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Abstract: Approximate Bayesian computation is a likelihood-free inference method which relies
on comparing model realisations to observed data with informative distance measures. We obtain
functional data that are not only subject to noise along their y axis but also to a random warping
along their x axis, which we refer to as the time axis. Conventional distances on functions, such
as the L2 distance, are not informative under these conditions. The Fisher–Rao metric, previously
generalised from the space of probability distributions to the space of functions, is an ideal objective
function for aligning one function to another by warping the time axis. We assess the usefulness of
alignment with the Fisher–Rao metric for approximate Bayesian computation with four examples:
two simulation examples, an example about passenger flow at an international airport, and an
example of hydrological flow modelling. We find that the Fisher–Rao metric works well as the
objective function to minimise for alignment; however, once the functions are aligned, it is not
necessarily the most informative distance for inference. This means that likelihood-free inference
may require two distances: one for alignment and one for parameter inference.

Keywords: approximate Bayesian computation; functional data; Fisher–Rao metric; hydrological
flow; likelihood-free inference; curve registration

1. Introduction

In statistical problems, what constitutes the sample space is sometimes a matter of
perspective. One perspective is that the data comprise a set of functions rather than simply
numbers [1]. For instance, using ultraviolet-visible spectroscopy, suppose we record the
absorbance for a series of samples over a wide range of frequencies. We might regard the
sample number and frequency as explanatory variables and absorbance as the response
variable; alternatively, for each sample, we could consider the entire functional form of
the absorption spectrum as the response variable, in which case the only explanatory
variable is the sample number. The sample space could comprise the output range of the
machine (a subset of the real line) or the function space of the set of all possible spectra.
Functional data analysis (FDA) proceeds with this latter approach [2,3]; these data are
termed functional data.

A familiar problem when analysing functional data is misalignment [4–6], where there
is difficultly comparing observations or deriving meaningful statistics, since the features of
the functions do not correspond with one another on the domain. We refer to the domain,
by convention, as the time axis, since we consider only functions mapping a bounded
subset of R to R. A simple example of issues with misalignment is the comparison of
handwriting samples—if the samples are not on top of each other, then it is difficult to
compare them [7].
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In cases with misaligned data, it is often helpful to align the functions before proceed-
ing with standard statistical analysis. Standard statistical methods assume that only the
amplitude of a function is subject to noise. However, it is possible that the time axis itself is
subject to noise in a way that preserves the ordering of observations (warping). The fact
that the time axis is warped creates misalignment between the functions. This situation
can be elegantly described as a combination of amplitude and phase variation within a
functional dataset [7,8].

Dynamic time warping [9,10] and curve registration [11,12] are equivalent terms used
in the engineering and statistical literature (respectively), for aligning functions by warping
the time axis. Applications of curve registration include alignment of growth curves to
improve the usefulness of statistical summaries [13] and alignment of medical equipment
signals to optimise surgical workflow [14]. In this paper, we use curve registration to align
the data.

In curve registration, an elastic distance between functions displaying both amplitude
and phase variation is used. The elastic distance we adopt has mathematically convenient
properties [11]. This elastic distance generalises the Fisher–Rao metric [15,16] from the
space of probability density functions to the space of absolutely continuous functions. This
is referred to as the generalised Fisher–Rao metric (FR).

Parameter inference with functional data is developed under many different names,
including self-modelling [17], functional-modelling [3] and longitudinal data analysis [18].
However, these methods require that the likelihood function can be evaluated. In many
statistical models, the likelihood function is either unavailable or intractable, but it is possi-
ble to draw realisations from the model conditional on parameter values. One approach to
parameter inference in these situations is approximate Bayesian computation (ABC). ABC
is a likelihood-free approach to parameter inference where the proposed parameter values
are accepted when a distance between model realisations and observed data is smaller than
some threshold [19].

