Curve Registration of Functional Data for Approximate Bayesian Computation
Abstract
:1. Introduction
2. Functional Data Analysis and Curve Registration
3. Approximate Bayesian Computation
Algorithm 1 d-sampler. |
|
Algorithm 2 Registered d-sampler. |
|
4. Peak Shift
4.1. Methods
4.2. Results
5. Passenger Processing at an International Airport
5.1. Methods
Algorithm 3 Airport d-sampler. |
|
5.2. Results
6. Hydrological Modelling
6.1. Methods
6.2. Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thapa, S.; Lomholt, M.A.; Krog, J.; Cherstvy, A.G.; Metzler, R. Bayesian nested sampling analysis of single particle tracking data: Maximum likelihood model selection applied to stochastic diffusivity data. Phys. Chem. Chem. Phys. 2018, 20, 29018–29037. [Google Scholar] [CrossRef]
- Hsing, T.; Eubank, R. Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Ramsay, J.O. Functional Data Analysis; Springer: New York, NY, USA, 2006. [Google Scholar]
- De La Casinière, A.; Cabot, T.; Touré, M.L.; Masserot, D.; Lenoble, J. Method for correcting the wavelength misalignment in measured ultraviolet spectra. Appl. Opt. 2001, 40, 6130–6135. [Google Scholar] [CrossRef] [PubMed]
- Pigoli, D.; Hadjipantelis, P.Z.; Coleman, J.S.; Aston, J.A. The statistical analysis of acoustic phonetic data: Exploring differences between spoken Romance languages. J. R. Stat. Soc. Ser. C Appl. Stat. 2018, 67, 1103–1145. [Google Scholar] [CrossRef]
- Wu, W.; Hatsopoulos, N.G.; Srivastava, A. Introduction to neural spike train data for phase-amplitude analysis. Electron. J. Stat. 2014, 8, 1759–1768. [Google Scholar] [CrossRef]
- Kneip, A.; Ramsay, J.O. Combining registration and fitting for functional models. J. Am. Stat. Assoc. 2008, 103, 1155–1165. [Google Scholar] [CrossRef]
- Srivastava, A.; Klassen, E.P. Functional and Shape Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wang, K.; Gasser, T. Alignment of curves by dynamic time warping. Ann. Stat. 1997, 25, 1251–1276. [Google Scholar] [CrossRef]
- Itakura, F. Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech, Signal Process. 1975, 23, 67–72. [Google Scholar] [CrossRef]
- Srivastava, A.; Wu, W.; Kurtek, S.; Klassen, E.P.; Marron, J.S. Registration of functional data using Fisher-Rao metric. arXiv 2011, arXiv:1103.3817. [Google Scholar]
- Marron, J.S.; Ramsay, J.O.; Sangalli, L.M.; Srivastava, A. Statistics of time warpings and phase variations. Electron. J. Stat. 2014, 8, 1697–1702. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Dryden, I.L.; Huang, X. Bayesian registration of functions and curves. Bayesian Anal. 2016, 11, 447–475. [Google Scholar] [CrossRef]
- Padoy, N.; Blum, T.; Ahmadi, S.A.; Feussner, H.; Berger, M.O.; Navab, N. Statistical modeling and recognition of surgical workflow. Med Image Anal. 2012, 16, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Maybank, S.J. The Fisher-Rao metric. Math. Today 2008, 44, 255–257. [Google Scholar]
- Kneip, A.; Gasser, T. Convergence and consistency results for self-modeling nonlinear regression. Ann. Stat. 1988, 16, 82–112. [Google Scholar] [CrossRef]
- Laird, N.M.; Ware, J.H. Random-effects models for longitudinal data. Biometrics 1982, 38, 963–974. [Google Scholar] [CrossRef]
- Sisson, S.A.; Fan, Y.; Beaumont, M.A. (Eds.) Handbook of Approximate Bayesian Computation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Cherstvy, A.G.; Thapa, S.; Wagner, C.E.; Metzler, R. Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels. Soft Matter 2019, 15, 2526–2551. [Google Scholar] [CrossRef]
- Zhu, H.; Lu, R.; Ming, C.; Gupta, A.K.; Müller, R. Estimating parameters in complex systems with functional outputs: A wavelet-based approximate Bayesian computation approach. In New Advances in Statistics and Data Science; Chen, D.-G., Jin, Z., Li, G., Liu, A., Zhao, Y., Eds.; Springer: Berlin, Germany, 2017; pp. 137–160. [Google Scholar]
- Wood, S.N. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 2010, 466, 1102–1104. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.A.; Balding, D.J. On optimal selection of summary statistics for approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol. 2010, 9, 34. [Google Scholar] [CrossRef]
- Bernton, E.; Jacob, P.E.; Gerber, M.; Robert, C.P. Approximate Bayesian computation with the Wasserstein distance. J. R. Stat. Soc. Ser. B 2019, 81, 235–269. [Google Scholar] [CrossRef]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Srivastava, A.; Jermyn, I.; Joshi, S.H. Riemannian analysis of probability density functions with applications in vision. In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Park, M.; Jitkrittum, W.; Sejdinovic, D. K2-ABC: Approximate Bayesian computation with kernel embeddings. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016. [Google Scholar]
- Wang, J.-L.; Chiou, J.-M.; Müller, H.-G. Functional data analysis. Annu. Rev. Stat. Its Appl. 2016, 3, 257–295. [Google Scholar] [CrossRef] [Green Version]
- Delaigle, A.; Hall, P. Defining probability density for a distribution of random functions. Ann. Stat. 2010, 38, 1171–1193. [Google Scholar] [CrossRef] [Green Version]
- Tucker, J.D. fdasrvf: Elastic Functional Data Analysis. R Package Version 1.9.4. 2020. Available online: https://CRAN.R-project.org/package=fdasrvf (accessed on 22 April 2021).
