A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items
Abstract
:1. Introduction
Purpose
2. Limited Information Methods for Local Dependence
2.1. Pairwise Maximum Likelihood Estimation (PML)
2.2. Weighted Least Squares Estimation (DWLS and ULS)
2.3. NOHARM Estimation
3. Simulation Study
3.1. Methodology
3.2. Results
4. Empirical Examples
4.1. Dataset data.read
4.2. Dataset data.pisaMath
5. Discussion
5.1. Merits
5.2. Limitations
5.3. Meaning of Local Dependence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2PL | two-parameter logistic |
2PNO | two-parameter normal-ogive |
DWLS | diagonally weighted least squares |
IRF | item response function |
IRT | item response theory |
MML | marginal maximum likelihood |
NOHARM | normal-ogive harmonic analysis robust method |
PML | pairwise maximum likelihood |
ULS | unweighted least squares |
WLS | weighted least squares |
WNOHARM | weighted normal-ogive harmonic analysis robust method |
References
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Item Response Theory—A Statistical Framework for Educational and Psychological Measurement. 2023. Epub Ahead of Print. Available online: https://imstat.org/journals-and-publications/statistical-science/statistical-science-future-papers/ (accessed on 27 April 2024).
- van der Linden, W.J. Unidimensional logistic response models. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 11–30. [Google Scholar]
- Yen, W.M.; Fitzpatrick, A.R. Item response theory. In Educational Measurement; Brennan, R.L., Ed.; Praeger Publishers: Westport, CT, USA, 2006; pp. 111–154. [Google Scholar]
- Bock, R.D.; Moustaki, I. Item response theory in a general framework. In Handbook of Statistics, Vol. 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 469–513. [Google Scholar] [CrossRef]
- Bock, R.D.; Aitkin, M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 1981, 46, 443–459. [Google Scholar] [CrossRef]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Lord, F.M., Novick, M.R., Eds.; MIT Press: Reading, MA, USA, 1968; pp. 397–479. [Google Scholar]
- Lord, F.M.; Novick, R. Statistical Theories of Mental Test Scores; Addison-Wesley: Reading, MA, USA, 1968. [Google Scholar]
- Camilli, G. Origin of the scaling constant d = 1.7 in item response theory. J. Educ. Behav. Stat. 1994, 19, 293–295. [Google Scholar] [CrossRef]
- Savalei, V. Logistic approximation to the normal: The KL rationale. Psychometrika 2006, 71, 763–767. [Google Scholar] [CrossRef]
- Camilli, G. The scaling constant D in item response theory. Open J. Stat. 2017, 7, 780–785. [Google Scholar] [CrossRef]
- Cho, E. Interchangeability between factor analysis, logistic IRT, and normal ogive IRT. Front. Psychol. 2023, 14, 1267219. [Google Scholar] [CrossRef] [PubMed]
- Bradlow, E.T.; Wainer, H.; Wang, X. A Bayesian random effects model for testlets. Psychometrika 1999, 64, 153–168. [Google Scholar] [CrossRef]
- Tuerlinckx, F.; De Boeck, P. Non-modeled item interactions lead to distorted discrimination parameters: A case study. Methods Psychol. Res. 2001, 6, 2. Available online: http://tinyurl.com/mrydstwz (accessed on 27 April 2024).
- Braeken, J.; Tuerlinckx, F.; De Boeck, P. Copula functions for residual dependency. Psychometrika 2007, 72, 393–411. [Google Scholar] [CrossRef]
- Ip, E.H. Testing for local dependency in dichotomous and polytomous item response models. Psychometrika 2001, 66, 109–132. [Google Scholar] [CrossRef]
- Wang, W.C.; Wilson, M. The Rasch testlet model. Appl. Psychol. Meas. 2005, 29, 126–149. [Google Scholar] [CrossRef]
- Hoskens, M.; De Boeck, P. A parametric model for local dependence among test items. Psychol. Methods 1997, 2, 261–277. [Google Scholar] [CrossRef]
- Marais, I.; Andrich, D. Effects of varying magnitude and patterns of response dependence. J. Appl. Meas. 2008, 9, 105–124. Available online: http://tinyurl.com/yc7mhmkw (accessed on 27 April 2024). [PubMed]
- Noventa, S.; Spoto, A.; Heller, J.; Kelava, A. On a generalization of local independence in item response theory based on knowledge space theory. Psychometrika 2019, 84, 395–421. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Kelava, A.; Noventa, S. Parameter estimation of KST-IRT model under local dependence. Psych 2023, 5, 908–927. [Google Scholar] [CrossRef]
- Wilson, M.; Adams, R.J. Rasch models for item bundles. Psychometrika 1995, 60, 181–198. [Google Scholar] [CrossRef]
- Eckes, T. Item banking for C-tests: A polytomous Rasch modeling approach. Psychol. Test Assess. Model. 2011, 53, 414–439. Available online: http://tinyurl.com/bap2z4nh (accessed on 27 April 2024).
