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Abstract: From the affinity coefficient between two discrete probability distributions proposed by
Matusita, Bacelar-Nicolau introduced the affinity coefficient in a cluster analysis context and extended
it to different types of data, including for the case of complex and heterogeneous data within the
scope of symbolic data analysis (SDA). In this study, we refer to the most significant partitions
obtained using the hierarchical cluster analysis (h.c.a.) of two well-known datasets that were taken
from the literature on complex (symbolic) data analysis. h.c.a. is based on the weighted generalized
affinity coefficient for the case of interval data and on probabilistic aggregation criteria from a VL
parametric family. To calculate the values of this coefficient, two alternative algorithms were used
and compared. Both algorithms were able to detect clusters of macrodata (aggregated data into
groups of interest) that were consistent and consonant with those reported in the literature, but one
performed better than the other in some specific cases. Moreover, both approaches allow for the
treatment of large microdatabases (non-aggregated data) after their transformation into macrodata
from the huge microdata.

Keywords: interval data; hierarchical cluster analysis; weighted generalized affinity coefficient;
discrete probability distributions

1. Introduction

Within the scope of bidimensional data matrices, each variable only takes one single
value (for each individual k, Yj(k) can be denoted by xkj). However, in today’s big data era,
“data analysts are confronted with new challenges: they are asked to process data that go
beyond the classical framework, as in the case of data concerning more or less homogeneous
classes or groups of individuals (second-order objects) instead of single individuals (first-
order objects)” ([1] (p. 473)). Moreover, logging large datasets into large databases often
leads to the need to summarize these data, considering their underlying concepts, which
can only be described by more complex types of data, namely, symbolic data.

In a symbolic data table, the variables can take values as a single quantitative value, a
single categorical value, a set of values or categories (multivalued variable), an interval, or
a set of values with associated weights. Moreover, the cells may contain data of several
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types that can be weighted and linked using logical rules and taxonomies [2]. Furthermore,
the statistical units can be either simple elements (e.g., subjects/individuals) or subsets
of objects in some population (e.g., subsamples of a sample, classes of a partition, and
subgroups of the population). The rows of a symbolic data table correspond to symbolic
objects (SOs), a “new type of statistical data that are characterized by their complexity” ([3]
(p. 125)). Reviews of several currently available methods for analyzing such data can be
found in the existing literature in this field (e.g., [4–14]). Moreover, SOs can be visualized
using the Zoom Star Representation (2D Zoom Star and 3D Zoom Star) for graphical
representation of multidimensional symbolic data [3,15].

Symbolic data analysis provides a framework for the representation and analysis of
data with inherent variability. Therefore, “new variable types have been introduced, whose
realizations are not single real values or categories, but sets, intervals, or, more generally,
distributions over a given domain” ([8] (p. 282)). In this context, for instance, Billard and
Diday [6] looked at the concept of symbolic data in general, including multivalued vari-
ables, interval-valued variables, modal multivalued variables, and modal interval-valued
(histogram-valued) variables. The present study focuses on interval-valued variables, for
which the formal definition is presented below.

Let E = {1, . . ., N} be a set of N statistical units (individuals, classes, objects, etc.). A
variable Yj with domain Ij is an interval-valued variable if, for all k ∈ E, Yj (k) is an interval
of Ij in the order established on Ij. Formally, in this case, Y is mapping E→T (defined on
E) so that Ij (k) = [akj, bkj]. Some examples of interval-valued data or simply interval data
are “daily weather temperature, weekly price variations of fish, record of blood pressure of
a patient” ([16] (p. 45)), among other examples. Moreover, observations of this type are
frequent in cases “such as those involving fluctuations, subjective perceptions, intervals,
censored or grouped data” ([17] (p. 229)).

According to Brito et al. [18], interval data occur in various contexts and are often gen-
erated from the aggregation of large databases into groups of interest when the individual
observations (the microdata) are described using quantitative variables. According to the
same authors, when describing ranges of variable values (for instance, for daily stock prices
or temperature ranges), we obtain native interval data.

The purpose of cluster analysis is to group either the data units (subjects/persons/cases)
or the variables into clusters so that “the elements within a cluster have a high degree of
“natural association” among themselves while the clusters are “relatively distinct from one
another” ([19] (p. xi)). In the same way, the aim of using clustering methods for symbolic
data is to classify the entities into clusters (or classes), “which are internally as homogeneous
as possible and externally as distinct from each other as possible” ([6] (p. 482)). According
to Brito ([20] (p. 231)), in this context, “the problem consists in developing methods that
allow to cluster sets of symbolic data and that produce classes directly interpretable in
terms of the input variables”.

Several clustering algorithms have been also proposed in the literature. Ezugwu
et al. [21] conducted a systematic review of traditional and state-of-the-art clustering tech-
niques for different domains. Moreover, some dissimilarity measures for interval data can
be found in the literature concerning symbolic data (e.g., [16,22–28]), and there are also
some similarity measures that can deal with interval data (e.g., [17,29–31]). Gordon [32]
(p. 141) states that “given a measure of pairwise dissimilarity between symbolic objects,
classifications of them can be obtained using standard algorithms that analyse dissimi-
larity matrices” (the same is valid for a measure of pairwise similarity). Thus, given a
proximity matrix, classifications of symbolic objects can be provided applying classical
agglomerative algorithms.