In ABC, the distance metric employed is usually defined as the Euclidean distance
between summary statistics of the observed data and the model realisation. The sum-
mary statistics can be obtained in a variety of ways. For instance, one can compute
summary statistics based on increments at each step [20], one could use wavelet compres-
sion to transform functional data into low-dimensional summary statistics [21] or they
could be transformed into estimators for parameters from an autoregressive model [22].
Choosing the most effective summary statistics is problem specific, and might also be
dataset-specific [23]. In recent work, summary statistics have been replaced by estimators
for metrics on probability measures, such as the Wasserstein distance [24], maximum mean
discrepancy (MMD) [25], and the Fisher–Rao metric [26]. These estimators have been used
within ABC samplers [24,27]. We compare the FR and the MMD for the purposes of ABC,
however, in all cases, the curve registration is itself performed using the FR.

In this paper, we consider problems where the likelihood function is unavailable and
the shape and characteristics of the response variables’ functional form encode important
information for parameter inference, considering that this functional form is subject to
variation in peak locations, which can be modelled as a stochastic warping of the time axis.
We incorporate curve registration into the distance computation of ABC (Figure 1).

In the following Section, we provide some background to functional data analysis and
the use of curve registration as well as describing the Fisher–Rao metric and introducing
notation. In Section 3, we take a closer look at approximate Bayesian computation and
introduce a distance sampler as well as relevant notation. Our approach combining curve
registration and ABC is demonstrated with four examples; two simulation examples
with random distributions that shift position of peaks, where we test whether ABC with
alignment outperforms ABC without alignment (Section 4); a model of passenger flow in
an international airport, where we use an algorithm for queueing-based simulation using
data consisting of records of passenger numbers passing through specific checkpoints for
each minute of the day (Section 5); and a hydrological model, where water flows within
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catchment areas in response to for example rainfall are forecasted using the GR4J simulation
model (Section 6). In Section 7 we summarize our results and conclude with our findings.

Observed data f

Generative model

Model realisation
fθ

Curve registration

Proposed parameter θ

Aligned
model realisation

Distance function Distance

Figure 1. Flowchart showing how curve registration is incorporated into distance computation for
ABC. This is a diagrammatic representation of Algorithm 2.

2. Functional Data Analysis and Curve Registration

Functional data analysis (FDA), in which datapoints are functions, is a well-established
field of study [3]. Special cases of functional data include longitudinal data and time series;
however, the field of FDA is much broader [28]. For simplicity, we consider problems in
which the functional data comprise a single functional random variable f. These variables
f take values in a function space F with probability measure p [29]. In practice, f is not
directly observed; instead, we observe an empirical function f , with error, on a finite subset
of the domain. This is referred to as an empirical functional random variable (EFRV). An
EFRV f is a set f1, f2, · · · , fm of pairs fi = (t f

i , y f
i ), representing the sampling location t f

i

and corresponding function output y f
i . We append the superscript f to associate each EFRV

with its sampling points and functional outputs. The set of all sampling locations for f is
t f , similarly y f is the set of all functional outputs.

When analysing functional data, estimating the mean function z(t) = E
f∼p

[f](t) is

often of interest. In the case of multiple EFRVs f 1, . . . , f n, which share the same sampling

locations t f 1
= · · · = t f n

, a standard estimator is ẑ(ti) = 1
n ∑n

j=1 y f j
i , with i = 1, . . . , m.

In many cases, however, it is possible that the resulting function does not lie within F
due to misalignment caused by time warping (phase variation). For instance, if F is the
set of Gaussian functions φ(t|µ, σ) with µ ∼ U(0, 5) and σ = 1, then the mean function
z(t) = 1

5

∫ 5
0 φ(t|µ, σ)dµ is not a Gaussian function on the time axis.

The functional data can be aligned using curve registration. We assume that F is
the space of real-valued functions defined on the interval [0, T], for some T > 0. Curve
registration aligns elements of F with increasing and invertible automorphisms on the
time axis. These automorphisms are called warping functions γ : [0, T] 7→ [0, T], such that
elements of the set G := {f ◦ γ|f ∈ F} have aligned features according to some criteria. We
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adopt the elastic functions approach of Srivastava et al. (2011) [11], who align f to another
functional random variable g using the generalised Fisher–Rao (FR) metric:

dFR(f, g) =
∫
[qf(t)− qg(t)]2dt, (1)

as the objective function, where qf(t) = sign(f ′(t)) ×
√
|f ′(t)|. Curve f is aligned to g

by finding the value of γ which minimises dFR(f ◦ γ, g). Since this distance takes phase
variation into account, it is called an elastic distance. One advantage of using dFR for curve
registration is that:

dFR(f, g) = dFR(f ◦ γ, g ◦ γ);

in other words, the FR is invariant with respect to shared warpings. This implies that the
distance of amplitudes between f and g, defined as

damp(f, g) := inf
γ∈Γ

dFR(f ◦ γ, g),

is symmetric [11]. The R package fdasrvf [30], which we use, implements this approach.
Since f is not directly observed (rather, the EFRV f is observed), a cubic spline approxima-
tion to f ′(t) is used to compute the FR distance.

