Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning
Abstract
:1. Introduction
2. Two-Group Comparison under Sparse DIF
2.1. Concurrent Calibration
2.1.1. 1PL Model
2.1.2. 2PL Model
2.2. Regularization Approaches
2.2.1. 1PL Model
2.2.2. 2PL Model
2.3. Robust Linking Approaches
2.3.1. 1PL Model
Robust Linking Using the Loss Function
Robust Linking Using the MAD Statistic
2.3.2. 2PL Model
Robust Linking Using Loss Function or MAD Statistic
Joint Haberman Linking Using Common Item Discriminations
Haberman Linking Based on Separate Calibration
2.4. On the Relation of Robust Linking and Regularized Estimation
3. Simulation Study 1: DIF Effects in the 1PL Model
3.1. Method
3.2. Results
4. Focused Simulation Study 1A: Optimal Choice of two Tuning Parameters for the SCAD Penalty
4.1. Method
4.2. Results
5. Simulation Study 2: Uniform DIF Effects in the 2PL Model
5.1. Method
5.2. Results
6. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1PL | one-parameter logistic |
2PL | two-parameter logistic |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
CC | concurrent calibration |
DIF | differential item functioning |
DWLS | diagonally weighted least squares |
FIPC | fixed item parameter calibration |
IPD | item parameter drift |
IRT | item response theory |
JK | jackknife |
LE | linking error |
LSA | large-scale assessment studies |
MAD | median absolute deviation |
PISA | programme for international student assessment |
RMSE | root mean square error |
SCAD | smoothly clipped absolute deviation |
References
- Van der Linden, W.J.; Hambleton, R.K. (Eds.) Handbook of Modern Item Response Theory; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Van der Linden, W.J. (Ed.) Unidimensional logistic response models. In Handbook of Item Response Theory, Volume 1: Models; CRC Press: Boca Raton, FL, USA, 2016; pp. 11–30. [Google Scholar] [CrossRef]
- Lietz, P.; Cresswell, J.C.; Rust, K.F.; Adams, R.J. (Eds.) Implementation of Large-scale Education Assessments; Wiley: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Rutkowski, L.; von Davier, M.; Rutkowski, D. (Eds.) A Handbook of International Large-scale Assessment: Background, Technical Issues, and Methods of Data Analysis; Chapman Hall/CRC Press: London, UK, 2013. [Google Scholar] [CrossRef]
- OECD. PISA 2018. Technical Report; OECD: Paris, France, 2020; Available online: https://bit.ly/3zWbidA (accessed on 8 December 2022).
- Yen, W.M.; Fitzpatrick, A.R. Item response theory. In Educational Measurement; Brennan, R.L., Ed.; Praeger Publishers: Westport, CT, USA, 2006; pp. 111–154. [Google Scholar]
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; Danish Institute for Educational Research: Copenhagen, Denmark, 1960. [Google Scholar]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Lord, F.M., Novick, M.R., Eds.; MIT Press: Reading, MA, USA, 1968; pp. 397–479. [Google Scholar]
- Mellenbergh, G.J. Item bias and item response theory. Int. J. Educ. Res. 1989, 13, 127–143. [Google Scholar] [CrossRef]
- Millsap, R.E. Statistical Approaches to Measurement Invariance; Routledge: New York, NY, USA, 2011; p. 3821961. [Google Scholar] [CrossRef]
- Holland, P.W.; Wainer, H. (Eds.) Differential Item Functioning: Theory and Practice; Lawrence Erlbaum: Hillsdale, NJ, USA, 1993. [Google Scholar] [CrossRef]
- Penfield, R.D.; Camilli, G. Differential item functioning and item bias. In Handbook of Statistics, Vol. 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; 2007; Elsevier: Amsterdam, The Netherlands pp. 125–167. [CrossRef]
- Robitzsch, A. A comparison of linking methods for two groups for the two-parameter logistic item response model in the presence and absence of random differential item functioning. Foundations 2021, 1, 116–144. [Google Scholar] [CrossRef]
- De Boeck, P. Random item IRT models. Psychometrika 2008, 73, 533–559. [Google Scholar] [CrossRef]
- Frederickx, S.; Tuerlinckx, F.; De Boeck, P.; Magis, D. RIM: A random item mixture model to detect differential item functioning. J. Educ. Meas. 2010, 47, 432–457. [Google Scholar] [CrossRef]
- Byrne, B.M.; Shavelson, R.J.; Muthén, B. Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychol. Bull. 1989, 105, 456–466. [Google Scholar] [CrossRef]
- Lee, S.S.; von Davier, M. Improving measurement properties of the PISA home possessions scale through partial invariance modeling. Psychol. Test Assess. Model. 2020, 62, 55–83. Available online: https://bit.ly/3FRN6Qf (accessed on 8 December 2022).