In the present paper, we refer to the most significant partitions obtained via applying
hierarchical cluster analysis (h.c.a.) on two datasets (interval data) issued from the literature
on symbolic data analysis (SDA). h.c.a. is based on the weighted generalized affinity
coefficient (e.g., [30]) for the case of interval data and on one classic (single linkage (SL))
and two probabilistic aggregation criteria from a VL parametric family (e.g., [33–39]). To
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calculate the values of this similarity coefficient, two alternative algorithms, which will be
explained in Section 2, were used and compared. Section 3 provides a description of the
experimental methodology, while Section 4 describes our experimental results, as well as
our interpretation of the results and the experimental conclusions that can be drawn from
them. Finally, Section 5 (Discussion and Conclusions section) presents our final remarks
concerning the two applied algorithms.

2. Literature Review: Affinity Coefficient in the Case of Interval Variables

The affinity coefficient was first proposed by Matusita [40,41], who studied its prop-
erties and applications mostly in classical statistics. Given two discrete probability distri-
butions, namely, P = (p1, · · · , pm ) and Q = (q1, · · · , qm ), on {1, · · · , m}, the affinity
coefficient between them is given by a(P, Q) = ∑m

v=1
√

pvqv and relates to a special case of
the Hellinger distance, d(P, Q), designated by Bhattacharyya distance via the following
formula: d(P, Q)2 = 2(1− a(P, Q)) (e.g., [42]). From the affinity coefficient between two
discrete probability distributions proposed by Matusita [40,41], Bacelar-Nicolau (e.g., [39])
introduced the affinity coefficient as a similarity coefficient between pairs of variables
or subjects in a cluster analysis context. Later, this coefficient was extended to different
types of data, including complex and heterogeneous data (e.g., [30,42]), within the context
of SDA.

Given a pair of two statistical units (k, k′ = 1(1)N), the extension of the affinity coefficient
for the case of symbolic data, called the weighted generalized affinity coefficient, is given
by the following formula, which is presented in [30] (p. 11) (the notation k, k′ = 1(1)N means
that k and k′ vary from 1 to N by integer values):

a
(
k, k′

)
= ∑

p
j=1πja f f

(
k, k

′
; j
)
= ∑

p
j=1πj∑

mj
`=1

√
xkj`

xkj•
·
xk′ j`

xk′ j•
, (1)

where a f f (k, k
′
; j)) denotes the generalized local affinity between the two statistical units, k

and k′, over the jth variable; mj is the number of columns of a generalized sub-table associ-
ated with the jth variable; xkj` designates a positive or null real number (that is, xkj` ∈ R+

0 ),
for which its meaning is determined by the type of variable Yj (a proper adaptation

of Formula (1) makes them capable of dealing with negative values); xkj• = ∑
mj
`=1 xkj`,

xk′ j• = ∑
mj
`=1 xk′ j`, and πj, with j = 1(1)p, are weights that satisfy constraints 0 ≤ π j ≤ 1 and

∑
p
j=1 πj = 1. Both coefficients, (a f f (k, k

′
; j) and a(k, k′)), assume values in the interval [0,1].

Moreover, the coefficient given by Formula (1) satisfies properties that indicate that it is a ro-
bust similarity measure (e.g., [30,42]). It should be noted that, in particular, when the initial
symbolic data matrix contains absolute frequencies (counts), this coefficient deals with dis-
crete data (the counts can be mapped in one-to-one correspondence with the set of positive
or null integers), and in this situation, we consider notations nkj`, nk′ j`, nkj• and nk′ j• instead
of xkj`, xk′ j`, xkj•, and xk′ j•, respectively (see [42]). In this particular case, nkj` is the number

of individuals (in the unit k) that share category ` of variable Yj and nkj• = ∑
mj
`=1 nkj`

(similarly, nk′ j• = ∑
mj
`=1 nk′ j`). In this context, it is important to emphasize that the relative

frequencies
xkj`
xkj•

, ` = 1(1)mj, and
xk′ j`
xk′ j•

, ` = 1(1)mj generate two discrete distributions, with

the “square root profiles”
(√pkj1, · · · ,√pkjmj

)
and

(√pkj′1, · · · ,√pkj′mj

)
, respectively.

In addition, the weighted generalized affinity coefficient, a(k, k′), measures the monotone
tendency between two square root profiles of a pair of statistical units, k and k’.

In the case of a symbolic data table in which the values are intervals, the calculation
of the weighted generalized affinity coefficient can be carried out based on the algorithms
described below.
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2.1. Algorithm 1: Computation Directly from the Initial Intervals

Let E = {1, . . ., N} be a set of N statistical units described by p interval-valued variables,
Yj, with j = 1(1)p, which takes values in the interval Ikj, (k = 1(1)N) of R. Therefore, each
element of E is represented by a p-dimensional vector of intervals, as shown in Table 1.

