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Abstract: Model selection and model averaging are popular approaches for handling modeling
uncertainties. The existing literature offers a unified framework for variable selection via penalized
likelihood and the tuning parameter selection is vital for consistent selection and optimal estimation.
Few studies have explored the finite sample performances of the class of ordinary least squares (OLS)
post-selection estimators with the tuning parameter determined by different selection approaches.
We aim to supplement the literature by studying the class of OLS post-selection estimators. Inspired
by the shrinkage averaging estimator (SAE) and the Mallows model averaging (MMA) estimator,
we further propose a shrinkage MMA (SMMA) estimator for averaging high-dimensional sparse
models. Our Monte Carlo design features an expanding sparse parameter space and further
considers the effect of the effective sample size and the degree of model sparsity on the finite
sample performances of estimators. We find that the OLS post-smoothly clipped absolute deviation
(SCAD) estimator with the tuning parameter selected by the Bayesian information criterion (BIC)
in finite sample outperforms most penalized estimators and that the SMMA performs better when
averaging high-dimensional sparse models.

Keywords: Mallows criterion; model averaging; model selection; shrinkage; tuning parameter choice

1. Introduction

Model selection and model averaging have long been the competing approaches in dealing with
modeling uncertainties in practice. Model selection estimators help us search for the most relevant
variables, especially when we suspect that the true model is likely to be sparse. On the other hand,
model averaging aims to smooth over a set of candidate models so as to reduce risks relative to
committing to a single model.

Uncovering the most relevant variables is one of the fundamental tasks of statistical learning,
which is more difficult if modeling uncertainty is present. The class of penalized least squares
estimators have been developed to handle modeling uncertainty. Fan and Li (2006) laid out a unified
framework for variable selection via penalized likelihood.

Tuning parameter selection is vital in the optimization of the penalized least squares estimators
for achieving consistent selection and optimal estimation. To select the proper tuning parameter,
the existing literature offers two frequently applied approaches, which are the cross-validation (CV)
approach and the information criterion (IC)-based approach. Shi and Tsai (2002) have shown that the
Bayesian information criterion (BIC), under certain conditions, can consistently identify the true model
when the number of parameters and the size of the true model are both finite. Wang et al. (2009)
further proposed a modified BIC for tuning parameter selection when the number of parameters
diverges with the increase in the sample size.

Although most of the penalized least squares estimators such as the adaptive least absolute
shrinkage and selection operator (AdaLASSO) by Zou (2006), the smoothly clipped absolute deviation
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penalty (SCAD) estimator by Fan and Li (2001), and the minimax concave penalty (MCP) estimator
by Zhang (2010) have been researched with well-documented finite sample performances, few
studies have focused on the finite sample performances of the class of ordinary least squares (OLS)
post-selection estimators with the tuning parameter choice determined by different tuning parameter
selection approaches.

Despite decent selection performance from the current penalized least squares estimators, there is
not yet a unified approach in estimating the distribution of such estimators, due to the complicated
constraints and penalty functions. Knight and Fu (2000), Pötscher and Leeb (2009) and Pötscher and
Schneider (2009) investigated the distributions of LASSO-type and SCAD estimators and concluded
that they tend to be highly non-normal. Hansen (2014) stated that the distribution for model selection
and model averaging estimators are highly non-normal but routinely ignored. This ushered in the
development of the class of post-selection estimators such as the OLS post-LASSO estimator by Belloni
and Chernozhukov (2013). Such a class of OLS post-selection estimators avoids the complicated
constraints and penalty functions when building inferences.

Model averaging is applied to hedge against the risks stemming from the possible specification
errors of a single model. For this paper, we attempt to combine the model selection and model
averaging approaches to deal with modeling uncertainty. Therefore, inspired by the shrinkage
averaging estimator (SAE) by Schomaker (2012) and the Mallows model averaging (MMA) criterion by
Hansen (2007), we further propose a shrinkage Mallows model averaging (SMMA) estimator to reduce
the asymptotic risks in high-dimensional sparse models from possible specification errors. Briefly,
the existing model averaging methods lack a systematic rule in selecting candidate models, while
penalty estimation methods are sensitive to the choice of tuning parameters. The shortcomings of
these two methods motivate us to propose our SMMA estimator, which effectively combines these two
methods to address such weaknesses. That is, our estimator provides a data-driven approach to select
the candidate models for averaging, while at the same time, the usage of a set of data-driven tuning
parameters relieves the sensitivity problem of the shrinkage estimators. Finite sample performances
from the SMMA will be compared with some of the existing model averaging estimators.