- Ip, E.H. Empirically indistinguishable multidimensional IRT and locally dependent unidimensional item response models. Br. J. Math. Stat. Psychol. 2010, 63, 395–416. [Google Scholar] [CrossRef] [PubMed]
- Braeken, J. A boundary mixture approach to violations of conditional independence. Psychometrika 2011, 76, 57–76. [Google Scholar] [CrossRef]
- Braeken, J.; Kuppens, P.; De Boeck, P.; Tuerlinckx, F. Contextualized personality questionnaires: A case for copulas in structural equation models for categorical data. Multivar. Behav. Res. 2013, 48, 845–870. [Google Scholar] [CrossRef]
- Joe, H. Dependence Modeling with Copulas; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Schroeders, U.; Robitzsch, A.; Schipolowski, S. A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. J. Educ. Meas. 2014, 51, 400–418. [Google Scholar] [CrossRef]
- Nikoloulopoulos, A.K.; Joe, H. Factor copula models for item response data. Psychometrika 2015, 80, 126–150. [Google Scholar] [CrossRef]
- Bellio, R.; Varin, C. A pairwise likelihood approach to generalized linear models with crossed random effects. Stat. Model. 2005, 5, 217–227. [Google Scholar] [CrossRef]
- Chen, Y.; Moustaki, I.; Zhang, S. On the estimation of structural equation models with latent variables. In Handbook of Structural Equation Modeling; Hoyle, R.H., Ed.; Guilford Press: New York, NY, USA, 2023; pp. 145–162. [Google Scholar]
- Katsikatsou, M.; Moustaki, I.; Yang-Wallentin, F.; Jöreskog, K.G. Pairwise likelihood estimation for factor analysis models with ordinal data. Comput. Stat. Data Anal. 2012, 56, 4243–4258. [Google Scholar] [CrossRef]
- Renard, D.; Molenberghs, G.; Geys, H. A pairwise likelihood approach to estimation in multilevel probit models. Comput. Stat. Data Anal. 2004, 44, 649–667. [Google Scholar] [CrossRef]
- Varin, C.; Reid, N.; Firth, D. An overview of composite likelihood methods. Stat. Sin. 2011, 21, 5–42. Available online: https://bit.ly/38lbhom (accessed on 27 April 2024).
- Vasdekis, V.G.S.; Rizopoulos, D.; Moustaki, I. Weighted pairwise likelihood estimation for a general class of random effects models. Biostatistics 2014, 15, 677–689. [Google Scholar] [CrossRef]
- Fieuws, S.; Verbeke, G. Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. Biometrics 2006, 62, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Fieuws, S.; Verbeke, G.; Boen, F.; Delecluse, C. High dimensional multivariate mixed models for binary questionnaire data. J. R. Stat. Soc. Ser. Appl. Stat. 2006, 55, 449–460. [Google Scholar] [CrossRef]
- Mauff, K.; Erler, N.S.; Kardys, I.; Rizopoulos, D. Pairwise estimation of multivariate longitudinal outcomes in a Bayesian setting with extensions to the joint model. Modelling 2021, 21, 115–136. [Google Scholar] [CrossRef]
- Fu, Z.H.; Tao, J.; Shi, N.Z.; Zhang, M.; Lin, N. Analyzing longitudinal item response data via the pairwise fitting method. Multivar. Behav. Res. 2011, 46, 669–690. [Google Scholar] [CrossRef]
- Robitzsch, A. Pairwise likelihood estimation of the 2PL model with locally dependent item responses. Appl. Sci. 2024, 14, 2652. [Google Scholar] [CrossRef]
- Christoffersson, A. Factor analysis of dichotomized variables. Psychometrika 1975, 40, 5–32. [Google Scholar] [CrossRef]
- Christoffersson, A. Two-step weighted least squares factor analysis of dichotomized variables. Psychometrika 1977, 42, 433–438. [Google Scholar] [CrossRef]
- Muthén, B. Contributions to factor analysis of dichotomous variables. Psychometrika 1978, 43, 551–560. [Google Scholar] [CrossRef]
