispersed and underdispersed count data. Stat. Pap. 2021, 62, 2969–2990. [Google Scholar] [CrossRef]
- Louzayadio, C.G.; Malouata, R.O.; Koukouatikissa, M.D. A weighted Poisson distribution for underdispersed count data. Int. J. Stat. Probab. 2021, 10, 157. [Google Scholar] [CrossRef]
- Bourguignon, M.; Gallardo, D.I.; Medeiros, R.M. A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution. Stat. Pap. 2022, 63, 821–848. [Google Scholar] [CrossRef]
- Harris, T.; Yang, Z.; Hardin, J.W. Model. Underdispersed Count Data Gen. Poisson Regression. Stata J. 2012, 12, 736–747. [Google Scholar] [CrossRef]
- Singh, B.P.; Singh, G.; Das, U.D.; Maurya, D.K. An Under-Dispersed Discrete Distribution and Its Application. J. Stat. Appl. Probab. Lett. 2021, 8, 205–213. [Google Scholar]
- Bourguignon, M.; de Medeiros, R.M. A simple and useful regression model for fitting count data. Test 2022, 31, 790–827. [Google Scholar] [CrossRef]
- Bardwell, G.E.; Crow, E.L. A two-parameter family of hyper-Poisson distributions. J. Am. Stat. Assoc. 1964, 9, 133–141. [Google Scholar] [CrossRef]
- Sáez-Castillo, A.J.; Conde-Sánchez, A. A hyper-Poisson regression model for overdispersed and underdispersed count data. Comput. Stat. Data Anal. 2013, 61, 148–157. [Google Scholar] [CrossRef]
20 | 0.14757 | 1.37290 | 0.07343 | 51.82259 |
50 | 0.22256 | 4.63862 | 0.14665 | 126.42510 |
100 | 0.42298 | 10.53522 | 0.16610 | 263.30720 |
250 | 0.79673 | 17.08182 | 0.25914 | 467.66510 |
500 | 1.82560 | 32.71456 | 0.49030 | 945.52740 |
A | 10 | 9.2240 (7.9708) | 8.2596 (6.9910) | 24.5732 (19.0226) | 17.7012 (23.1386) |
25 | 3.4346 (2.2426) | 4.0327 (2.5589) | 8.5250 (5.8778) | 9.3622 (11.2054) | |
50 | 2.9191 (2.0443) | 3.5842 (2.7603) | 4.5986 (3.0472) | 5.4105 (4.0815) | |
100 | 1.8657 (1.2710) | 2.0070 (1.6637) | 2.2286 (1.3852) | 2.7595 (2.2578) | |
250 | 0.9299 (0.7017) | 0.9670 (0.7401) | 1.2736 (0.8046) | 1.2511 (0.9823) | |
500 | 0.5621 (0.3472) | 0.5906 (0.3923) | 1.2451 (0.6987) | 0.3669 (0.3047) | |
B | 10 | 9.9963 (8.2902) | 10.4663 (8.8282) | 25.3129 (13.1625) | 26.0588 (26.1514) |
25 | 4.9811 (3.2787) | 5.4373 (4.2802) | 11.1561 (5.4033) | 10.5811 (8.4023) | |
50 | 3.1851 (2.2039) | 3.2929 (2.6541) | 5.0259 (3.1212) | 5.7034 (3.4369) | |
100 | 2.2802 (1.2304) | 1.8941 (1.3242) | 2.8072 (1.4701) | 3.3802 (2.0909) | |
250 | 1.7360 (0.7059) | 1.0332 (0.6626) | 1.3826 (0.6745) | 1.0374 (0.7745) | |
500 | 1.5323 (0.5410) | 0.6010 (0.6010) | 0.8543 (0.3585) | 0.6245 (0.4315) | |
C | 10 | 10.1931 (7.5874) | 11.2862 (7.3767) | 20.3614 (10.5060) | 23.3991 (20.7747) |
25 | 5.3461 (3.8926) | 5.3975 (3.5143) | 8.1700 (4.1344) | 10.5258 (8.6422) | |
50 | 4.1610 (2.9936) | 4.0950 (2.6204) | 4.8990 (3.1218) | 5.0903 (4.2856) | |
100 | 2.9958 (2.0992) | 2.1094 (1.7659) | 2.8961 (2.6908) | 3.0479 (2.1213) | |
250 | 2.6143 (1.7647) | 1.5706 (1.2562) | 2.0777 (2.4729) | 0.8465 (0.5463) | |
500 | 2.3825 (1.4641) | 1.0457 (1.1703) | 1.6664 (2.4254) | 0.4847 (0.2213) | |
D | 10 | 4.8289 (2.9155) | 4.9263 (2.9017) | 27.3001 (10.7675) | 10.7178 (20.0109) |
25 | 2.3274 (1.5628) | 2.5004 (1.5756) | 9.4341 (3.6559) | 9.8068 (9.6282) | |
50 | 1.6284 (1.0325) | 1.8046 (1.2067) | 4.8759 (1.9313) | 2.1646 (1.8732) | |
100 | 0.9935 (0.4916) | 1.0355 (0.6685) | 2.4179 (0.9076) | 1.1866 (0.7682) | |
250 | 0.5522 (0.5522) | 0.5493 (0.3678) | 0.9362 (0.4277) | 0.4444 (0.3726) | |
500 | 0.4297 (0.2286) | 0.3738 (0.2110) | 0.5068 (0.1881) | 0.3746 (0.2075) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokonendji, C.C.; Somé, S.M.; Esstafa, Y.; Bourguignon, M. On Underdispersed Count Kernels for Smoothing Probability Mass Functions. Stats 2023, 6, 1226-1240. https://doi.org/10.3390/stats6040076
Kokonendji CC, Somé SM, Esstafa Y, Bourguignon M. On Underdispersed Count Kernels for Smoothing Probability Mass Functions. Stats. 2023; 6(4):1226-1240. https://doi.org/10.3390/stats6040076
Chicago/Turabian StyleKokonendji, Célestin C., Sobom M. Somé, Youssef Esstafa, and Marcelo Bourguignon. 2023. "On Underdispersed Count Kernels for Smoothing Probability Mass Functions" Stats 6, no. 4: 1226-1240. https://doi.org/10.3390/stats6040076
APA StyleKokonendji, C. C., Somé, S. M., Esstafa, Y., & Bourguignon, M. (2023). On Underdispersed Count Kernels for Smoothing Probability Mass Functions. Stats, 6(4), 1226-1240. https://doi.org/10.3390/stats6040076