The Monte Carlo design is similar to that of Wang et al. (2009), which features an expanding sparse
parameter space as the sample size increases. Our Monte Carlo design further considers the effect of
changes in the effective sample size and the degree of model sparsity on the finite sample performances
of model selection and model averaging estimators. We find that the OLS post-SCAD(BIC) estimator
in finite samples outperforms most of the current penalized least squares estimators. In addition,
the SMMA performs better given sparser models. This supports the use of the SMMA estimator when
averaging high dimensional sparse models.

The rest of the paper is organized as follows. Section 2 gives a brief review of the existing model
selection and model averaging estimators in the literature. Section 3 introduces our proposed SMMA
estimator. Section 4 reports the finite sample performances of the OLS post-selection estimators and
compares the finite sample performance of the SMMA with those of the existing model averaging
estimators. Section 5 concludes.

2. Literature Review

In this section, we will review some of the frequently applied model selection and model averaging
estimators in the existing literature. We start by defining a simple linear model from which the
corresponding model selection and model averaging estimators will be defined, respectively, in the
following subsections. Consider a simple linear model given by

yi = XT
i β + εi, ∀i = 1, 2, . . . , n, (1)

where Xi is a p× 1 vector of exogenous regressors, and β is a p× 1 parameter vector with only p0

number of nonzero parameters. We further assume that p0 < p and that the error term εi ∼ i.i.d (0, σ2).
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The literature on model selection and model averaging is large and continues to grow with time. Our
review below is limited to the most frequently used model selection and model averaging estimators.

2.1. Model Selection

The traditional best subsets approach predating the class of penalized least squares estimators
is generally computationally costly and highly unstable due to the discrete nature of the selection
algorithm, as pointed out in Fan and Li (2001). The subsequent stepwise approach, which is essentially
a variation of the best subsets approach, frequently fails to generate a solution path that leads to
the global minimum. In addition, both approaches assume all variables are relevant, even if the
underlying true model might have a sparse representation. Then came the class of penalized least
squares estimators, which minimize the loss function subjected to some forms of penalty. Some of the
frequently applied penalized least squares estimators include the ridge estimator, the LASSO-type
estimators, the SCAD estimator, and the MCP estimator.

Hoerl and Kennard (1970) introduced the original ridge estimator with an l2 penalty. The ridge
estimator is defined as

β̂ridge = argmin
β

‖y− Xβ‖2 + λ
p

∑
k=1

β2
k, (2)

where λ is the so-called tuning parameter.
Tibshirani (1996) introduced an l1 -penalty and constructed the LASSO estimator as follows:

β̂LASSO = argmin
β

‖y− Xβ‖2 + λ
p

∑
k=1
|βk|. (3)

Compared to the best subsets approach, where all possible subsets need to be evaluated for
variable selection, both of the ridge and LASSO estimators conduct the selection and estimation
of the parameters simultaneously, thus gaining computational savings. However, both estimators
fail to satisfy the oracle properties, due to inconsistent selection and asymptotic bias. The oracle
properties describe the ability of an estimator to perform the same asymptotically, as if we knew the
true specification of the model beforehand. In the high-dimensional parametric estimation literature,
an oracle efficient estimator is therefore able to simultaneously identify the nonzero parameters and
achieve optimal estimation of the nonzero parameters. However, Fan and Li (2001) and Zou (2006),
among others, questioned whether the LASSO satisfies the oracle properties.

Thus, various LASSO-type estimators have been developed since then to overcome the selection
bias of the original ridge and LASSO estimator. Zou and Hastie (2005) introduced the elastic net
estimator by averaging between the l1 penalty and l2 penalty. Specifically, the elastic net estimator is
defined as

β̂ElasticNet = argmin
β

‖y− Xβ‖2 + λ1

p

∑
k=1
|βk|+ λ2

p

∑
k=1

β2
k, (4)

where depending on the choices of the two tuning parameters, λ1 and λ2, the elastic net
estimator combines the properties of the ridge estimator and the LASSO estimator and enjoys the
oracle properties.

Zou (2006) further introduced a LASSO-type estimator, namely the adaptive LASSO estimator,
which is defined as

β̂AdaLASSO = argmin
β

‖y− Xβ‖2 + λ
p

∑
k=1

ŵk|βk|, (5)

where the adaptive weights ŵk = |β̂∗k |
−γ

with γ > 0, and β̂∗ denotes any root-n consistent estimator
for β. The adaptive LASSO estimator also fulfills the oracle properties.
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Fan and Li (2001) proposed the smoothly clipped absolute deviation (SCAD) penalty estimator,
which features a symmetric non-concave penalty function that leads to sparse solutions. The SCAD
estimator is defined as

β̂SCAD = argmin
β

‖y− Xβ‖2 +
p

∑
k=1

F(|βk|; λ, γ), (6)

where the continuously differentiable penalty function F(|β|; λ, γ) is defined as

F(|β|; λ, γ) =


λ|β| if |β| ≤ λ
2γλ|β|−|β|2−λ2

2γ−1 if γλ > |β| > λ
λ2(γ+1)