Table 1. Symbolic data table (interval data).

Y1 · · · Yj · · · Yp

1 I11 = [a11, b11] · · · I1j = [a1j, b1j] · · · I1p = [a1p, b1p]
...

...
...

...
...

...
k Ik1 = [akj, bkj] · · · Ik j = [akj, bkj] · · · Ikp = [akp, bkp]
...

...
...

...
...

...
N IN1 = [aN1, bN1] · · · IN j = [aNj, bNj] · · · INp = [aNp, bNp]

The entry Ikj = [akj, bkj] of Table 1, corresponding to the description of the data unit k
(k = 1(1)N) in the variable Yj (j = 1(1)p), contains an interval Ikj of R, for which its lower and
upper boundaries are denoted by akj and bkj, respectively. Thus, each entry of this table is
defined as a closed and bounded interval, and they are often used to represent a quantity
that may vary between an upper boundary and a lower boundary [16]. In this scenario, the
local generalized affinity coefficient, a f f

(
k, k

′
; j
)

, between a pair of statistical units, k and

k′ (k, k′ = 1(1)N), with respect to variable Yj can be computed directly using Formula (2),

which was initially presented in [30] (p. 15), where
∣∣∣Ikj

∣∣∣, ∣∣∣Ik′ j

∣∣∣, and
∣∣∣Ikj ∩ Ik′ j

∣∣∣ denote the
ranges of intervals Ikj, Ik′ j, and Ikj ∩ Ik′ j (intersection of the intervals).

a f f
(

k, k
′
; j
)
=

∣∣∣Ikj ∩ Ik′ j

∣∣∣√∣∣∣Ikj

∣∣∣·∣∣∣Ik′ j

∣∣∣ (2)

The weighted generalized affinity coefficient between k and k′ (k, k′ = 1(1)N) can be
computed using Formula (3):

a
(
k, k′

)
= ∑

p
j=1πj· a f f (k, k

′
; j) = ∑

p
j=1πj·

∣∣∣Ikj ∩ Ik′ j

∣∣∣√∣∣∣Ikj

∣∣∣·∣∣∣Ik′ j

∣∣∣ , (3)

where the weights, πj, satisfy two conditions, namely, 0 ≤ πj ≤ 1 and ∑
p
j=1 πj = 1. In

Algorithm 1, we directly use Formula (3) without any decomposition of the initial intervals
(e.g., [30]). In other words, the input of algorithm 1 is the data matrix corresponding to
Table 1 (more specifically, the lower and upper boundaries of the respective intervals, the
number of statistical units (N), and the number of variables).

Given two intervals, A = [LowerA, UpperA] and B = [LowerB, UpperB], where Lower
A and UpperA denote the lower and upper boundaries of A (analogous notation for B),
respectively, it is important to highlight that the computation of the local generalized affinity
coefficient, a f f (k, k

′
; j), between a pair of statistical units, k and k′ (k, k′ = 1(1)N), concerning

variable Yj, according to Formula (2), can be implemented by considering the following
three steps: (i) the computation of the ranges of A and B; (ii) the intersection between
A and B (here, Inters1 and Inters2 are the lower and upper boundaries of the interval
corresponding to the intersection of A and B, respectively); and (iii) the computation of
a f f

(
k, k

′
; j
)

(abbreviated as aff).
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Algorithm 1: Computation Directly from the Initial Intervals

RangeA = UpperA-LowerA
RangeB = UpperB-LowerB
If ((UpperA < LowerB). OR. (UpperB < LowerA)) Then
a f f = 0 (There is no intersection between intervals A and B)
else
Inters1 = max(LowerA, LowerB)
Inters2 = min(UpperA, UpperB)
RangeInt = Inters2-Inters1
aff = RangeInt/SQRT(RangeA*RangeB)
End if

2.2. Algorithm 2: Previous Decomposition of the Initial Intervals into a Set of mj Elementary and
Disjoint Subintervals and the Generation of a New Data Matrix

Let Ij be the union of the initial intervals, Ikj (k = 1(1)N), which refers to the description
of N statistical units (often groups of individuals) in variable Yj (see the j-th column of
Table 1); that is, Ij =

⋃N
k=1 Ikj =

⋃N
k=1

[
akj, akj

]
(k = 1, . . . , N) is the domain, Ij, of Yj.