- Magis, D.; Tuerlinckx, F.; De Boeck, P. Detection of differential item functioning using the lasso approach. J. Educ. Behav. Stat. 2015, 40, 111–135. [Google Scholar] [CrossRef]
- Tutz, G.; Schauberger, G. A penalty approach to differential item functioning in Rasch models. Psychometrika 2015, 80, 21–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, C.; Xu, G. DIF statistical inference and detection without knowing anchoring items. arXiv 2021, arXiv:2110.11112. [Google Scholar] [CrossRef]
- Halpin, P.F. Differential item functioning via robust scaling. arXiv 2022, arXiv:2207.04598. [Google Scholar] [CrossRef]
- Magis, D.; De Boeck, P. Identification of differential item functioning in multiple-group settings: A multivariate outlier detection approach. Multivar. Behav. Res. 2011, 46, 733–755. [Google Scholar] [CrossRef]
- Magis, D.; De Boeck, P. A robust outlier approach to prevent type I error inflation in differential item functioning. Educ. Psychol. Meas. 2012, 72, 291–311. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Liu, H. Testing differential item functioning without predefined anchor items using robust regression. J. Educ. Behav. Stat. 2022, 47, 666–692. [Google Scholar] [CrossRef]
- Robitzsch, A. Robust and nonrobust linking of two groups for the Rasch model with balanced and unbalanced random DIF: A comparative simulation study and the simultaneous assessment of standard errors and linking errors with resampling techniques. Symmetry 2021, 13, 2198. [Google Scholar] [CrossRef]
- Robitzsch, A.; Lüdtke, O. A review of different scaling approaches under full invariance, partial invariance, and noninvariance for cross-sectional country comparisons in large-scale assessments. Psychol. Test Assess. Model. 2020, 62, 233–279. Available online: https://bit.ly/3ezBB05 (accessed on 8 December 2022).
- Fan, J.; Li, R.; Zhang, C.H.; Zou, H. Statistical Foundations of Data Science; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Robust measurement via a fused latent and graphical item response theory model. Psychometrika 2018, 83, 538–562. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chen, Y.; Liu, J.; Ying, Z.; Xin, T. Latent variable selection for multidimensional item response theory models via L1 regularization. Psychometrika 2016, 81, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Geminiani, E.; Marra, G.; Moustaki, I. Single- and multiple-group penalized factor analysis: A trust-region algorithm approach with integrated automatic multiple tuning parameter selection. Psychometrika 2021, 86, 65–95. [Google Scholar] [CrossRef]
- Huang, P.H.; Chen, H.; Weng, L.J. A penalized likelihood method for structural equation modeling. Psychometrika 2017, 82, 329–354. [Google Scholar] [CrossRef]
- Jacobucci, R.; Grimm, K.J.; McArdle, J.J. Regularized structural equation modeling. Struct. Equ. Modeling 2016, 23, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Regularized latent class analysis with application in cognitive diagnosis. Psychometrika 2017, 82, 660–692. [Google Scholar] [CrossRef] [PubMed]
- Robitzsch, A.; George, A.C. The R package CDM for diagnostic modeling. In Handbook of Diagnostic Classification Models; von Davier, M., Lee, Y.S., Eds.; Springer: Cham, Switzerland, 2019; pp. 549–572. [Google Scholar] [CrossRef]
- Robitzsch, A. Regularized latent class analysis for polytomous item responses: An application to SPM-LS data. J. Intell. 2020, 8, 30. [Google Scholar] [CrossRef]
- Fop, M.; Murphy, T.B. Variable selection methods for model-based clustering. Stat. Surv. 2018, 12, 18–65. [Google Scholar] [CrossRef]
- Robitzsch, A. Regularized mixture Rasch model. Information 2022, 13, 534. [Google Scholar] [CrossRef]