2 if |β| ≥ γλ

, (7)

and γ defaults to 3.7 following the recommendation from Fan and Li (2001).
Zhang (2010) introduced the minimax concave penalty (MCP) estimator, which produces nearly

unbiased variable selection. The MCP estimator is defined as

β̂MCP = argmin
β

‖y− Xβ‖2 +
p

∑
k=1

F(|βk|; λ, γ), (8)

where the continuously differentiable penalty function F(|β|; λ, γ) is defined as

F(|β|; λ, γ) =

λ|β| − |β|
2

2γ , if |β| ≤ λγ
1
2 γλ2, if |β| > λγ

, (9)

and γ defaults to 3, as suggested by Breheny and Huang (2011).

2.1.1. Choice of Tuning Parameter

Tuning parameters play a crucial role in the optimization problem for the aforementioned
penalized least squares estimators to achieve consistent selection and optimal estimation. There exists
an extensive debate in the model selection literature regarding the proper choice for the tuning
parameter. Two of the frequently applied approaches used to select the tuning parameter are the
n-fold cross-validation (CV), or the generalized cross-validation (GCV) approach, and the information
criterion (IC)-based approach. In practice, the CV approach could also be computationally costly for
big datasets.

The traditional IC approaches have been modified for the selection of the tuning parameters in
the penalized least squares framework. Shi and Tsai (2002) have shown that the BIC, under certain
conditions, can consistently identify the true model when the number of parameters and the size of
the true model are finite. For scenarios where the number of parameters diverges with the increase in
the sample size, Wang et al. (2009) proposed a modified BIC for the selection of the tuning parameter.
This criterion yields consistent selection and reduces asymptotic risks. Fan and Tang (2013) further
introduced a generalized information criterion (GIC) for determining the optimal tuning parameters in
penalty estimators. They proved that the tuning parameters selected by such a GIC produce consistent
variable selection and generate computational savings.

Regarding the generation of the candidate tuning parameters in the penalized likelihood
framework, Tibshirani et al. (2010) first introduced the cyclical coordinate descent algorithm to compute
the solution path for generalized linear models with convex penalties such as LASSO and Elastic Net.
This algorithm helps generate a set of candidate tuning parameters to facilitate the selection of the
optimal tuning parameter. Breheny and Huang (2011) further applied this algorithm to calculate the
solution path for non-convex penalty estimators such as the SCAD and MCP estimators. They compared
the performances of some of the popular penalty estimators such as the LASSO, SCAD, and MCP
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estimators for variable selection in sparse models. Their simulation study and data examples indicated
that the choice of the tuning parameter greatly affects the outcome of the variable selection.

2.1.2. Post-Selection Estimators

Despite decent selection performance from the current mainstream penalized least squares
estimators, there is not yet a unified approach in estimating the distribution of such estimators, due to
the complicated constraints and penalty functions. Knight and Fu (2000), Pötscher and Leeb (2009)
and Pötscher and Schneider (2009), among others, investigated the distributions of LASSO-type and
SCAD estimators and concluded that they tend to be highly non-normal. This ushered in the burgeoning
development in post-model-selection inferential methods. Hansen (2014) stated that the distributions
for the model selection and model averaging estimators are highly non-normal but routinely ignored
in practice. Belloni and Chernozhukov (2013) proposed the OLS post-LASSO estimator, which, under
certain assumptions, outperforms the LASSO estimator in reducing asymptotic risks associated with
high-dimensional sparse models. The OLS post-LASSO estimator utilizes the LASSO estimator as a
variable selection operator in the first step and reverts back to the OLS estimator to produce parameter
estimates for the selected model in the second step. Such an estimator avoids the complicated penalty
functions in estimating the distribution of the estimator in the second step and thus yields easier access
to inference that is solely based on the OLS estimator. Inspired by the OLS post-LASSO estimator,
other post-selection estimators could be constructed with the tuning parameters in the penalty function
selected by either the BIC or GCV approach.

For example, an OLS post-SCAD(BIC) estimator can be constructed with the tuning parameter in
the penalty function selected by the BIC approach. More specifically, let Λ = {λ1, . . . , λq} be the set of
candidate tuning parameters and |Λ| = q with q ∈ Z+ .