- Jousselme, A.-L.; Maupin, P. Distances in evidence theory: Comprehensive survey and generalizations. Int. J. Approx. Reason. 2012, 53, 118–145. [Google Scholar] [CrossRef] [Green Version]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.; Schölkopf, B.; Smola, A.J. A kernel method for the two-sample problem. In Advances in Neural Information Processing Systems 19; Schölkopf, B., Platt, J., Hofmann, T., Eds.; MIT Press: Cambridge, MA, USA, 2007; pp. 513–520. [Google Scholar]
- Ebert, A.; Dutta, R.; Mengersen, K.; Mira, A.; Ruggeri, F.; Wu, P. Likelihood-free parameter estimation for dynamic queueing networks: Case study of passenger flow in an international airport terminal. J. R. Stat. Soc. C 2021, 70, 770–792. [Google Scholar] [CrossRef]
- Tavaré, S.; Balding, D.J.; Griffiths, R.C.; Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 1997, 145, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Drov, I.C.C.; Pettitt, A.N. Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 2011, 67, 225–233. [Google Scholar]
- Albert, C.; Künsch, H.R.; Scheidegger, A. A simulated annealing approach to approximate Bayes computations. Stat. Comput. 2015, 25, 1217–1232. [Google Scholar] [CrossRef] [Green Version]
- Posener, D.W. The shape of spectral lines: Tables of the Voigt profile. Aust. J. Phys. 1959, 12, 184–196. [Google Scholar] [CrossRef]
- Azzalini, A. The skew-normal distribution and related multivariate families. Scand. J. Stat. 2005, 32, 159–188. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B 1999, 61, 579–602. [Google Scholar] [CrossRef]
- Ebert, A.; Wu, P.; Mengersen, K.; Ruggeri, F. Computationally Efficient Simulation of Queues: The R Package queuecomputer. J. Stat. Softw. 2020, 95, 1–29. [Google Scholar] [CrossRef]
- Kavetski, D.; Franks, S.W.; Kuczera, G. Confronting input uncertainty in environmental modelling. In Calibration of Watershed Models 6; Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N., Turcotte, R., Eds.; Wiley: New York, NY, USA, 2003; pp. 49–68. [Google Scholar]
- Vaze, J.; Chiew, F.H.S.; Perraud, J.-M.; Viney, N.; Post, D.; Teng, J.; Wang, B.; Lerat, J.; Goswami, M. Rainfall-runoff modelling across southeast Australia: Datasets, models and results. Australas. J. Water Resour. 2011, 14, 101–116. [Google Scholar] [CrossRef]
- Harlan, D.; Wangsadipura, M.; Munajat, C.M. Rainfall-runoff modeling of Citarum Hulu River basin by using GR4J. In Proceedings of the World Congress on Engineering 2010, London, UK, 30 June–2 July 2010; Volume II. [Google Scholar]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Kavetski, D. Parameter estimation and predictive uncertainty quantification in hydrological modelling. In Handbook of Hydrometeorological Ensemble Forecasting; Duan, Q., Pappenberger, F., Wood, A., Cloke, H.L., Schaake, J.C., Eds.; Springer: Berlin, Germany, 2019; pp. 481–522. [Google Scholar]
- McInerney, D.; Thyer, M.; Kavetski, D.; Bennett, B.; Lerat, J.; Gibbs, M.; Kuczera, G. A simplified approach to produce probabilistic hydrological model predictions. Environ. Model. Softw. 2018, 109, 306–314. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Leblois, E.; Thyer, M.; Kuczera, G.; Franks, S.W. Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resour. Res. 2011, 47, W11516. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebert, A.; Mengersen, K.; Ruggeri, F.; Wu, P. Curve Registration of Functional Data for Approximate Bayesian Computation. Stats 2021, 4, 762-775. https://doi.org/10.3390/stats4030045
Ebert A, Mengersen K, Ruggeri F, Wu P. Curve Registration of Functional Data for Approximate Bayesian Computation. Stats. 2021; 4(3):762-775. https://doi.org/10.3390/stats4030045
Chicago/Turabian StyleEbert, Anthony, Kerrie Mengersen, Fabrizio Ruggeri, and Paul Wu. 2021. "Curve Registration of Functional Data for Approximate Bayesian Computation" Stats 4, no. 3: 762-775. https://doi.org/10.3390/stats4030045
APA StyleEbert, A., Mengersen, K., Ruggeri, F., & Wu, P. (2021). Curve Registration of Functional Data for Approximate Bayesian Computation. Stats, 4(3), 762-775. https://doi.org/10.3390/stats4030045