- Belzak, W.C. The multidimensionality of measurement bias in high-stakes testing: Using machine learning to evaluate complex sources of differential item functioning. Educ. Meas. 2022; epub ahead of print. [Google Scholar] [CrossRef]
- Belzak, W.; Bauer, D.J. Improving the assessment of measurement invariance: Using regularization to select anchor items and identify differential item functioning. Psychol. Methods 2020, 25, 673–690. [Google Scholar] [CrossRef]
- Bauer, D.J.; Belzak, W.C.M.; Cole, V.T. Simplifying the assessment of measurement invariance over multiple background variables: Using regularized moderated nonlinear factor analysis to detect differential item functioning. Struct. Equ. Model. 2020, 27, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Gürer, C.; Draxler, C. Penalization approaches in the conditional maximum likelihood and Rasch modelling context. Brit. J. Math. Stat. Psychol. 2022; epub ahead of print. [Google Scholar] [CrossRef]
- Liang, X.; Jacobucci, R. Regularized structural equation modeling to detect measurement bias: Evaluation of lasso, adaptive lasso, and elastic net. Struct. Equ. Model. 2020, 27, 722–734. [Google Scholar] [CrossRef]
- Schauberger, G.; Mair, P. A regularization approach for the detection of differential item functioning in generalized partial credit models. Behav. Res. Methods 2020, 52, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Xu, G.; Ying, Z. Statistical analysis of Q-matrix based diagnostic classification models. J. Am. Stat. Assoc. 2015, 110, 850–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umezu, Y.; Shimizu, Y.; Masuda, H.; Ninomiya, Y. AIC for the non-concave penalized likelihood method. Ann. Inst. Stat. Math. 2019, 71, 247–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, S.J.; Zhang, H.; Yang, Z.Y.; Ren, Y.Q.; Xia, L.Y.; Liang, Y. Meta-analysis based on nonconvex regularization. Sci. Rep. 2020, 10, 5755. [Google Scholar] [CrossRef] [Green Version]
- Breheny, P.; Huang, J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl. Stat. 2011, 5, 232–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Sun, Y. On tuning parameter selection in model selection and model averaging: A Monte Carlo study. J. Risk Financ. Manag. 2019, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.R. Beyond lasso: A survey of nonconvex regularization in Gaussian graphical models. PsyArXiv 2020. [Google Scholar] [CrossRef]
- Battauz, M. Regularized estimation of the nominal response model. Multivar. Behav. Res. 2020, 55, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Oelker, M.R.; Tutz, G. A uniform framework for the combination of penalties in generalized structured models. Adv. Data Anal. Classif. 2017, 11, 97–120. [Google Scholar] [CrossRef]
- Tutz, G.; Gertheiss, J. Regularized regression for categorical data. Stat. Model. 2016, 16, 161–200. [Google Scholar] [CrossRef] [Green Version]
- Kolen, M.J.; Brennan, R.L. Test Equating, Scaling, and Linking; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Lee, W.C.; Lee, G. IRT linking and equating. In The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test; Irwing, P., Booth, T., Hughes, D.J., Eds.; Wiley: New York, NY, USA, 2018; pp. 639–673. [Google Scholar] [CrossRef]
- Sansivieri, V.; Wiberg, M.; Matteucci, M. A review of test equating methods with a special focus on IRT-based approaches. Statistica 2017, 77, 329–352. [Google Scholar] [CrossRef]
- Robitzsch, A. Robust Haebara linking for many groups: Performance in the case of uniform DIF. Psych 2020, 2, 155–173. [Google Scholar] [CrossRef]
- Pokropek, A.; Lüdtke, O.; Robitzsch, A. An extension of the invariance alignment method for scale linking. Psychol. Test Assess. Model. 2020, 62, 303–334. Available online: https://bit.ly/2UEp9GH (accessed on 8 December 2022).