Given any λ ∈ Λ and γ defaulting to 3.7, the SCAD estimator from Equation (6) evaluated at
λ gives

β̂λ = argmin
β

‖y− Xβ‖2 +
p

∑
k=1

F(|βk|; λ). (10)

The BIC evaluated at this λ is defined as BICλ, which is given by

BICλ = log

(∥∥∥y− Xβ̂λ
∥∥∥2

n

)
+ |Sλ|

log(n)
n

Cn, (11)

where the values for λ originate from an exponentially decaying grid as in Tibshirani et al. (2010).
Let Sλ denote the set of nonzero parameters of the model when evaluated at λ, and more specifically,
Sλ = {k : β̂λ

k 6= 0}. For any set S, let |S| represent its cardinality. Then, |Sλ| gives the number of
nonzero parameters of the model when evaluated at λ, and Cn is a constant. Shi and Tsai (2002) have
shown that the above BIC with Cn = 1 consistently identifies the true model when both p and p0

are finite.
The estimate of the optimal tuning parameter is denoted by λ̂BIC, which is the solution to the

following problem:
λ̂BIC = argmin

λ∈{λ1,...,λq}
BICλ. (12)

Consequently, β̂λ̂BIC
minimizes the SCAD penalized objective function given by Equation (6); i.e.,

β̂λ̂BIC
= argmin

β

‖y− Xβ‖2 +
p

∑
k=1

F(|βk|, λ̂BIC). (13)
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Denoting S
λ̂BIC = {k : β̂λ̂BIC

k 6= 0}, we define the OLS post-SCAD(BIC) estimator as

β̂BIC = argmin
β

∥∥∥∥∥∥y− ∑
l∈S

λ̂BIC

Xl βl

∥∥∥∥∥∥
2

, (14)

where Xl is an n× 1 vector, which is the lth column of the predictor matrix X, and βl is the lth parameter.
In the same vein, other OLS post-selection estimators such as the OLS post-MCP (BIC or GCV)

estimator could also be constructed for comparing the finite sample performances. The OLS post-MCP
(BIC or GCV) estimator minimizes, respectively, the BIC and the GCV in the estimation for the optimal
tuning parameter. It is worth pointing out that for the penalized estimators that are already oracle
efficient, post-selection estimators such as the OLS post-SCAD estimator do not outperform the SCAD
estimator asymptotically. That being said, there could be differences in the finite sample performances
between the penalized least squares estimators and the OLS post-selection estimators. Even for the
same estimator, different tuning parameter selection approaches could also yield different selection
outcomes.

2.1.3. Measures of Selection and Estimation Accuracy

To evaluate the performance of the shrinkage estimators, various measures for variable selection
and estimation accuracy have been introduced in the literature. Wang et al. (2009) used the model size
(MS), the percentage of the correctly identified true model (CM), and the median of relative model
error (MRME) to evaluate the finite sample performances of the adaptive LASSO and SCAD estimators
with tuning parameters selected either by the GCV or BIC approach.

The model size, MS, for the true model is defined as the number of nonzero parameters or
|S0| = p0, where p0 is the dimension for the nonzero parameters. For any model selection procedure,
ideally, the estimated model size |Ŝ| = p̂0 should tend to p0 asymptotically, and Ŝ = {k : β̂k 6= 0}.
This measure evaluates the precision with which the said selection procedure estimates the number of
nonzero parameters from the data. In the context of Monte Carlo simulations, the average is taken
over all of the estimated MSs, which are generated per each round of simulation.

The correct model CM is revealed as the true model if the said model selection procedure
accurately yields the right nonzero parameters. The CM measure is defined as

CM =
{

β̂k 6= 0 : k ∈ S0, β̂k = 0 : k ∈ S0
c
}

. (15)

An estimation of the model is only considered correct if the above criterion is satisfied, where
all of the non-zero and zero parameters are correctly identified. The higher the correction rate over a
number of simulation runs, the better the performance for an estimator.

The model prediction error (ME) for a model selection procedure is defined as

ME = (β̂− β)TE[XTX](β̂− β), (16)

where β̂ represents any estimator such as a penalized least squares estimator. The relative model error
(RME) is the ratio of the model prediction error to that of the naive OLS estimator of the model given
by Equation (1). For example, the RME for the SCAD estimator is given by

RME =
(β̂SCAD − β)TE[XTX]((β̂SCAD − β)

(β̂OLS − β)TE[XTX]((β̂OLS − β)
. (17)

For a given number of Monte Carlo replications, the median of the RME (MRME) is used to
evaluate the finite sample performance of the said model selection estimator.
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2.2. Model Averaging

On the other hand, an alternative to model selection in handling modeling uncertainties is model
averaging. In general, the model averaging estimator is defined as

β̂MA =
S
∑
s=1

ws β̂s, (18)

where ws represents the weight assigned to the sth model of an S number of candidate models, and
w =

[
w1, w2 . . . , wS

]
is a weight vector in the unit simplex in RS with S ∈ Z+, such that

HS =
{

w ∈ [0, 1]S :
S
∑
s=1

ws = 1
}

. (19)

Over time, various estimators have been proposed for estimating the weight vector, w,
for averaging the candidate models. Buckland et al. (1997) proposed the smoothed information
criterion model averaging estimator, where the weight for the sth model, ws, can be estimated as