- Muthén, B. A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika 1984, 49, 115–132. [Google Scholar] [CrossRef]
- Muthén, B.O.; Satorra, A. Technical aspects of Muthén’s LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika 1995, 60, 489–503. [Google Scholar] [CrossRef]
- Huang, P.H. Penalized least squares for structural equation modeling with ordinal responses. Multivar. Behav. Res. 2022, 57, 279–297. [Google Scholar] [CrossRef]
- Takane, Y.; de Leeuw, J. On the relationship between item response theory and factor analysis of discretized variables. Psychometrika 1987, 52, 393–408. [Google Scholar] [CrossRef]
- Kamata, A.; Bauer, D.J. A note on the relation between factor analytic and item response theory models. Struct. Equ. Model. Multidiscip. J. 2008, 15, 136–153. [Google Scholar] [CrossRef]
- Paek, I.; Cui, M.; Öztürk Gübeş, N.; Yang, Y. Estimation of an IRT model by Mplus for dichotomously scored responses under different estimation methods. Educ. Psychol. Meas. 2018, 78, 569–588. [Google Scholar] [CrossRef]
- Forero, C.G.; Maydeu-Olivares, A.; Gallardo-Pujol, D. Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Struct. Equ. Model. 2009, 16, 625–641. [Google Scholar] [CrossRef]
- Kappenburg-ten Holt, J. A Comparison between Factor Analysis and Item Response Theory Modeling in Scale Analysis. Unpublished Dissertation, University of Groningen, Groningen, The Netherlands, 2014. Available online: https://tinyurl.com/52yewx34 (accessed on 27 April 2024).
- McDonald, R.P. Linear versus non-linear models in item response theory. Appl. Psychol. Meas. 1982, 6, 379–396. [Google Scholar] [CrossRef]
- McDonald, R.P. Test Theory: A Unified Treatment; Lawrence Erlbaum: Mahwah, NJ, USA, 1999. [Google Scholar] [CrossRef]
- Fraser, C.; McDonald, R.P. NOHARM: Least squares item factor analysis. Multivar. Behav. Res. 1988, 23, 267–269. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.P. Normal-ogive multidimensional model. In Handbook of Modern Item Response Theory; van der Linden, W., Hambleton, R., Eds.; Springer: New York, NY, USA, 1997; pp. 257–269. [Google Scholar] [CrossRef]
- Maydeu-Olivares, A. Multidimensional item response theory modeling of binary data: Large sample properties of NOHARM estimates. J. Educ. Behav. Stat. 2001, 26, 51–71. [Google Scholar] [CrossRef]
- Swaminathan, H.; Rogers, H.J. Normal-ogive multidimensional models. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 167–187. [Google Scholar]
- Finch, H. Item parameter estimation for the MIRT model: Bias and precision of confirmatory factor analysis—Based models. Appl. Psychol. Meas. 2010, 34, 10–26. [Google Scholar] [CrossRef]
- Finch, H. Multidimensional item response theory parameter estimation with nonsimple structure items. Appl. Psychol. Meas. 2011, 35, 67–82. [Google Scholar] [CrossRef]
- Sass, D.A. Factor loading estimation error and stability using exploratory factor analysis. Educ. Psychol. Meas. 2010, 70, 557–577. [Google Scholar] [CrossRef]
- Svetina, D.; Levy, R. An overview of software for conducting dimensionality assessment in multidimensional models. Appl. Psychol. Meas. 2012, 36, 659–669. [Google Scholar] [CrossRef]
- Svetina, D.; Levy, R. Dimensionality in compensatory MIRT when complex structure exists: Evaluation of DETECT and NOHARM. J. Exp. Educ. 2016, 84, 398–420. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 15 March 2023).
- Robitzsch, A. sirt: Supplementary Item Response Theory Models. R Package Version 4.2-57. 2024. Available online: https://github.com/alexanderrobitzsch/sirt (accessed on 20 April 2024).
