The Impact of Temperature, Humidity, and Precipitation on COVID-19 Cases: A Study Across National and Subnational Levels in Pakistan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Epidemic Data
2.3. Meteorological Data
2.4. Statistical Analysis
3. Results
3.1. National Level
3.2. Subnational Level
3.2.1. Punjab
3.2.2. Sindh
3.2.3. Islamabad and Other Provinces and Territories
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alqasemi, A.S.; Hereher, M.E.; Kaplan, G.; Al-Quraishi, A.M.F.; Saibi, H. Impact of COVID-19 lockdown upon the air quality and surface urban heat island intensity over the United Arab Emirates. Sci. Total Environ. 2021, 767, 144330. [Google Scholar] [CrossRef]
- Gwenzi, W. Dangerous liaisons? As the COVID-19 wave hits Africa with potential for novel transmission dynamics: A perspective. J. Public Health 2022, 30, 1353–1366. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.M.; Abid, I.; Hussain, S.; Shahzad, N.; Waqas, M.S.; Iqbal, M.J. The effects of regional climatic condition on the spread of COVID-19 at global scale. Sci. Total Environ. 2020, 739, 140101. [Google Scholar] [CrossRef] [PubMed]
- Syafarina, I.; Shabrina, A.; Latifah, A.L.; Adytia, D. Evaluation of the Social Restriction and its Effect to the COVID-19 Spread in Indonesia. In Proceedings of the 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 3–5 August 2021. [Google Scholar]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Jaman, M.H.; Saha, G.; Ghosh, P. Effect of environmental and socio-economic factors on the spreading of COVID-19 at 70 cities/provinces. Heliyon 2021, 7, e06979. [Google Scholar] [CrossRef]
- Basray, R.; Malik, A.; Waqar, W.; Chaudhry, A.; Malik, M.W.; Khan, M.A.; Ansari, J.A.; Ikram, A. Impact of environmental factors on COVID-19 cases and mortalities in major cities of Pakistan. J. Biosaf. Biosecurity 2021, 3, 10–16. [Google Scholar] [CrossRef]
- Aslam, M.N.; Ashraf, S.; Shrestha, S.; Ali, M.; Hanh, N.C. Climate change impact on water scarcity in the Hub River Basin, Pakistan. Groundw. Sustain. Dev. 2024, 27, 101339. [Google Scholar] [CrossRef]
- Ali, M.; Gillani, S.H.; Ali, U. Flash Drought Monitoring in Pakistan Using Machine Learning Techniques and Multivariate Drought Indices. Tech. J. 2024, 3, 717–729. [Google Scholar]
- Nguyen, D.T.; Ashraf, S.; Le, M.; Trung, L.Q.; Ali, M. Projection of climate variables by general circulation and deep learning model for Lahore, Pakistan. Ecol. Inform. 2023, 75, 102077. [Google Scholar] [CrossRef]
- Irfan, M.; Ikram, M.; Ahmad, M.; Wu, H.; Hao, Y. Does temperature matter for COVID-19 transmissibility? Evidence across Pakistani provinces. Environ. Sci. Pollut. Res. 2021, 28, 59705–59719. [Google Scholar] [CrossRef]
- Rehman, A.; Ashraf, F.; Javed, Z.; Hussain, M.; Farooq, T.H.; Shakoor, A.; Shahzad, S.M. The nexus between meteorological parameters and COVID-19 pandemic: Case of Islamabad, Pakistan. Environ. Sustain. 2021, 4, 527–531. [Google Scholar] [CrossRef]
- Ali, Q.; Raza, A.; Saghir, S.; Khan, M.T.I. Impact of wind speed and air pollution on COVID-19 transmission in Pakistan. Int. J. Environ. Sci. Technol. 2021, 18, 1287–1298. [Google Scholar] [CrossRef]
- Fawad, M.; Mubarik, S.; Malik, S.S.; Ren, J. Statistical analysis of COVID-19 infection caused by environmental factors: Evidence from Pakistan. Life Sci. 2021, 269, 119093. [Google Scholar] [CrossRef] [PubMed]
- Briz-Redón, Á.; Serrano-Aroca, Á. The effect of climate on the spread of the COVID-19 pandemic: A review of findings, and statistical and modelling techniques. Prog. Phys. Geogr. Earth Environ. 2020, 44, 591–604. [Google Scholar] [CrossRef]