3. Approximate Bayesian Computation

Suppose it is possible to draw samples x from a probability distribution p(·|θ), but it
is not possible to directly evaluate p(x|θ) for a particular x. Furthermore, suppose we wish
to perform inference on θ. In such cases, so-called likelihood-free approaches are necessary;
a popular approach is approximate Bayesian computation (ABC).

The theoretical foundation of ABC rests on the fact that, if we draw samples θ inde-
pendently of the prior π(θ) and use each θ to generate a corresponding model realisation
xθ from p(·|θ), then the set {θ|xθ = x} is distributed as π(θ|x). Such an approach would
never work in practice, as the proportion of samples xθ equal to x for models with con-
tinuous support is generally zero. For this reason, a distance d between x and xθ is used
as a decision rule to accept or reject θ. In other words, we sample the set {θ|d(x, xθ) ≤ ε}
for some fixed threshold ε > 0. We should say dissimilarity [31], rather than distance,
since, for ABC, a weaker notion than distance is needed, without the triangle inequality
and where x=y =⇒ d(x, y)=0 is true, but the converse d(x, y)=0 =⇒ x=y is not true
in general.

The FR (Equation (1)) is a distance metric for functions. Another distance, which
we use, is the estimator for maximum mean discrepancy (dMMD), a non-parametric two-
sample statistic for testing whether samples come from the same distribution [32]. This has
previously been used as a distance within an ABC sampler [27,33]. In this paper, inputs to
distances are EFRV. For the purposes of defining dMMD we denote these inputs as f and g;
however, when used within the d-sampler, one is the observed data f and the other is the
model realisation fθ . The definition of dMMD( f , g) is as follows:

dMMD( f , g) =
1

m2

m

∑
i=1

m

∑
i′=1

[k( fi, fi′) + k(gi, gi′)− 2k( fi, gi′)], (2)

where k is some kernel function. The kernel function that we use in this paper is the
Gaussian kernel, k( fi, gi′) = exp

[
−0.5

√
( fi − gi′)TS−1( fi − gi′)

]
, where S is a fixed tuning

covariance matrix. This distance, dMMD, is equivalent to a kernel-smoothed L2 metric
between EFRVs [25]. Therefore, we use dMMD as a distance on EFRVs rather than probability
measures.

Many varieties of ABC samplers exist in the literature, including accept-reject [34],
replenishment [35], and simulated annealing [36]. We find it useful in this paper to
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introduce an additional notion called a distance sampler (d-sampler) (Algorithm 1), which
helps to simplify the language used later. The d-sampler is simply the distance viewed as a
random variable, which is conditional on θ, and observed functional data f .

Algorithm 1 d-sampler.

Input: θ, f

Output: dθ

fθ ∼ p(·|θ)
dθ = d( f , fθ)

This notion makes ABC samplers easier to describe. For instance, the rejection sampler
can be written as a loop over i with (θi ∼ π(·), di = d-sampler(θi, f )) keeping only pairs
with di less than ε. In this paper, we adopt the replenishment ABC sampler [35].

To develop an ABC sampler for functional data, we develop d-samplers on θ and f .
We align a model realisation fθ to f with a warping γ∗ [11], as discussed in the previous
Section. The distance between f and the aligned model realisation fθ ◦ γ∗ is computed with
either the FR or MMD, as is shown in Algorithm 2. In the next section, we compare these
d-samplers against their unregistered versions (Algorithm 1) for two simulation examples
of shifting peaks.

Algorithm 2 Registered d-sampler.