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Lietz, P.; Cresswell, J.C.; Rust, K.F.; Adams, R.J. (Eds.) Implementation of Large-scale Education Assessments; Wiley: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Rutkowski, L.; von Davier, M.; Rutkowski, D. (Eds.) A Handbook of International Large-scale Assessment: Background, Technical Issues, and Methods of Data Analysis; Chapman Hall; CRC Press: London, UK, 2013. [Google Scholar] [CrossRef]
- Habing, B.; Roussos, L.A. On the need for negative local item dependence. Psychometrika 2003, 68, 435–451. [Google Scholar] [CrossRef]
- Robitzsch, A.; Lüdtke, O. Some thoughts on analytical choices in the scaling model for test scores in international large-scale assessment studies. Meas. Instruments Soc. Sci. 2022, 4, 9. [Google Scholar] [CrossRef]
Average Absolute Bias | Average Relative RMSE | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MML | PML | DWLS | ULS | WNH | NH | MML | PML | DWLS | ULS | WNH | NH | |||
Item discriminations | ||||||||||||||
10 | 0 | 500 | 0.014 | 0.017 | 0.022 | 0.018 | 0.021 | 0.021 | 91.8 | 100 ‡ | 100.5 | 102.7 | 104.6 | 104.3 |
1000 | 0.007 | 0.008 | 0.011 | 0.010 | 0.011 | 0.011 | 92.7 | 100 ‡ | 100.7 | 104.4 | 104.1 | 104.0 | ||
2000 | 0.003 | 0.003 | 0.005 | 0.004 | 0.007 | 0.007 | 92.6 | 100 ‡ | 100.4 | 104.9 | 103.6 | 103.6 | ||
0.4 | 500 | 0.118 | 0.020 | 0.023 | 0.020 | 0.022 | 0.022 | 124.0 | 100 ‡ | 100.4 | 104.2 | 103.7 | 103.2 | |
1000 | 0.113 | 0.010 | 0.012 | 0.011 | 0.013 | 0.013 | 149.3 | 100 ‡ | 100.5 | 104.7 | 103.7 | 103.7 | ||
2000 | 0.107 | 0.006 | 0.006 | 0.006 | 0.009 | 0.009 | 183.5 | 100 ‡ | 100.5 | 105.5 | 103.4 | 103.6 | ||
0.8 | 500 | 0.334 | 0.025 | 0.025 | 0.024 | 0.026 | 0.026 | 274.7 | 100 ‡ | 99.7 | 103.6 | 102.1 | 102.4 | |
1000 | 0.320 | 0.012 | 0.012 | 0.012 | 0.013 | 0.014 | 350.0 | 100 ‡ | 100.2 | 105.4 | 102.1 | 102.6 | ||
2000 | 0.316 | 0.008 | 0.007 | 0.007 | 0.009 | 0.009 | 464.0 | 100 ‡ | 100.2 | 105.0 | 102.5 | 102.9 | ||
20 | 0 | 500 | 0.007 | 0.008 | 0.015 | 0.008 | 0.012 | 0.012 | 95.7 | 100 ‡ | 101.2 | 101.2 | 103.4 | 103.2 |
1000 | 0.011 | 0.005 | 0.009 | 0.006 | 0.009 | 0.009 | 97.3 | 100 ‡ | 100.6 | 101.9 | 103.1 | 102.9 | ||
2000 | 0.001 | 0.003 | 0.004 | 0.003 | 0.006 | 0.006 | 95.7 | 100 ‡ | 100.5 | 102.1 | 103.5 | 103.4 | ||
0.4 | 500 | 0.053 | 0.013 | 0.019 | 0.013 | 0.016 | 0.016 | 105.7 | 100 ‡ | 101.4 | 101.5 | 103.3 | 103.1 | |
1000 | 0.057 | 0.005 | 0.009 | 0.006 | 0.009 | 0.009 | 121.6 | 100 ‡ | 100.5 | 101.9 | 102.7 | 102.5 | ||
2000 | 0.046 | 0.004 | 0.005 | 0.003 | 0.007 | 0.007 | 128.4 | 100 ‡ | 100.3 | 102.2 | 103.3 | 103.3 | ||
0.8 | 500 | 0.111 | 0.014 | 0.018 | 0.012 | 0.016 | 0.016 | 139.9 | 100 ‡ | 101.1 | 101.5 | 102.8 | 102.9 | |