The second algorithm consists of the calculation of the general formula of the weighted
generalized affinity coefficient (1), considering an appropriate decomposition of the initial
intervals, Ikj (k = 1(1)N), into a set of mj elementary and disjoint subintervals and working
with the ranges of these new intervals. In this approach, in the first step, the domain,
Ij, of each variable Yj (j = 1(1)N) is decomposed into a set of mj elementary and disjoint

intervals
{

Ij`,; ` = 1, · · · , mj

}
so that `, `

′
= 1(1)mj, ` 6= `

′
; k = 1(1)N : Ij =

⋃mj
`=1 Ij`;∣∣∣Ij` ∩ Ij`′

∣∣∣ = 0; and ∣∣∣Ikj ∩ Ij`

∣∣∣ = {∣∣∣Ij`

∣∣∣, if
∣∣∣Ikj

⋂
IJ`

∣∣∣ 6= 0
0, otherwise

,

where | | symbolizes the interval range (difference between the upper and the lower
boundaries of the corresponding interval).

In the second step, a new data matrix, subdivided into p subtables/submatrices (one
for each variable, Yj (j = 1(1)p), is obtained. It should be noted that, in each of these
subtables, the k-th row corresponds to the description of statistical unit k in terms of the
ranges of the intersection between the initial interval Ikj (k = 1(1)N) and each of the mj
elementary subintervals used in the decomposition of domain Ij of variable Yj (j = 1(1)p).
Thus, the vector [[a1j, b1j], · · · , [akj, bkj], · · · , [aNj, bNj]]T, corresponding to Yj in Table 1, is
replaced by an appropriate subtable, as shown in Table 2.

Table 2. Part of the transformed data matrix concerning variable Yj (j = 1(1)p)—Algorithm 2.

· · · Yj · · ·

· · · Ij1 · · · Ij` · · · Ijmj · · ·

1 · · ·
∣∣∣I1j ∩ Ij1

∣∣∣ · · ·
∣∣∣I1j ∩ Ij`

∣∣∣ · · ·
∣∣∣I1j ∩ Imj

∣∣∣ · · ·
...

...
...

...
...

...
...

...
k · · ·

∣∣∣Ikj ∩ Ij1

∣∣∣ · · ·
∣∣∣Ikj ∩ Ij`

∣∣∣ · · ·
∣∣∣Ikj ∩ Imj

∣∣∣ · · ·
...

...
...

...
...

...
...

...
N · · ·

∣∣∣INj ∩ Ij1

∣∣∣ · · ·
∣∣∣INj ∩ Ij`

∣∣∣ · · ·
∣∣∣INj ∩ Imj

∣∣∣ · · ·

Finally, in the third step, Formula (1) is applied (for details, see [30]).
When we are dealing with interval-valued variables, Formula (3) arises as a particular

case of Formula (1) when considering mj as equal to the number of elementary and disjoint
subintervals of variable Yj (instead of the number of modalities of the sub-table associated
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with the jth variable), and the values of xkj` and xk′ j` ( ` = 1(1)mj
)

are, in this case, the
ranges of the corresponding elementary and disjoint subintervals, respectively (note that,
in this context, these ranges are a set of countable or enumerable values). Thus, in the
second algorithm, we can formally define xkj` and xk′ j` as follows:

xkj` =

{ ∣∣∣Ij`

∣∣∣, if Ikj ∩ I j` = Ij`

0, otherwise

and

xk′ j` =

{ ∣∣∣Ij`

∣∣∣, if Ik′ j ∩ I j` = Ij`

0, otherwise

It should also be noted that both in Formula (3) and Formula (1), xkj• = ∑
mj
`=1 xkj`,

xk′ j• = ∑
mj
`=1 xk′ j`, and πj, with j = 1(1)p, are weights such as 0 ≤ π j ≤ 1 and ∑

p
j=1 πj = 1.

Moreover, we have the following: xkj• = ∑
mj
`=1 xkj` =

∣∣∣Ikj

∣∣∣; xk′ j• = ∑
mj
`=1 xk′ j` =

∣∣∣Ik′ j

∣∣∣, and

∑
mj
`=1 xkj`xk′ j` =

∣∣∣Ikj ∩ Ik′ j

∣∣∣. Thus, if some conditions are verified (namely, (i) if there are
no intervals with identical lower and upper boundaries and (ii) if there are no intervals
with an intersection that is a single point), the application of Formula (1), considering a
data matrix as exemplified in Table 2, provides the same affinity values as Algorithm 1
(Formula (3)). In those conditions, we have the following (for details, see, [30]):

a
(
k, k′

)
=

p

∑
j=1

πja f f
(

k, k
′
; j
)
=

p

∑
j=1

πj

mj

∑
`=1

√
xkj`

xkj•
·
xk′ j`·
xk′ j•

=
p

∑
j=1

πj·

∣∣∣Ikj ∩ Ik′ j

∣∣∣√∣∣∣Ikj

∣∣∣·∣∣∣Ik′ j

∣∣∣
When there are initial intervals with identical lower and upper boundaries, in both

described algorithms, we can obtain transformed intervals by replacing “these intervals by
transformed intervals obtained from the first ones, for instance, by subtracting and adding
0.5, respectively to the lower and upper boundaries” (this procedure is well illustrated
in [43] (p. 17)).