Input: θ, f

Output: dθ

fθ ∼ p(·|θ)
γ∗ = arg infγ∈Γ dFR( f , fθ ◦ γ)

dθ = d( f , fθ ◦ γ∗)

4. Peak Shift
4.1. Methods

To demonstrate our method, we construct two simulation examples. The functional
data of the examples are a set of peaks with shifting positions. We test whether ABC
with alignment (alignment of f with fθ before distance computation) outperforms ABC
without alignment. The first example is as follows: the mean function is a sum over
five Gaussian density functions φ and four Cauchy density functions C, i.e., z(t) =

∑5
u=1 φ(t|µu, σφ) + ∑9

u=6 C(t|µu, σC). This is related to peaks in the spectroscopy, which are
either Gaussian or Cauchy (Lorentzian) peaks [37]. The observed functional output corre-
sponding to fixed sampling locations t = (0, 0.5, · · · , 200), is independent and normally
distributed yj|tj, µu ∼ N(z(tj), σε), conditional on the time axis value tj and peak positions
µu. What makes this problem of interest is that the location parameters µu are nuisance
parameters, treated as random effects to be integrated out. Instead of integration, we use
curve registration to produce a distance which is invariant with respect to µu, the nuisance
parameters. These µu have distribution N(αu, σu) for known values for σu and αu. The fact
that µu is random and high-dimensional makes inelastic distances, such as the L2 distance,
inappropriate.

The prior distributions for the parameters of interest are σφ ∼ U(0, 3), σC ∼ U(0, 2)
and σε ∼ U(0, 0.1). An example of a model realisation from this distribution is shown in
Figure 2. To test the effectiveness of registered d-samplers in this situation, we compare
all four combinations: MMD and FR with and without registration. We set the covariance
matrix S for MMD as the 2× 2 diagonal matrix with elements 9 and 1× 10−4. These values
within S were chosen based on the scale of the data (see Figure 2).
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Figure 2. Example of model realisations from the peak shift model with σu = 5, σφ = 1, and σε = 0.01.
The dotted lines are the fixed αu values. The distribution of peak shifts is controlled by σu, the peak
widths are controlled by σφ, and the noise is controlled by σε.

The second simulation example that we construct is similar to the first, except we use
a set of skewed normal density functions SN [38]. The purpose of this example is to further
test the robustness of our technique. The mean function here is z(t) = ∑9

u=1 SN(t|µu, σSN, η),
where σSN is the scale parameter and η is the skewness parameter. This is called the
centred parameterisation [39]. The prior distributions for the parameters of interest are
σSN ∼ U(0, 10), η ∼ U(−0.9, 0.9), and σε ∼ U(0, 0.02).

4.2. Results

Density plots of posterior samples arising from the ABC sampler with all four d-
samplers, registered and unregistered, are shown for the first example in Figure 3 and the
second example in Figure 4. The plots show that the registered d-samplers outperform their
unregistered counterparts; although the FR is an ideal distance for alignment of functions,
when used as a distance for ABC, it is sometimes outperformed by MMD. This suggests
that the best distance for registration is not always the best distance for ABC. The reason
that MMD outperforms the FR for σε is its penalty term. The first term in Equation (2)
penalises the concentration of y fθ , such that the algorithm tends towards a higher value
of σε to match the noise in y f . The same pattern of density plots is seen between the two
examples, with the registered distances outperforming others for peak shape parameters
(σφ, σC, σSN , and η), and the MMD distance (both registered and unregistered) outperforms
the Fisher–Rao distance for the noise parameter σε.

σC σε σφ

0.0 0.5 1.0 1.5 2.0 0.000 0.005 0.010 0.015 0.020 0 1 2 3

π A
B

C
(θ

|y
)

Unregistered Fisher−Rao Unregistered MMD Registered Fisher−Rao Registered MMD

Figure 3. Gaussian/Cauchy peak shift example. Density plots of posterior samples arising from
the replenishment ABC sampler. Distances shown include maximum mean discrepancy (MMD)
and Fisher–Rao (FR). These distances are used within the registered (Algorithm 2) and unregistered
(Algorithm 1) d-samplers. Vertical black solid lines represent true values.
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Figure 4. Skewed Gaussian peak shift example. Density plots of posterior samples arising from
the replenishment ABC sampler. Distances shown include maximum mean discrepancy (MMD)
and Fisher–Rao (FR). These distances are used within the registered (Algorithm 2) and unregistered
(Algorithm 1) d-samplers. Vertical black solid lines represent true values.