- Robitzsch, A. Lp loss functions in invariance alignment and Haberman linking with few or many groups. Stats 2020, 3, 246–283. [Google Scholar] [CrossRef]
- Manna, V.F.; Gu, L. Different Methods of Adjusting for form Difficulty under the Rasch Model: Impact on Consistency of Assessment Results; (Research Report No. RR-19-08); Educational Testing Service: Princeton, NJ, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Asparouhov, T.; Muthén, B. Multiple-group factor analysis alignment. Struct. Equ. Model. 2014, 21, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.; Asparouhov, T. IRT studies of many groups: The alignment method. Front. Psychol. 2014, 5, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Davier, M.; Bezirhan, U. A robust method for detecting item misfit in large scale assessments. Educ. Psychol. Meas. 2022; epub ahead of print. [Google Scholar] [CrossRef]
- Huynh, H.; Meyer, P. Use of robust z in detecting unstable items in item response theory models. Pract. Assess. Res. Eval. 2010, 15, 2. [Google Scholar] [CrossRef]
- Liu, C.; Jurich, D. Outlier detection using t-test in Rasch IRT equating under NEAT design. Appl. Psychol. Meas. 2022; epub ahead of print. [Google Scholar] [CrossRef]
- Battauz, M. Multiple equating of separate IRT calibrations. Psychometrika 2017, 82, 610–636. [Google Scholar] [CrossRef]
- Haberman, S.J. Linking Parameter Estimates Derived from an Item Response Model through Separate Calibrations; (Research Report No. RR-09-40); Educational Testing Service: Princeton, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Liu, X.; Wallin, G.; Chen, Y.; Moustaki, I. Rotation to sparse loadings using Lp losses and related inference problems. arXiv 2022, arXiv:2206.02263. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 11 January 2022).
- Robitzsch, A.; Kiefer, T.; Wu, M. TAM: Test Analysis Modules. R Package Version 4.1-4. 2022. Available online: https://CRAN.R-project.org/package=TAM (accessed on 28 August 2022).
- Robitzsch, A. Sirt: Supplementary Item Response Theory Models. R Package Version 3.12-66. 2022. Available online: https://CRAN.R-project.org/package=sirt (accessed on 17 May 2022).
- Frey, A.; Hartig, J.; Rupp, A.A. An NCME instructional module on booklet designs in large-scale assessments of student achievement: Theory and practice. Educ. Meas. 2009, 28, 39–53. [Google Scholar] [CrossRef]
- Robitzsch, A.; Lüdtke, O. Mean comparisons of many groups in the presence of DIF: An evaluation of linking and concurrent scaling approaches. J. Educ. Behav. Stat. 2022, 47, 36–68. [Google Scholar] [CrossRef]
- Camilli, G. The case against item bias detection techniques based on internal criteria: Do item bias procedures obscure test fairness issues? In Differential Item Functioning: Theory and Practice; Holland, P.W., Wainer, H., Eds.; Erlbaum: Hillsdale, NJ, USA, 1993; pp. 397–417. [Google Scholar]