ŵIC
s =

exp(−Is/2)

∑Ss=1 exp(−Is/2)
, (20)

where Is, the information criterion evaluated at the sth model, is defined as

Is = −2log(L̂s) + Ps, (21)

with L̂s being the maximized likelihood value and Ps being the penalty term that takes the form of 2ps

for the smoothed Akaike information criterion (S-AIC) and ln(n)ps for the smoothed BIC (S-BIC).
Hansen (2007) proposed a Mallows model averaging (MMA) estimator whose weight choice is

estimated as

ŵMMA = argmin
w∈HS

(
y− µ̂(w)

)T(
y− µ̂(w)

)
+ 2σ2k(w), (22)

where the model averaging estimator µ̂(w) is defined as

µ̂(w) =
S
∑
s=1

wsPsy = P(w)y, (23)

and the projection matrix for model s is defined as

Ps = Xs
(
XT

s Xs
)−1XT

s . (24)

Moreover, the effective number of parameters, k(w), is defined as

k(w) =
S
∑
s=1

wsks, (25)

where ks equals the number of parameters in model s. The σ2 term can be estimated using the variance
of a larger model in the set of the candidate models according to Hansen (2007).

Under certain assumptions, Hansen (2007) showed that the MMA minimizes the mean squared
prediction error (MSPE), and Gao et al. (2016) showed that the MMA can produce smaller mean
squared errors (MSEs) than the OLS estimator. Wan et al. (2010) further relaxed the assumptions of
discrete weights and nested regression models that are required by the asymptotic optimality conditions
for the MMA to continuous weights without imposing ordering on the predictors.
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Hansen and Racine (2012) proposed the heteroskedasticity-consistent jackknife model averaging
(JMA) estimator. The weight choice for the JMA estimator is defined as

ŵJMA = argmin
w∈HS

1
n

ε̃(w)T ε̃(w), (26)

where ε̃(w) = ∑Ss=1 ws ε̃s with ε̃s being the leave-one-out residual vector from the sth model.
Schomaker (2012) further explored the role of the tuning parameters in the shrinkage averaging

estimator (SAE) post model selection. The SAE estimates β by averaging over a set of candidate
shrinkage estimators, β̂λ, which are calculated with a sequence of tuning parameters. For example,
an SAE that averages over an S number of candidate β̂LASSO

λs
from an S-fold cross-validation procedure

can be defined as

β̂SAE =
S
∑
s=1

wλs β̂LASSO
λs

, (27)

where λs ∈ {λ1, . . . , λS} as one of the S competing tuning parameters. The weights for the SAE are
calculated as follows:

ŵSAE = argmin
w∈HS

1
n

ε̃(w)T ε̃(w), (28)

where ε̃(w) = ∑Ss=1 wλs ε̃s(λs) with ε̃s(λs) being the residual vector for the sth cross-validation.
In this paper, we aim to explore the possibility of combining the model selection and model

averaging methods in dealing with modeling uncertainty. We expect that the specifications of the
candidate models guided by the appropriate choice of tuning parameter could significantly reduce
modeling uncertainty given sparse models.

3. The Shrinkage MMA Estimator

Inspired by the shrinkage averaging estimator (SAE) and the Mallows model averaging (MMA)
estimator, we further propose a shrinkage Mallows model averaging (SMMA) estimator to hedge
against the possible specification errors from model selection. The SMMA estimator is a two-stage
estimator. In the first stage, by applying different penalty estimators introduced in Section 2 with
optimal tuning parameters selected via the GCV or BIC method, we obtain a sequence of candidate
models. In the second stage, we apply the MMA to estimate β. The SMMA estimator compliments
the class of penalty estimators by allowing for more than one model selection outcome rather than
committing to a single model. In addition, this estimator also extends the current MMA framework
by introducing a reasonable way to select the set of candidate models to be averaged. The SMMA
is especially helpful for averaging high-dimensional candidate models when the generation of such
a set of candidate models would be computationally costly if not done via shrinkage approaches.
It would be difficult for the traditional MMA to exhaust all possible subsets of candidate models
for a high-dimensional dataset. This estimator also builds on the SAE by incorporating the tuning
parameter optimization problem, which is crucial to the variable selection process for each candidate
model. This estimator is essentially a variation of the MMA estimator, so the asymptotic properties
should be similar to those of the MMA.