The relative merits of each distance are not our primary concern. We are interested
in the effect of registration rather than the distance. It is interesting, however, that we can
use a different distance for ABC than is used for curve registration and, depending on the
parameter of interest, obtain superior results. In further examples, we proceed only with
MMD. We now demonstrate a more complex example with a dynamic queueing network
model of an international airport terminal.

5. Passenger Processing at an International Airport

Rising demand for air travel and enhanced security screening place pressure on exist-
ing airport infrastructure. Airport terminal infrastructure, for financial and geographical
reasons, can be difficult to upgrade the rate needed to match this demand. With this in
mind, operational planners at airports seek to optimise day-to-day operations. However,
optimisation frameworks require models with some degree of realism. These models will
necessarily become complicated and this, combined with the data collection scheme, in-
evitably leads to intractable likelihoods. Simulators are, on the other hand, straightforward
to construct, although computationally demanding.

We use a fast algorithm for queueing based simulations, called QDC [40], to construct
an ABC sampler for this problem [33]. However, there were problems with misalignment,
as noted in their discussion. We consider a simplified (for the sake of exposition) version of
this model and data. The purpose of this model is to predict passenger flows through an
airport terminal in response to particular flight schedules and staff rosters at an immigration
checkpoint. The data comprise records of passenger numbers passing through certain
checkpoints for each minute of the day. The flight schedule and staff rosters can be
thought of as explanatory variables, since they are known and affect the response variable
(passenger flows) to some degree, which we wish to estimate.

We model the arrivals terminal of an international airport. For one day, we have a list
of flights u along with their arrival gate gu and arrival time au. The walking distance mu
from gate gu to immigration is also known. The flight arrival information x = (u, gu, au),
collectively, are a type of forcing data; in other words, they are inputs to a simulation
model which are themselves subject to observational error [41]. The time that a flight
arrives is known, but the time at which a flight opens its doors to deplane passengers is
not recorded [33]. This leads to more uncertainty regarding the dynamics of passenger
processing. It is of interest whether curve registration helps to improve parameter inference
under these conditions.
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5.1. Methods

To model passenger flows, we simulate every passenger from every flight. The time
at which passenger v from flight u deplanes is adpl

u,v = au + tdpl
u,v + bu, where tdpl

u,v is the time
taken for the passenger to leave the aircraft and bu ∼ U(0, 20) is a nuisance parameter
representing an unobserved amount of time taken by the crew after the recorded arrival
time to open the doors, letting passengers out. Note that, in this example, bu plays the
same role as µu from the peak shift example, i.e., that of a high-dimensional latent variable,
shifting peaks independently.

Once passengers have deplaned, they walk to be processed at immigration and
queue for processing. The times at which customers arrive to the queueing system are
aimm

u,v = adpl
u,v + timm

u,v , where timm
u,v is the walking time to immigration from the arrival

gate. The distribution of timm
u,v |mu is Gamma(α, β/mu). This is equivalent to sampling

from Gamma(α, β) and multiplying the result by mu. We transform these parameters,
for interpretability to mean ρ = α

β , and variance to mean squared ratio ν = 1
α . There

are two parallel queueing systems: one for local and one for foreign passengers. The
proportion lu of local passengers on each flight is known and encoded in the Boolean
variable natu,v ∼ Bern(lu). Each queueing system proceeds at a different rate λnatu,v and
has a different number of servers which are non-interchangeable. This is an accurate
depiction of real systems, including staff and automated systems working in parallel and
which cannot be interchanged.