1000 | 0.119 | 0.007 | 0.010 | 0.008 | 0.011 | 0.011 | 178.5 | 100 | 100.4 | 102.2 | 102.5 | 102.7 | ||
2000 | 0.104 | 0.004 | 0.004 | 0.003 | 0.007 | 0.007 | 207.7 | 100 ‡ | 100.2 | 102.4 | 102.8 | 103.1 | ||
Item intercepts | ||||||||||||||
10 | 0 | 500 | 0.013 | 0.014 | 0.016 | 0.015 | 0.017 | 0.016 | 96.4 | 100 ‡ | 100.2 | 100.6 | 102.3 | 102.0 |
1000 | 0.006 | 0.007 | 0.008 | 0.008 | 0.009 | 0.008 | 97.0 | 100 ‡ | 100.6 | 102.1 | 102.2 | 102.1 | ||
2000 | 0.003 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 97.0 | 100 ‡ | 100.3 | 102.4 | 101.9 | 101.9 | ||
0.4 | 500 | 0.056 | 0.017 | 0.017 | 0.017 | 0.018 | 0.017 | 110.4 | 100 ‡ | 100.1 | 101.5 | 102.2 | 101.9 | |
1000 | 0.046 | 0.008 | 0.009 | 0.010 | 0.010 | 0.010 | 116.3 | 100 ‡ | 100.6 | 102.5 | 102.2 | 102.2 | ||
2000 | 0.044 | 0.005 | 0.005 | 0.005 | 0.006 | 0.006 | 129.2 | 100 ‡ | 100.5 | 102.8 | 102.1 | 102.1 | ||
0.8 | 500 | 0.114 | 0.022 | 0.020 | 0.020 | 0.021 | 0.021 | 157.4 | 100 ‡ | 99.2 | 100.5 | 101.1 | 101.2 | |
1000 | 0.090 | 0.010 | 0.010 | 0.011 | 0.011 | 0.011 | 165.7 | 100 ‡ | 100.3 | 102.7 | 101.6 | 101.8 | ||
2000 | 0.101 | 0.006 | 0.005 | 0.005 | 0.006 | 0.006 | 211.6 | 100 ‡ | 99.8 | 102.1 | 101.3 | 101.4 | ||
20 | 0 | 500 | 0.015 | 0.010 | 0.013 | 0.010 | 0.012 | 0.012 | 100.7 | 100 ‡ | 100.7 | 99.7 | 101.4 | 101.2 |
1000 | 0.013 | 0.005 | 0.007 | 0.006 | 0.007 | 0.007 | 100.2 | 100 ‡ | 100.6 | 100.8 | 101.6 | 101.4 | ||
2000 | 0.005 | 0.003 | 0.003 | 0.003 | 0.004 | 0.004 | 101.9 | 100 ‡ | 100.1 | 100.7 | 101.3 | 101.2 | ||
0.4 | 500 | 0.045 | 0.013 | 0.015 | 0.012 | 0.014 | 0.014 | 109.6 | 100 ‡ | 100.5 | 99.6 | 101.4 | 101.2 | |
1000 | 0.020 | 0.006 | 0.007 | 0.006 | 0.007 | 0.007 | 103.8 | 100 ‡ | 100.6 | 100.8 | 101.6 | 101.4 | ||
2000 | 0.030 | 0.004 | 0.004 | 0.003 | 0.005 | 0.005 | 118.2 | 100 ‡ | 99.9 | 100.6 | 101.3 | 101.1 | ||
0.8 | 500 | 0.078 | 0.013 | 0.014 | 0.011 | 0.013 | 0.013 | 127.6 | 100 ‡ | 100.4 | 99.7 | 101.1 | 101.0 | |
1000 | 0.034 | 0.007 | 0.008 | 0.007 | 0.008 | 0.008 | 112.2 | 100 ‡ | 100.5 | 101.0 | 101.5 | 101.4 | ||
2000 | 0.059 | 0.004 | 0.004 | 0.003 | 0.005 | 0.005 | 156.5 | 100 ‡ | 99.5 | 100.4 | 100.7 | 100.7 |
Item | Testlet | MML | PML | DWLS | ULS | WNH | NH | MML | PML | DWLS | ULS | WNH | NH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A | 0.59 | 0.45 | 0.49 | 0.36 | 0.54 | 0.58 | −1.20 | −1.14 | −1.16 | −1.10 | −1.18 | −1.20 |
A2 | A | 0.85 | 0.84 | 0.89 | 0.88 | 0.91 | 0.91 | −0.84 | −0.83 | −0.85 | −0.85 | −0.86 | −0.86 |
A3 | A | 0.68 | 0.63 | 0.64 | 0.60 | 0.69 | 0.70 | −0.21 | −0.20 | −0.20 | −0.20 | −0.21 | −0.21 |
A4 | A | 0.53 | 0.52 | 0.53 | 0.47 | 0.58 | 0.59 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 |