- El Masri, Y.H.; Andrich, D. The trade-off between model fit, invariance, and validity: The case of PISA science assessments. Appl. Meas. Educ. 2020, 33, 174–188. [Google Scholar] [CrossRef]
- Robitzsch, A.; Lüdtke, O. Some thoughts on analytical choices in the scaling model for test scores in international large-scale assessment studies. Meas. Instrum. Soc. Sci. 2022, 4, 9. [Google Scholar] [CrossRef]
- Brennan, R.L. Misconceptions at the intersection of measurement theory and practice. Educ. Meas. 1998, 17, 5–9. [Google Scholar] [CrossRef]
Choice of | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | MAD | AIC | BIC | 0.05 | 0.10 | 0.15 | CC | ||||
Balanced DIF | |||||||||||
0.5 | 500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
5000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
1.0 | 500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
5000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Unbalanced DIF | |||||||||||
0.5 | 500 | −0.06 | −0.02 | −0.03 | −0.04 | −0.02 | −0.06 | −0.03 | −0.05 | −0.10 | −0.09 |
1000 | −0.03 | −0.02 | −0.01 | −0.01 | −0.01 | −0.08 | −0.02 | −0.04 | −0.10 | −0.10 | |
2500 | 0.00 | −0.02 | −0.01 | −0.01 | −0.01 | −0.09 | −0.01 | −0.02 | −0.10 | −0.10 | |
5000 | 0.00 | −0.01 | −0.01 | −0.01 | −0.01 | −0.09 | −0.01 | −0.02 | −0.10 | −0.10 | |
1.0 | 500 | −0.01 | −0.02 | 0.00 | −0.05 | 0.00 | 0.00 | −0.02 | −0.05 | −0.20 | −0.18 |
1000 | 0.00 | −0.02 | 0.00 | −0.02 | 0.00 | 0.00 | −0.01 | −0.04 | −0.20 | −0.18 | |
2500 | 0.00 | −0.01 | 0.00 | −0.02 | 0.00 | 0.00 | −0.01 | −0.02 | −0.20 | −0.18 | |
5000 | 0.00 | −0.01 | 0.00 | −0.03 | 0.00 | 0.00 | −0.01 | −0.02 | −0.20 | −0.18 |
Choice of | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | MAD | AIC | BIC | 0.05 | 0.10 | 0.15 | CC | ||||
Balanced DIF | |||||||||||
0.5 | 500 | 111 | 115 | 111 | 120 | 110 | 111 | 122 | 110 | 101 | 100 |
1000 | 111 | 112 | 106 | 109 | 108 | 118 | 115 | 108 | 101 | 100 | |
2500 | 104 | 133 | 103 | 122 | 118 | 135 | 114 | 108 | 101 | 100 | |
5000 | 103 | 147 | 129 | 139 | 126 | 153 | 111 | 107 | 100 | 100 | |
1.0 | 500 | 107 | 111 | 105 | 115 | 106 | 104 | 118 | 109 | 102 | 100 |
1000 | 104 | 110 | 103 | 108 | 103 | 103 | 115 | 108 | 102 | 100 | |
2500 | 105 | 113 | 104 | 112 | 103 | 103 | 114 | 109 | 102 | 100 | |
5000 | 104 | 111 | 103 | 126 | 103 | 103 | 112 | 108 | 102 | 100 | |
Unbalanced DIF | |||||||||||
0.5 | 500 | 120 | 108 | 104 | 120 | 100 | 117 | 113 | 110 | 142 | 138 |
1000 | 124 | 126 | 100 | 122 | 108 | 164 | 117 | 119 | 196 | 187 | |
2500 | 102 | 203 | 185 | 194 | 161 | 258 | 114 | 120 | 288 | 274 | |
5000 | 100 | 249 | 240 | 243 | 217 | 374 | 114 | 124 | 408 | 383 | |
1.0 | 500 | 108 | 109 | 100 | 141 | 101 | 100 | 122 | 121 | 270 | 247 |
1000 | 100 | 113 | 100 | 125 | 100 | 100 | 117 | 122 | 370 | 336 | |
2500 | 101 | 113 | 101 | 244 | 103 | 100 | 113 | 121 | 572 | 519 | |
5000 | 100 | 115 | 100 | 352 | 103 | 100 | 111 | 124 | 808 | 730 |