We require a queueing simulator to compute the times at which passengers leave their
assigned queueing system (local or foreign). A queueing simulator (QueueSim) is a function
which (conditional on arrival times, service times and number of servers) deterministically
computes the times at which passengers leave their queueing system (departure times),
see [40]. First, we partition the arrival times aimm

u,v by natu,v; then, we sample service times
su,v ∼ Exp(λnatu,v). There is a separate rate parameter for the local passengers queue λl and
the foreign passengers queue λ f . The number of servers for each queue Knat is known. The
departure times from the queueing systems are zimm

nat = QueueSim(aimm
nat , snat, Knat), where

the variables are written in boldface to denote the full vectors partitioned by nationality,
since the movements of each passenger, once queueing begins, are no longer independent.
The synthetic data were constructed in the same way so that we could know the true
parameter values, which are ρ = 0.02, ν = 0.64, λl = 0.5, and λ f = 0.4. The priors are
independent and uniform for all parameters ρ ∼ U(0, 0.05), ν ∼ U(0, 1), λl ∼ U(0, 1),
λ f ∼ U(0, 1). We bin aimm

θ and zimm by minute to construct EFRVs in the form of histograms
f a
θ and f z

θ , respectively. The two functional variables f a
θ and f z

θ represent, respectively, the
input and output of the immigration system.

Considering that variations in flight arrival times significantly affect the dynamics of
queues within the immigration system, we cannot register f a

θ and f z
θ independently to f a

and f z, respectively, without introducing modelling error. Our solution here is to “correct”
aimm

θ for forcing data uncertainty with reference to the warping function. We, therefore,
obtain three different types of posterior samples (registered, unregistered and corrected).
Since aimm

θ themselves are not functional data, we refer to these as corrected arrival times
and denote them as ăimm

θ . We use curve registration to find the warping function γ from f a
θ

to f a and apply this to the latent variable aimm, correcting zimm and f z
θ (Algorithm 3). The

type argument encodes whether the d-sampler is unregistered, registered, or corrected. For
the registered d-sampler, only the distance on f a

θ is registered. The corrected d-sampler
uses a registered distance on f a

θ and uses the warping function γ to correct the input for a
more accurate output sample zimm.
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Algorithm 3 Airport d-sampler.

Input: θ, f a, f z, type, x

Output: dθ

1: aimm
θ ∼ pa(·|ρ, ν, x)

2: f a
θ = hist(aimm

θ )

3: ăimm
θ = aimm

θ

4: if type = registered or corrected then

5: γ = arg infγ∈Γ dFR( f a, f a
θ ◦ γ)

6: da
θ = d( f a, f a

θ ◦ γ)

7: if type = corrected then

8: ăimm
θ = γ(aimm

θ )

9: end if

10: else

11: da
θ = d( f a, f a

θ )

12: end if

13: zimm
θ ∼ pa(·|ăimm

θ , λ, K)

14: f z
θ = hist(zimm

θ )

15: dθ = da
θ + d( f z, f z

θ )

5.2. Results

Density plots of posterior samples for all parameters of interest, for each d-sampler,
are shown in Figure 5. We see that the registered d-sampler outperforms the unregistered
d-sampler for ρ and ν, which relates to the walking speed, as well as outperforming the
unregistered d-sampler for λ f and is as least as good as the unregistered d-sampler for λl .
Furthermore, we see that applying the correction to the input to the immigration system
improves the accuracy of the output since the posterior density for the corrected d-sampler
outperforms all others for all parameters. Curve registration therefore helps improve
parameter inference under the stated conditions and can even help to improve inference
by aligning “correcting” forcing data. Models involving a stochastic transformation from
unobserved latent variables may benefit from using this technique.
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Figure 5. Density plots of posterior samples using the airport d-sampler (Algorithm 3) for unregis-
tered, registered and corrected types. The solid vertical black line represents the true value. Priors
are uniform on the x-axis of each plot.

6. Hydrological Modelling

Water flows within catchment areas, in response to rainfall and other weather events,
are often modelled and forecast with run-off models, where water flows are represented
by hydrographs showing volumetric flow-rates at a particular point (see Figure 6) [42,43].
In particular, the Génie Rural à 4 paramètres Journalier (GR4J) model of [44] is widely
used. Parameter estimation for hydrological methods is an active area of research [45].
Once parameters are estimated, parameter uncertainty itself contributes little to overall
uncertainty compared to the residual error structure [46].

Hydrographs are EFRVs; their functional form is controlled by model parameters θ
and forcing data x. For the GR4J model, x are rainfall patterns [47]. The peak positions
within the functional data are affected by θ and x. However, unlike the airport example, x
are assumed to be measured without error. As in the previous example, we are interested
in whether curve registration helps improve parameter inference.
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Figure 6. Synthetic hydrograph with associated rain and evaporation data from the airGR package.