B1 | B | 0.36 | 0.39 | 0.40 | 0.39 | 0.40 | 0.40 | −0.60 | −0.60 | −0.61 | −0.60 | −0.61 | −0.61 |
B2 | B | 0.40 | 0.46 | 0.49 | 0.52 | 0.47 | 0.46 | −0.01 | −0.02 | −0.02 | −0.02 | −0.02 | −0.02 |
B3 | B | 0.62 | 0.62 | 0.65 | 0.69 | 0.59 | 0.55 | −1.56 | −1.57 | −1.59 | −1.62 | −1.55 | −1.52 |
B4 | B | 0.65 | 0.86 | 0.90 | 0.90 | 0.84 | 0.84 | −0.57 | −0.63 | −0.64 | −0.64 | −0.62 | −0.62 |
C1 | C | 1.50 | 0.47 | 0.47 | 0.48 | 0.44 | 0.43 | −2.66 | −1.66 | −1.65 | −1.66 | −1.64 | −1.63 |
C2 | C | 0.86 | 0.64 | 0.62 | 0.64 | 0.61 | 0.61 | −0.74 | −0.67 | −0.66 | −0.67 | −0.66 | −0.66 |
C3 | C | 0.98 | 0.40 | 0.40 | 0.42 | 0.37 | 0.35 | −1.59 | −1.22 | −1.22 | −1.23 | −1.21 | −1.20 |
C4 | C | 0.64 | 0.54 | 0.38 | 0.38 | 0.38 | 0.38 | −0.75 | −0.75 | −0.67 | −0.67 | −0.67 | −0.67 |
Item | Testlet | MML | PML | DWLS | ULS | WNH | NH | MML | PML | DWLS | ULS | WNH | NH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M192Q01 | — | 0.75 | 0.79 | 0.81 | 0.80 | 0.78 | 0.78 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
M406Q01 | M406 | 1.03 | 0.86 | 0.87 | 0.88 | 0.87 | 0.87 | 0.21 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
M406Q02 | M406 | 1.28 | 1.04 | 1.04 | 1.04 | 1.07 | 1.06 | 0.94 | 0.84 | 0.83 | 0.83 | 0.85 | 0.84 |
M423Q01 | — | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | −0.67 | −0.67 | −0.67 | −0.67 | −0.67 | −0.67 |
M496Q01 | M496 | 0.82 | 0.74 | 0.74 | 0.75 | 0.74 | 0.74 | −0.17 | −0.17 | −0.17 | −0.17 | −0.17 | −0.17 |
M496Q02 | M496 | 0.65 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | −0.67 | −0.65 | −0.65 | −0.65 | −0.65 | −0.65 |
M564Q01 | M564 | 0.51 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | −0.04 | −0.04 | −0.04 | −0.04 | −0.04 | −0.04 |
M564Q02 | M564 | 0.49 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | −0.07 | −0.07 | −0.07 | −0.07 | −0.07 | −0.07 |
M571Q01 | — | 0.85 | 0.91 | 0.93 | 0.89 | 0.92 | 0.93 | −0.15 | −0.16 | −0.16 | −0.16 | −0.16 | −0.16 |
M603Q01 | M603 | 0.70 | 0.74 | 0.75 | 0.73 | 0.73 | 0.74 | −0.17 | −0.17 | −0.17 | −0.17 | −0.17 | −0.17 |
M603Q02 | M603 | 0.85 | 0.91 | 0.93 | 0.89 | 0.89 | 0.91 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items. Stats 2024, 7, 576-591. https://doi.org/10.3390/stats7030035
Robitzsch A. A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items. Stats. 2024; 7(3):576-591. https://doi.org/10.3390/stats7030035
Chicago/Turabian StyleRobitzsch, Alexander. 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items" Stats 7, no. 3: 576-591. https://doi.org/10.3390/stats7030035
APA StyleRobitzsch, A. (2024). A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items. Stats, 7(3), 576-591. https://doi.org/10.3390/stats7030035