Lehrer and Xie (2017) briefly mentioned the possibility of having a set of candidate
models first shrunk by the LASSO before applying MMA. There is a clear distinction between
Lehrer and Xie (2017) and our idea, since the candidate models for averaging are subjectively chosen in
Lehrer and Xie (2017), which is the same as the traditional literature on the MMA estimator. However,
the SMMA starts with a general, large model and applies different penalty methods to select the
candidate models for averaging.
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Below we explain the SMMA estimator in detail. Let ΛOpt be the set of optimal tuning parameters
selected either by the BIC or GCV for the model selection procedures introduced in Section 2, and a
typical element in ΛOpt is denoted as λ̂

Opt
s . Therefore ΛOpt is defined as

ΛOpt =
{

λ̂
Opt
1 , . . . , λ̂

Opt
s , . . . , λ̂

Opt
S
}

, (29)

where |ΛOpt| = S .
The SMMA estimator is solved as follows:

β̂SMMA(w; ΛOpt) =
S
∑
s=1

ŵs β̂(λ̂
Opt
s ), (30)

where the weight vector is estimated by the MMA criterion,

ŵ = argmin
w∈HS

(
y− µ̂(w; ΛOpt)

)T(
y− µ̂(w; ΛOpt)

)
+ 2σ2k(w; ΛOpt), (31)

and w =
[
w1, w2 . . . , wS

]
is a weight vector in the unit simplex in RS with S ∈ Z+ such that

HS =
{

w ∈ [0, 1]S :
S
∑
s=1

ws = 1
}

. (32)

The model averaging estimator µ̂(w) is defined as

µ̂(w; ΛOpt) =
S
∑
s=1

wsP(λ̂Opt
s )y = P(w; ΛOpt)y, (33)

where the projection matrix for model s is defined as

P(λ̂Opt
s ) = Xλ̂

Opt
s
(
Xλ̂

Opt
s

T
Xλ̂

Opt
s
)−1Xλ̂

Opt
s

T
, (34)

and the estimator for model s is given by

β̂(λ̂
Opt
s ) =

(
Xλ̂

Opt
s

T
Xλ̂

Opt
s
)−1Xλ̂

Opt
s

T
y. (35)

Let L index the largest model in dimension from the set of the candidate models, i.e.,

L = argmax
s∈S

|β̂(λ̂Opt
s )|, (36)

where |β̂(λ̂Opt
s )| equals the number of nonzero values in β̂(λ̂

Opt
s ).

Following Hansen (2007), the σ2 term will be estimated by σ̂2
L, which is given below:

σ̂2
L =

(y− XL β̂L)
T(y− XL β̂L)

n− kL
. (37)

The effective number of parameters k(w; ΛOpt) is defined as

k(w; ΛOpt) =
S
∑
s=1

wsk(λ̂Opt
s ), (38)

where k(λ̂Opt
s ) =|β̂(λ̂Opt

s )|.
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4. Monte Carlo Simulations

This section assesses the performance of the existing model selection and averaging estimators,
including the SMMA estimator proposed in this paper, via a small Monte Carlo simulation experiment.
Our data generating process (DGP) is

yi = XT
i β + εi, ∀i = 1, 2, . . . , n, (39)

where β is a p× 1 parameter vector with only p0 number of nonzero parameters.
We further assume that p0 < p and that the error term εi ∼ i.i.dN (0, 1). In addition, Xi is

randomly drawn from a p-dimensional multivariate normal distribution with zero mean and a
co-variance matrix as follows

Cov(Xl , Xj) =

{
1, if l = j

0.5, otherwise
. (40)

To investigate the effect of the number of parameters to sample size ratio (p/n) and the degree
of model sparsity (p0/p) on the performance of different estimation methods, we consider two data
examples in this section. The data example 1 from Section 4.1 considers the case where p/n is constant
while p0/p is decreasing. The data example 2 in Section 4.2 simulates the scenario where p0/p is
constant but p/n decreases as n increases.

4.1. Example 1. Constant p/n Ratio

Similar to the example given in Fan and Peng (2004), we set β =
(

11
4 ,− 23

6 , 37
12 ,− 13

9 , 1
3 , 0, . . . , 0

)T
∈

Rp with p = n× α for some constant α. The nonzero parameters, β0 , are defined as

β0 =
(11

4
,−23

6
,

37
12

,−13
9

,
1
3

)T
. (41)

We fix n = 1000 and allow α to vary in the interval of
[
0.02, 0.98

]
. Therefore, we consider a

case with an increasing number of redundant regressors while the true model remains fixed with
5 nonzero regressors as α increases from .02 to 0.98, where α = p/n ∈ {0.02, 0.05, 0.1, 0.5, 0.98} and
p ∈ {20, 50, 100, 500, 980}. If we measure the degree of sparsity by δ = 1− p0/p, we see that the model
becomes sparser for larger α and p0/p ∈ {0.25, 0.1, 0.05, 0.01, 0.005}. Note that this design allows us to
further consider cases where the number of parameters drastically approaches the sample size.