6.1. Methods

In this example we use the GR4J simulation model. This model contains four pa-
rameters: the first three (θ1, θ2, θ3) are capacities in units of length (mm); and the fourth
parameter (θ4) represents a lagged effect in units of time (days). Predictions from the GR4J,
given θ = (θ1, θ2, θ3, θ4) and x, are denoted asH(θ, x). As in many run-off models, the GR4J
model is deterministic. To provide useful prediction intervals, hydrologists typically add
an error structure to the deterministic model. Run-off predictions are positively valued, and
errors are heteroscedastic [45]. A common strategy is to perform a Box-Cox transformation
B(x, λ) = (xλ − 1)/λ of the deterministic output, add noise ε and then invert the Box-Cox
transformation:

f z = B−1[B[H(θ, x)] + ε], (3)

ε ∼ N(0, σ2). (4)

The model is an input/output model like the airport example; however, in this case,
the input is not a latent variable, but observed directly, so we do not include a corrected
d-sampler. We use the same d-samplers used in the peak shift simulation examples
(Algorithms 1 and 2).

6.2. Results

As the previous examples, this example includes peak shifting. However, in this
case, we see from density plots of posterior samples (Figure 7) that the unregistered d-
sampler outperforms the registered d-sampler. In the previous examples, there was a
high-dimensional latent variable µu affecting the peak locations; in this case, there is only
one variable affecting the peak locations, i.e., θ4. Since the peak positions shift according
to a one-dimensional parameter of interest θ4, rather than a high-dimensional nuisance
parameter, the process of registration is unnecessary here, and adds noise to the d-sampler,
flattening the posterior densities. Curve registration will therefore not improve parameter
inference, since the ABC sampler correctly identifies appropriate values for θ4.
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Figure 7. Density plots of posterior samples from the hydrological model using unregistered and
registered d-samplers.

7. Conclusions

In this work, curve registration techniques are applied to the problem of misaligned
functional data for likelihood-free inference for the first time. Interested readers can find
the code we used at https://github.com/AnthonyEbert/CurveRegistration, accessed on
3 September 2021. We used the FR as an objective function to align model realisations to
observed data by warping the time axis. Once functional data were aligned, we compared
the FR and MMD as distances for posterior inference within an ABC sampler. We tested
this approach with four examples: two peak shift examples (Section 4), the airport example
(Section 5), and a real hydrology example (Section 6). The examples highlight different
aspects and use-cases of applying curve registration techniques to ABC.

In the peak shift examples of Section 4, we found that the registered d-samplers based
on both the FR and MMD outperform the unregistered d-samplers, although the MMD, in
some cases, outperformed FR. This means that the distance for alignment is not necessarily
the best distance for ABC samplers once alignment is performed. In the airport example of
Section 5, we explored the effect of stochasticity in forcing data affecting peak positions.
We found that ABC inference based on curve registered functional data increased posterior
concentration near the true value. Furthermore, we found that we can “correct” ăimm

θ , a
latent variable computed within the model itself, by using the warping function computed
from the original alignment. This further improves posterior inference, counteracting
the effect of forcing data uncertainty. Finally, in the hydrological example (Section 6),
the ABC sampler correctly identifies appropriate values for θ4, making curve registration
unnecessary in this example; when peak location stochasticity is entirely controlled by
parameters of interest, then curve registration ceases to improve posterior inference for
those parameters.

While the Fisher–Rao metric is an exceedingly appropriate distance for curve registra-
tion, in these cases, it was not necessarily the best distance to use for approximate Bayesian
computation (ABC). This means that two distances may be ideal for different purposes
within an ABC sampler.

https://github.com/AnthonyEbert/CurveRegistration
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ABC samplers suffer in high dimensions; therefore, the purpose of curve registration
is to build distances which are invariant with respect to certain types of high-dimensional
nuisance parameters. We find, illustrated by the four examples, that curve registration
provides a valuable technique for posterior inference based on misaligned functional data,
where variation in peak positions is controlled by nuisance parameters.
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