When the variables assume values of different magnitudes and scales, we recommend
the use of the asymptotically centered and reduced coefficient under a permutational
hypothesis of reference based on the Wald and Wolfowitz limit theorem, as denoted by
aWW(k, k′) (e.g., [30]). The coefficient aWW(k, k′), in turn, allows for the definition of a
probabilistic coefficient, αWW(k, k′), in the context of the VL methodology (V for validity
and L for linkage) along the lines initiated by Lerman ([33–37]) and developed by Bacelar-
Nicolau and Nicolau (e.g., [38,39]). The application of αWW(k, k′) instead of a(k, k′) allows
us to deal with comparable similarity values using a probabilistic scale. Several applications
of this methodology using well-known datasets concerning interval data in the context of
SDA can be found in the literature (for example, in [30,43–45]).

3. Materials and Methods

The main objective of the empirical part of the present study was to understand and
illustrate the situations in which one algorithm should be used over the other. For this
purpose, we used two datasets from the literature on symbolic data (the Abalone dataset
and City temperature interval dataset), both of which are described below.

The Abalone dataset concerns 4177 cases of marine crustaceans which are described
according to nine attributes (e.g., [1,45]): sex; length (longest shell measurement) in mm;
diameter (perpendicular to length) in mm; height (measured with meat in shell) in mm;
whole weight (weight of the whole abalone) in grams; shucked weight (weight of the meat)
in grams; viscera weight (gut weight after bleeding) in grams; shell weight (weight of the
dried shell) in grams; and rings (number of rings). The microdata concerning this dataset
are available at http://archive.ics.uci.edu/dataset/1/abalone (accessed on 1 May 2023).

http://archive.ics.uci.edu/dataset/1/abalone
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In the present study, initially, using the DB2S0 facility available in the SODAS (Sym-
bolic Official Data Analysis System) software [46], version 2.50, nine Boolean symbolic
objects (BSOs) were generated. Each of these BSOs correspond to an interval of values for
the number of rings of the crustaceans: A (1–3 rings), B (4–6), C (7–9), D (10–12), E (13–15),
F (16–18), G (19–21), H (22–24), and I (25–29 rings). Abalone data were thus aggregated into
BSOs, each of which correspond to a range of values for the number of rings. For each of
the groups, we considered seven interval-valued variables, namely, “Length”, “Diameter”,
“Height”, “Whole”, “Shucked”, “Viscera”, and “Shell”. The symbolic matrix presented in
Appendix A (see Table A1) contains a description of the nine groups of abalones using
interval-valued variables considering five decimal places (in [1] (p. 478), the entries of this
symbolic data matrix are shown with only two decimal places).

According to Malerba et al. [1], it is expected that abalones with the same number of
rings should also present similar values for these attributes. Therefore, it is expected that
“the degree of dissimilarity between crustaceans computed on the independent attributes
to actually be proportional to the dissimilarity in the dependent attribute (i.e., difference
in the number of rings)” ([1] (p. 477)). This property is known as “Monotonic Increasing
Dissimilarity” (abbreviated as MID property). Moreover, concerning the prediction tasks,
the number of rings is the value to be predicted from which it is possible to know the
age in years of the crustacean by adding 1.5 to the number of rings. Thus, this dataset is
characterized by a fully understandable and explainable property (the MID property).

The second dataset analyzed in the present paper concerns the minimum and maxi-
mum temperatures in degrees centigrade, which are recorded in 37 cities during a year, as
shown in Table A2 of Appendix A. The intuitive partition carried out by a group of human
observers resulted in four clusters of cities (e.g., [47]): {2, 3, 4, 5, 6, 8, 11, 12, 15, 17, 19, 22, 23,
29, 31}; {0, 1, 7, 9, 10, 13, 14, 16, 20, 21, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36}; {18}; {32}.

Both algorithms were applied considering πjj’ = 1/p if j = j′ and πjj’= 0 if j 6= j′ in
the corresponding mathematical formulas ((3) and (1), respectively). The values of the
corresponding similarity matrices were combined with three aggregation criteria, namely,
the classic single linkage (SL) and two probabilistic (AV1 and AVB (see [33–39])). In the case
of the first dataset, the selection of the best partitions was based on the values of Global
Statistics of Levels (STAT) and DIF indexes (e.g., [39]). However, in the case of the second
dataset, we directly compared the obtained partitions with the a priori partition.

4. Results
4.1. Application to Abalone Data

Here, we only applied Algorithm 1 (Formula (3)), as the data matrix does not contain
intervals with an intersection that act as a single point, and the variables assume values
with magnitudes and scales that do not differ substantially. The values of the weighted
generalized affinity coefficient are shown in Table 3.

Table 3. Lower triangular similarity matrix (Abalone data): weighted generalized affinity
coefficient—Algorithm 1.