Best | Choice of Based on AIC with | Choice of Based on BIC with | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | a | 2.2 | 2.5 | 3 | 3.7 | 4.5 | 6 | 9 | 2.2 | 2.5 | 3 | 3.7 | 4.5 | 6 | 9 | ||||
0.5 | 500 | 9 | 0.04 | 110.8 | 111.2 | 110.9 | 111.8 | 110.2 | 110.3 | 109.6 | 108.0 | 103.4 | 103.4 | 103.3 | 103.4 | 103.4 | 103.5 | 104.0 | 104.0 |
1000 | 3.7 | BIC | 128.7 | 130.1 | 129.5 | 127.7 | 129.4 | 126.1 | 122.7 | 121.4 | 100.2 | 100.0 | 100.1 | 100.0 | 100.2 | 100.1 | 100.4 | 100.2 | |
2500 | 2.2 | 0.19 | 139.2 | 138.6 | 137.7 | 136.3 | 138.1 | 137.8 | 132.3 | 129.4 | 126.0 | 126.6 | 125.2 | 122.7 | 125.1 | 124.6 | 117.8 | 111.3 | |
1 | 500 | 3.7 | 0.13 | 111.4 | 110.4 | 110.5 | 108.7 | 108.7 | 107.9 | 109.9 | 108.6 | 102.5 | 102.4 | 102.5 | 100.3 | 100.2 | 100.2 | 100.4 | 100.6 |
1000 | 3.7 | 0.13 | 113.1 | 112.5 | 112.5 | 112.9 | 112.1 | 111.2 | 108.9 | 110.3 | 100.6 | 100.6 | 100.7 | 100.6 | 100.7 | 100.6 | 100.9 | 100.8 | |
2500 | 9 | 0.08 | 126.9 | 119.8 | 120.4 | 119.5 | 120.4 | 114.4 | 116.4 | 122.8 | 111.3 | 103.4 | 103.4 | 105.8 | 103.4 | 103.4 | 103.3 | 111.2 |
Choice of | JHL with | HL with | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | MAD | AIC | BIC | 0.05 | 0.10 | 0.15 | 0.5 | 1 | 2 | 0.5 | 1 | 2 | CC | ||||
Balanced DIF | |||||||||||||||||
0.5 | 500 | −0.01 | −0.01 | −0.01 | −0.02 | −0.01 | −0.04 | −0.01 | −0.01 | −0.01 | 0.00 | 0.00 | 0.01 | −0.01 | −0.01 | −0.01 | −0.04 |
1000 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | −0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | −0.04 | |
2500 | −0.01 | −0.01 | −0.01 | −0.01 | 0.00 | −0.05 | −0.01 | −0.01 | −0.01 | 0.00 | 0.00 | 0.00 | −0.01 | −0.01 | −0.01 | −0.04 | |
5000 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | −0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.04 | |
1.0 | 500 | −0.01 | −0.02 | −0.01 | −0.02 | −0.01 | −0.01 | −0.02 | −0.02 | −0.01 | 0.00 | 0.00 | 0.01 | −0.02 | −0.02 | −0.01 | −0.06 |
1000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.06 | |
2500 | −0.01 | −0.02 | −0.01 | −0.01 | −0.01 | −0.01 | −0.02 | −0.01 | −0.01 | 0.00 | 0.00 | 0.00 | −0.02 | −0.01 | −0.01 | −0.06 | |
5000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.06 | |
Unbalanced DIF | |||||||||||||||||
0.5 | 500 | −0.07 | −0.03 | −0.04 | −0.04 | −0.03 | −0.07 | −0.04 | −0.06 | −0.10 | −0.04 | −0.06 | −0.10 | −0.04 | −0.05 | −0.10 | −0.10 |
1000 | −0.03 | −0.01 | 0.00 | −0.01 | −0.01 | −0.07 | −0.02 | −0.04 | −0.10 | −0.03 | −0.05 | −0.10 | −0.02 | −0.03 | −0.10 | −0.10 | |
2500 | −0.01 | −0.03 | −0.03 | −0.03 | −0.02 | −0.10 | −0.02 | −0.04 | −0.10 | −0.02 | −0.04 | −0.10 | −0.01 | −0.03 | −0.10 | −0.10 | |
5000 | 0.01 | −0.01 | 0.00 | −0.01 | 0.00 | −0.09 | 0.00 | −0.02 | −0.10 | −0.01 | −0.03 | −0.10 | 0.00 | −0.01 | −0.10 | −0.10 | |
1.0 | 500 | −0.03 | −0.03 | −0.02 | −0.06 | −0.02 | −0.02 | −0.03 | −0.07 | −0.21 | −0.03 | −0.07 | −0.20 | −0.04 | −0.06 | −0.21 | −0.17 |