4.2. Example 2. Decreasing p/n Ratio

The second example is similar to Wang et al. (2009), where the dimension of the true model also
diverges with the dimension of the full model as n increases. More specifically, p = [7n

1
4 ] where [a]

stands for the largest integer no larger than a and the size of the true model |S0| = p0 = [p/3] with
β0 ∼ U(0.5, 1.5). For sample size n ∈ {100, 200, 400, 800, 1600}, the respective sizes of the full model are
p ∈ {22, 26, 31, 37, 44}, and the respective sizes of the true model are S0 ∈ {7, 8, 10, 12, 14}. The number
of parameters to sample size ratio is p/n ∈ {0.22, 0.13, 0.07, 0.046, 0.027}, and the degree of model
sparsity is δ = 2/3. Different from the example given in Section 4.1, this data example maintains a
constant degree of model sparsity.

4.3. Monte Carlo Results

For the simulation studies, we investigated the finite sample performances of the estimators
introduced in Sections 2 and 3. In addition, we also considered the variants of the aforementioned
penalized estimators with the tuning parameters selected by the BIC rather than the conventional GCV.
To differentiate, we named the OLS post-SCAD with the the tuning parameters selected by the BIC as
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the OLS post-SCAD(BIC) estimator. We used the finite sample performance of the OLS estimator as the
benchmark for those of the model selection and model averaging estimators. For each data example,
a total of 500 simulation replications were conducted.

4.3.1. Model Selection Estimators

The penalized least squares estimators considered in the simulation studies are listed in
Table 1 below.

Table 1. Penalized Estimators.

Estimator

Ridge(GCV) Ridge(BIC)
OLS post-ridge(GCV) OLS post-ridge(BIC)

LASSO(GCV) LASSO(BIC)
OLS post-LASSO(GCV) OLS post-LASSO(BIC)

Elastic net(GCV) Elastic net(BIC)
OLS post-elastic net(GCV) OLS post-elastic net(BIC)

Adaptive LASSO(GCV) Adaptive LASSO(BIC)
OLS post-adaptive-LASSO(GCV) OLS post- adaptive LASSO(BIC)

SCAD(GCV) SCAD(BIC)
OLS post-SCAD(GCV) OLS post-SCAD(BIC)

MCP(GCV) MCP(BIC)
OLS post-MCP(GCV) OLS post-MCP(BIC)

Figures 1 and 2 below present the finite sample performances of the above penalized least squares
estimators with the tuning parameters selected by either GCV or BIC. To level the playing field, each
estimator was supplied with the same set of candidate tuning parameters Λ = {λ1, . . . , λq} as all the
other competing estimators, and |Λ| = q with q ∈ Z+. Since the conventional LASSO, SCAD, and MCP
estimators have already been studied extensively with well-documented finite sample performances,
we turn our focus to the finite sample performances of the class of OLS post-selection estimators.
For the elastic net estimator, the weights for the l1 penalty and l2 penalty were set to 0.5. For a cleaner
representation of comparison and to save space, we choose to report only the first six best-performing
OLS post-selection estimators among those listed in Table 1.

(a) β Root Mean Squared Error (RMSE) (b) Averge model size (MS)

Figure 1. Cont.
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(b) Percentage of correct model (CM) (c) Median of relative model error (MRME)

Figure 1. Example 1 model selection and estimation accuracy.

(a) β RMSE (b) Averge Model Size (MS)

(c) Percentage of Correct Model (CM) (d) Median of Relative Model Error (MRME)

Figure 2. Example 2 model selection and estimation accuracy.
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Table 2 below ranks the first six best-performing OLS post-selection estimators based on the
results from data example 1 and data example 2.

Table 2. Performance ranking for the OLS post-selection estimators.

Ranking Example 1 Example 2

1 OLS post-SCAD(BIC) OLS post-SCAD(BIC)
2 OLS post-MCP(BIC) OLS post-MCP(BIC)
3 OLS post-MCP(GCV) OLS post-MCP(GCV)
4 OLS post-SCAD(GCV) OLS post-SCAD(GCV)
5 OLS post-LASSO(BIC) OLS post-adaptive-LASSO(BIC)
6 OLS post-adaptive-LASSO(BIC) OLS post-adaptive-LASSO(GCV)

For both data examples, it is evident from Figures 1 and 2 above that in finite samples, the
OLS post-SCAD(BIC) estimator outperforms the competing estimators consistently by yielding lower
root mean squared error (RMSE) for β and higher selection accuracy. The performance of the OLS
post-SCAD(BIC) is also insensitive to the changes in the p/n ratio and the p0/p ratio. Therefore, as
long as p < n, our findings show that the OLS post-SCAD(BIC) outperforms the competing OLS
post-selection estimators regardless of the effective sample size and degree of model sparsity, which
are controlled by p/n and p0/p, respectively. The finite sample performances of the OLS post-LASSO
and the OLS post-adaptive-LASSO seem to be affected by changes in the degree of model sparsity and
the effective sample size. The simulation results support the conclusion in the literature that the choice
of the tuning parameter does play a vital role in the variable selection outcomes. The findings from the
two data examples above offer some guidance to empirical researchers who are weighing different
approaches for model selection.