A B C D E F G H I

A 1.000000
B 0.295899 1.000000
C 0.096265 0.714581 1.000000
D 0.004515 0.611748 0.835651 1.000000
E 0.000000 0.625292 0.804286 0.884309 1.000000
F 0.000000 0.550538 0.735457 0.799001 0.874737 1.000000
G 0.000000 0.541550 0.705257 0.731724 0.815422 0.889002 1.000000
H 0.000000 0.436690 0.665697 0.748095 0.817462 0.831564 0.871040 1.000000
I 0.000000 0.246183 0.498152 0.531911 0.595100 0.660145 0.727961 0.700374 1.000000



Stats 2023, 6 1089

Figure 1 corresponds to the dendrogram concerning the combination of the weighted
generalized affinity coefficient (computed using algorithm 1) with the AV1 and AVB methods.
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Figure 1. Dendrogram provided using AV1 and AVB methods. A (1–3 rings), B (4–6), C (7–9), D
(10–12), E (13–15), F (16–18), G (19–21), H (22–24), and I (25–29 rings), respectively.

According to the values of the STAT and DIF indexes, provided that the AV1 and
AVB methods are being used, the best partition contains four clusters (cutoff at level 5),
namely, {A}; {B}; {F, G, E, H, D, C}; and {I}, where the first and second clusters, {A} and {B},
are concerned with the younger crustaceans, and the fourth cluster, {I}, is concerned with
older crustaceans (see Figure 1). Thus, these results satisfy the MID property. Moreover,
the most atypical cluster is cluster {A}, representing very young abalones, which is in line
with what is referred to in [1] (p. 480). Furthermore, based on the empirical evaluation of a
list of dissimilarity measures proposed in [1] for a restricted class of symbolic data, namely,
Boolean symbolic objects, the authors state the following: “only three dissimilarity measures
proposed by de Carvalho, namely, SO_1, SO_2 and C_1, satisfy the MID property” (see [1]
(p. 480)). In this context, it should be noted that our clustering results are in accordance
with the results of these three measures.

4.2. Application to City Temperature Interval Dataset

Starting from the principle that cluster analysis is sensitive to differences concern-
ing the scales and magnitudes among the variables, here, we present the main partitions
concerning the AHCA of the 37 cities using the probabilistic coefficient, aWW(k, k′), asso-
ciated with the asymptotic standardized weighted generalized affinity coefficient, which
is obtained using the method of Wald and Wolfowitz. In this context, the decomposition
of the initial data matrix in a new submatrix is presented in [44] for the case of variable
Y1 (January).

The partition into four clusters provided using the SL method (see Figure 2) is identical
to that provided by the panel of human observers (a priori partition), which was also
obtained by Guru et al. ([47]).
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Figure 2. Last levels of the dendrogram provided using SL and αWW(k, k′) methods. The numbers 0
to 36 correspond to the 37 cities.

The partition into four clusters provided by the remaining used aggregation criteria
did not coincide with the a priori partition, but this fact is not surprising because other
authors (e.g., [48]), through using other algorithms, have also reported partitions of four
clusters that were not identical to the a priori partition given by the panel of human
observers. However, the following three cluster partitions (provided using the aWW(k, k′)
coefficient combined with all applied aggregation criteria) only differs from the a priori
partition in terms of the inclusion of city 18 (according to the panel of human observers,
this city is a singleton):

Cluster 1: {2, 3, 4, 5, 6, 8, 11, 12, 15, 17, 18, 19, 22, 23, 29, 31};
Cluster 2: {0, 1, 7, 9, 10, 13, 14, 16, 20, 21, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36};
Cluster 3: {32}.

5. Discussion and Conclusions

In this paper, we addressed the problem of clustering interval data by applying two
algorithms for the computation of the weighted generalized affinity coefficient.
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The first algorithm works directly with the initial intervals by applying Formula (3),
while the second one implies the previous calculation of a new data matrix based on the
decomposition of the initial intervals into several elementary and disjoint subintervals
followed by the application of Formula (1). Therefore, Algorithm 1 requires less computa-
tional effort. However, the second algorithm performs better when there are intervals with
an intersection that act as a single point or when the variables assume values of different
magnitudes and scales (in the case of the City temperature interval dataset; see the previous
section). In this context, we usually opt for using the asymptotically centered and reduced
coefficient under a permutational hypothesis of reference that is based on the Wald and Wol-
fowitz limit theorem, which is denoted by aWW(k, k′), or by the corresponding probabilistic
coefficient, αWW(k, k′), in the context of the VL methodology. This last similarity coefficient
has the advantage of dealing with comparable similarity values on a probabilistic scale.
Furthermore, in the remaining situations, the two algorithms provide the same values for
the weighted generalized affinity coefficient.

In the first analyzed dataset (Abalone data), interval data resulted from the aggregation
of microdata, while in the second dataset (City temperature interval dataset), the data matrix
was already obtained using condensed information in the form of intervals. Furthermore,
when there are some intervals with identical lower and upper boundaries, these intervals
may be replaced by suitable transformed intervals in both algorithms (1 and 2), as we
have mentioned previously. Moreover, both approaches allow for the treatment of large
microdata bases (non-aggregated data) by previously generating macrodata (aggregated
data into the groups of interest) from the huge microdata. Finally, both algorithms were
able to detect the clusters of macrodata that were consistent and concordant with those
reported in the literature.
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Appendix A

Table A1. Abalone data * (four decimal places).