1000 | 0.00 | −0.01 | 0.00 | −0.02 | 0.00 | 0.00 | −0.01 | −0.04 | −0.20 | −0.02 | −0.05 | −0.20 | −0.01 | −0.03 | −0.20 | −0.17 | |
2500 | −0.01 | −0.02 | −0.02 | −0.05 | −0.02 | −0.02 | −0.02 | −0.04 | −0.21 | −0.01 | −0.04 | −0.20 | −0.02 | −0.03 | −0.21 | −0.17 | |
5000 | 0.00 | 0.00 | 0.00 | −0.02 | 0.00 | 0.00 | 0.00 | −0.02 | −0.20 | −0.01 | −0.03 | −0.20 | 0.00 | −0.01 | −0.20 | −0.17 |
Choice of | JHL with | HL with | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | MAD | AIC | BIC | 0.05 | 0.10 | 0.15 | 0.5 | 1 | 2 | 0.5 | 1 | 2 | CC | ||||
Balanced DIF | |||||||||||||||||
0.5 | 500 | 108 | 119 | 109 | 130 | 111 | 120 | 112 | 103 | 100 | 127 | 115 | 125 | 115 | 105 | 100 | 113 |
1000 | 109 | 113 | 106 | 111 | 106 | 127 | 107 | 102 | 100 | 120 | 112 | 118 | 112 | 104 | 100 | 121 | |
2500 | 104 | 185 | 117 | 183 | 139 | 178 | 105 | 103 | 100 | 113 | 110 | 116 | 111 | 105 | 100 | 152 | |
5000 | 103 | 120 | 112 | 115 | 104 | 209 | 103 | 102 | 100 | 110 | 109 | 113 | 110 | 104 | 100 | 194 | |
1.0 | 500 | 105 | 109 | 101 | 117 | 101 | 100 | 109 | 103 | 100 | 127 | 117 | 127 | 113 | 105 | 100 | 127 |
1000 | 104 | 108 | 102 | 107 | 102 | 101 | 109 | 103 | 100 | 124 | 116 | 123 | 112 | 106 | 100 | 149 | |
2500 | 105 | 113 | 100 | 127 | 100 | 100 | 106 | 104 | 102 | 114 | 111 | 116 | 112 | 107 | 102 | 192 | |
5000 | 103 | 108 | 100 | 108 | 100 | 100 | 102 | 101 | 100 | 113 | 113 | 118 | 110 | 104 | 100 | 258 | |
Unbalanced DIF | |||||||||||||||||
0.5 | 500 | 118 | 118 | 101 | 130 | 100 | 121 | 103 | 107 | 140 | 119 | 118 | 148 | 109 | 106 | 140 | 135 |
1000 | 126 | 136 | 100 | 133 | 113 | 163 | 107 | 118 | 190 | 126 | 137 | 201 | 116 | 115 | 190 | 192 | |
2500 | 105 | 293 | 272 | 299 | 212 | 269 | 107 | 134 | 288 | 118 | 146 | 284 | 113 | 123 | 288 | 276 | |
5000 | 102 | 276 | 279 | 279 | 253 | 356 | 100 | 123 | 375 | 115 | 156 | 391 | 109 | 110 | 375 | 384 | |
1.0 | 500 | 109 | 115 | 100 | 146 | 107 | 105 | 110 | 125 | 265 | 128 | 141 | 271 | 120 | 123 | 265 | 231 |
1000 | 100 | 114 | 105 | 131 | 105 | 105 | 105 | 122 | 359 | 124 | 145 | 366 | 113 | 118 | 359 | 315 | |
2500 | 101 | 179 | 169 | 308 | 163 | 171 | 108 | 144 | 536 | 113 | 146 | 529 | 112 | 131 | 536 | 459 | |
5000 | 103 | 117 | 100 | 345 | 100 | 100 | 104 | 135 | 776 | 116 | 161 | 778 | 112 | 118 | 776 | 677 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning. Stats 2023, 6, 192-208. https://doi.org/10.3390/stats6010012
Robitzsch A. Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning. Stats. 2023; 6(1):192-208. https://doi.org/10.3390/stats6010012
Chicago/Turabian StyleRobitzsch, Alexander. 2023. "Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning" Stats 6, no. 1: 192-208. https://doi.org/10.3390/stats6010012
APA StyleRobitzsch, A. (2023). Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning. Stats, 6(1), 192-208. https://doi.org/10.3390/stats6010012