4.3.2. Model Averaging Estimators

For the model averaging estimators, we mainly focused on the finite sample performances of
the S-BIC, Hansen’s MMA, SAE(LASSO) with LASSO as the shrinkage method, and the SMMA
estimator proposed in Section 3. The SMMA estimator averages the candidate models produced by
the penalized least squares estimators listed in Table 1. The specifications of the candidate models
are determined by the set of optimal tuning parameters ΛOpt, which consists of the optimal tuning
parameters selected by either the GCV or the BIC approach. For Hansen’s MMA, we only considered
the pure nested subset models due to the fact that all of the possible combinations of subset models are
not computationally feasible given the high-dimensional nature of our data examples. Since in Table 1
there are 24 estimators, which yield 24 candidate models, we also generated 24 candidate models
for the MMA, S-BIC, and SAE(LASSO). These candidate models were generated using the program
developed by Professor Hansen, and the program is available from Professor Hansen’s website. Similar
to Hansen (2007), we evaluated the finite sample performances of the model averaging estimators by
comparing the β RMSE and the adjusted R2 for the final averaged model. Due to the high-dimensional
sparse nature of the DGP, using the adjusted R2 helps us avoid the misleadingly high R2 from including
many more predictors that might have been irrelevant in the first place. The adjusted R2 can also
gauge whether the SMMA could better perform the task of identifying the most relevant regressors,
which is one of the fundamental goals for statistical learning.

Figure 3 above gives the finite sample performances of the model averaging estimators from
both data examples. For data example 1, where the degree of model sparsity increases while the
effective sample size decreases with the increase in the p/n, the SMMA outperforms the MMA in
terms of yielding a relatively lower β RMSE and slightly higher adjusted R2 if p/n < 0.5. As p/n
increases from 0.5 to 0.98, which causes p0/p to further decrease, resulting in a much sparser model,
the SMMA significantly outperforms the competing model averaging estimators in β RMSE and
adjusted R2. The sparser the model and the smaller the effective sample size, the better the SMMA
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performs. This supports the application of the SMMA estimator when averaging high-dimensional
sparse models against modeling uncertainty. Intuitively, a sparser model entails greater modeling
uncertainty, which could result from the lack of a unifying theory in guiding the exact specification of
the underlying model. Therefore, the SMMA can be a viable option for model averaging, especially
for high-dimensional sparse models when it is computationally infeasible to exhaust all possible
combinations of subset models.

For data example 2, where the degree of model sparsity is constant and the p/n decreases as
the sample size n increases, the SMMA still slightly outperforms other model averaging estimators
in β RMSE and adjusted R2. However, the finite sample performances of the SMMA and MMA
estimators tend to be very close as n increases, which indicates rather similar asymptotic properties for
both estimators. As a possible direction for future research, one could consider the derivation of the
asymptotic properties for the SMMA estimator. But this paper focuses on the numerical comparisons
of the SMMA, whose asymptotic properties will be for our future research.

(a) Example 1 β RMSE (b) Example 1 adjusted R2

(c) Example 2 β RMSE (d) Example 2 adjusted R2

Figure 3. Finite sample performance for model averaging estimators.
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5. Conclusions

In this paper, we reviewed some of the conventional model selection and model averaging
estimators, and we further proposed a shrinkage Mallows model averaging (SMMA) estimator. Using a
Monte Carlo study, we compared the finite sample performances of the reviewed model selection and
model averaging estimators. We also investigated the effect of the tuning parameter choice on variable
selection outcomes. We aimed to supplement the existing model selection literature by studying the
finite sample performances of the class of OLS post-selection estimators via different tuning parameter
selection approaches. Our Monte Carlo design further considered the effect of changes in the effective
sample size and the degree of model sparsity on the finite sample performances of model selection
and model averaging estimators.

The results from our data examples suggest that tuning parameter choice plays a vital role in
variable selection and optimal estimation. Given the same tuning parameter selection approach, for the
penalized estimators that are already oracle efficient, the corresponding OLS post-selection estimators
give a rather similar performance. However, for the same penalized estimators, the performances via
different tuning parameter selection approaches are markedly different. The OLS post-SCAD(BIC)
estimator gives the best finite sample performance, based on the data examples in our Monte Carlo
design. The SMMA performs better given sparser models. The sparser the model and the smaller the
effective sample size, the better the SMMA performs. This supports the use of the SMMA estimator
when averaging high-dimensional sparse models against modeling uncertainty. This paper is limited
by the absence of the derivation of the asymptotic properties for the SMMA estimator. We will leave
the derivations of the asymptotic properties for the SMMA estimator to our future studies.
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