Length Diameter Height Whole Shucked Viscera Shell

[0.0750, 0.2400] [0.0550, 0.1750] [0.0100, 0.0650] [0.0020, 0.0665] [0.0010, 0.0310] [0.0005, 0.0135] [0.0015, 0.0170}
[0.1300, 0.6600] [0.0950, 0.4750) [0.0000, 0.1800] [0.0105, 1.3695] [0.0050, 0.6410] [0.0005, 0.2940] [0.0035, 0.3505]
[0.2050, 0.7450] [0.1550, 0.5800] [0.0000, 1.1300] [0.0425, 2.3305] [0.0170, 1.2530] [0.0055, 0.5410] [0.0155, 0.5580]
[0.2900, 0.7800 [0.2250, 0.6300] [0.0600, 0.5150] [0.1200, 2.7795] [0.0415, 1.4880] [0.0240, 0.7600] [0.0400, 0.7260]
[0.3200, 0.8150] [0.2450, 0.6500] [0.0800, 0.2500] [0.1585, 2.5500] [0.0635,1.3510] [0.0325, 0.5750] [0.0500, 0.7975]
[0.3950, 0.7750] [0.3150, 0.6000] [0.1050, 0.2400] [0.3515, 2.8255] [0.1135, 1.1465] [0.0565, 0.4805] [0.1195, 1.005]
[0.4500,0.7350] [0.3550, 0.5900] [0.1200, 0.2300] [0.4120, 2.1300] [0.1145, 0.8665] [0.0665, 0.4900] [0.1600, 0.8500]
[0.4500, 0.8000] [0.3800, 0.6300] [0.1350, 0.2250] [0.6400, 2.5260] [0.1580, 0.9330] [0.1100, 0.5900] [0.2400, 0.7100]
[0.5500, 0.7000 [0.4650, 0.5850] [0.1800, 0.2250] [1.0575, 2.1835] [0.3245, 0.7535] [0.1900, 0.3910] [0.3750, 0.8850]

* The nine rows corresponding to the abalones A (1–3 rings), B (4–6), C (7–9), D (10–12), E (13–15), F (16–18), G
(19–21), H (22–24), and I (25–29 rings), respectively.
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Table A2. City temperature interval dataset.

Cities Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

0 Amsterdam [−4, 4] [−5, 3] [2, 12] [5, 15] [7, 17] [10, 20] [10, 20] [12, 23] [10, 20] [5, 15] [1, 10] [−1, 4]
1 Athens [6, 12] [6, 12] [8, 16] [11, 19] [16, 25] [19, 29] [22, 32] [22, 32] [19, 28] [16, 23] [11, 18] [8, 14]
2 Bahrain [13, 19] [14, 19] [17, 23] [21, 27] [25, 32] [28, 34] [29, 36] [30, 36] [28, 34] [24, 31] [20, 26] [15, 21]
3 Bombay [19, 28] [19, 28] [22, 30] [24, 32] [27, 33] [26, 32] [25, 30] [25, 30] [24, 30] [24, 32] [23, 32] [20, 30]
4 Cairo [8, 20] [9, 22] [11, 25] [14, 29] [17, 33] [20, 35] [22, 36] [22, 35] [20, 33] [18, 31] [14, 26] [10, 20]
5 Calcutta [13, 27] [16, 29] [21, 34] [24, 36] [26, 36] [26, 33] [26, 32] [26, 32] [26, 32] [24, 32] [18, 29] [13, 26]
6 Colombo [22, 30] [22, 30] [23, 31] [24, 31] [25, 31] [25, 30] [25, 29] [25, 29] [25, 30] [24, 29] [23, 29] [22, 30]
7 Copenhagen [−2, 2] [−3, 2] [−1, 5] [3, 10] [8, 16] [11, 20] [14, 22] [14, 21] [11, 18] [7, 12] [3, 7] [1, 4]
8 Dubai [13, 23] [14, 24] [17, 28] [19, 31] [22, 34] [25, 36] [28, 39] [28, 39] [25, 37] [21, 34] [17, 30] [14, 26]
9 Frankfurt [−10, 9] [−8, 10] [−4, 17] [0, 24] [3, 27] [7, 30] [8, 32] [8, 31] [5, 27] [0, 22] [−3, 14] [−8, 10]

10 Geneva [−3, 5] [−6, 6] [3, 9] [7, 13] [10, 17] [15, 17] [16, 24] [16, 23] [11, 19] [6, 13] [3, 8] [−2, 6]
11 Hong Kong [13, 17] [12, 16] [15, 19] [19, 23] [22, 27] [25, 29] [25, 30] [25, 30] [25, 29] [22, 27] [18, 23] [14, 19]
12 Kula Lumpur [22, 31] [23, 32] [23, 33] [23, 33] [23, 32] [23, 32] [23, 31] [23, 32] [23, 32] [23, 31] [23, 31] [23, 31]
13 Lisbon [8, 13] [8, 14] [9, 16] [11, 18] [13, 21] [16, 24] [17, 26] [18, 27] [17, 24] [14, 21] [11, 17] [8, 14]
14 London [2, 6] [2, 7] [3, 10] [5, 13] [8, 17] [11, 20] [13, 22] [13, 21] [11, 19] [8, 14] [5, 10] [3, 7]
15 Madras [20, 30] [20, 31] [22, 33] [26, 35] [28, 39] [27, 38] [26, 36] [26, 35] [25, 34] [24, 32] [22, 30] [21, 29]
16 Madrid [1, 9] [1, 12] [3, 16] [6, 19] [9, 24] [13, 29] [16, 34] [16, 33] [13, 28] [8, 20] [4, 14] [1, 9]
17 Manila [21, 27] [22, 27] [24, 29] [24, 31] [25, 31] [25, 31] [23, 29] [24, 28] [25, 28] [24, 29] [22, 28] [22, 27]
18 Mauritius [22, 28] [22, 29] [22, 29] [21, 28] [19, 25] [18, 24] [17, 23] [17, 23] [17, 24] [18, 25] [19, 27] [21, 28]
19 Mexico City [6, 22] [15, 23] [17, 25] [18, 27] [18, 27] [18, 27] [18, 27] [18, 26] [18, 26] [16, 25] [14, 25] [8, 23]
20 Moscow [−13, −6] [−12, −5] [−8, 0] [0, 8] [7, 18] [11, 23] [13, 24] [11, 22] [6, 16] [1, 8] [−5, 0] [−11, −5]
21 Munich [−6, 1] [−5, 3] [−2, 9] [3, 14] [7, 18] [10, 21] [12, 23] [11, 23] [8, 20] [4, 13] [0, 7] [−4, 2]
22 Nairobi [12, 25] [13, 26] [14, 25] [14, 24] [13, 22] [12, 21] [11, 21] [11, 21] [11, 24] [13, 24] [13, 23] [13, 23]
23 New Delhi [6, 21] [10, 24] [14, 29] [20, 36] [26, 40] [28, 39] [27, 35] [26, 34] [24, 34] [18, 34] [11, 28] [7, 23]
24 New York [−2, 4] [−3, 4] [1, 9] [6, 15] [12, 22] [17, 27] [21, 29] [20, 28] [16, 24] [11, 19] [5, 12] [−2, 6]
25 Paris [1, 7] [1, 7] [2, 12] [5, 16] [8, 19] [12, 22] [14, 24] [13, 24] [11, 21] [7, 16] [4, 10] [1, 6]
26 Rome [4, 11] [5, 13] [7, 16] [10, 19] [13, 23] [17, 28] [20, 31] [20, 31] [17, 27] [13, 21] [9, 16] [5, 12]
27 San Francisco [6, 13] [6, 14] [7, 17] [8, 18] [10, 19] [11, 21] [12, 22] [12, 22] [12, 23] [11, 22] [8, 18] [6, 14]
28 Seoul [0, 7] [1, 6] [1, 8] [6, 16] [12, 22] [16, 25] [18, 31] [16, 30] [9, 28] [3, 24] [7, 19] [1, 8]
29 Singapore [23, 30] [23, 30] [24, 31] [24, 31] [24, 30] [25, 30] [25, 30] [25, 30] [24, 30] [24, 30] [24, 30] [23, 30]
30 Stockholm [−9, −5] [−9, −6] [−4, 2] [1, 8] [6, 15] [11, 19] [14, 22] [13, 20] [9, 15] [5, 9] [1, 4] [−2, 2]
31 Sydney [20, 30] [20, 30] [18, 26] [16, 23] [12, 20] [5, 17] [8, 16] [9, 17] [11, 20] [13, 22] [16, 26] [20, 30]
32 Tehran [0, 5] [5, 8] [10, 15] [15, 18] [20, 25] [28, 30] [36, 38] [38, 40] [29, 30] [18, 20] [9, 12] [−5, 0]
33 Tokyo [0, 9] [0, 10] [3, 13] [9, 18] [14, 23] [18, 25] [22, 29] [23, 31] [20, 27] [13, 21] [8, 16] [2, 12]
34 Toronto [−8, −1] [−8, −1] [−4, 4] [−2, 11] [−8, 18] [13, 24] [16, 27] [16, 26] [12, 22] [6, 14] [−1, 17] [−5, 1]
35 Vienna [−2, 1] [−1, 3] [1, 8] [5, 14] [10, 19] [13, 22] [15, 24] [14, 23] [11, 19] [7, 13] [2, 7] [1, 3]
36 Zurich [−11, 9] [−8, 15] [−7, 18] [−1, 21] [2, 27] [6, 30] [10, 31] [8, 25] [5, 23] [3, 22] [0, 19] [−11, 8]

Source: “Reprinted/adapted with permission from Guru et al. (2004, p. 1210)” ([47]).
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