- Raza, A.; Khan, M.T.I.; Ali, Q.; Hussain, T.; Narjis, S. Association between meteorological indicators and COVID-19 pandemic in Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 40378–40393. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Ahmad, B.B. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 2018, 634, 853–867. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, M.; Shrestha, S.; Hafeez, M.A.; Moiz, A.; Sheikh, Z.A. Impacts of climate and land-use change on groundwater recharge in the semi-arid lower Ravi River basin, Pakistan. Groundw. Sustain. Dev. 2022, 17, 100743. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M.; Ahmad, B.B. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ. Earth Sci. 2015, 73, 8647–8668. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Change 2017, 7, 492–495. [Google Scholar]
- Couronné, R.; Probst, P.; Boulesteix, A.-L. Random Forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 270. [Google Scholar] [CrossRef]
- Rencher, A.C. A Review of “Methods of Multivariate Analysis”; Taylor & Francis: Abingdon, UK, 2005. [Google Scholar]
- Jaccard, J.; Guilamo-Ramos, V.; Johansson, M.; Bouris, A. Multiple regression analyses in clinical child and adolescent psychology. J. Clin. Child Adolesc. Psychol. 2006, 35, 456–479. [Google Scholar] [CrossRef]
- Kitaw, T.A.; Abate, B.B.; Tilahun, B.D.; Azmeraw, M.; Ayele, M.; Lake, E.S.; Zemariam, A.B.; Yilak, G.; Kassa, M.A.; Haile, R.N. Spatial variation, 20-year trends, and determinants of the double burden of wasting and stunting among under-five children in Ethiopia: A geo-spatial and multivariate decomposition analysis (2000–2019). Sci. Rep. 2024, 14, 29539. [Google Scholar] [CrossRef] [PubMed]
- Kodera, S.; Rashed, E.A.; Hirata, A. Correlation between COVID-19 morbidity and mortality rates in Japan and local population density, temperature, and absolute humidity. Int. J. Environ. Res. Public Health 2020, 17, 5477. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Huang, H.; Avellán-Llaguno, R.D.; Lazo, M.M.L.; Gaggero, A.; Soto-Rifo, R.; Patiño, L.; Valencia-Avellan, M.; Diringer, B. Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions in South America. Sci. Total Environ. 2020, 744, 140881. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Ahmad, L.O.A.I.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia.”. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef] [PubMed]
- Abdulkarem, A.B.; Sani, N.S.; Sahran, S.; Alyessari, Z.A.A.; Adam, A.; Abd Rahman, A.H.; Abdulkarem, A.B. Predicting COVID-19 based on environmental factors with machine learning. Intell. Autom. Soft Comput. 2021, 28, 305–320. [Google Scholar] [CrossRef]
- Nundy, S.; Ghosh, A.; Mesloub, A.; Albaqawy, G.A.; Alnaim, M.M. Impact of COVID-19 pandemic on socio-economic, energy-environment and transport sector globally and sustainable development goal (SDG). J. Clean. Prod. 2021, 312, 127705. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D. The 2020 report of the Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Shakil, M.H.; Munim, Z.H.; Tasnia, M.; Sarowar, S. COVID-19 and the environment: A critical review and research agenda. Sci. Total Environ. 2020, 745, 141022. [Google Scholar] [CrossRef]
- Biktasheva, I.V. Role of a habitat’s air humidity in COVID-19 mortality. Sci. Total Environ. 2020, 736, 138763. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. [Google Scholar] [CrossRef] [PubMed]
- Paynter, S. Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiol. Infect. 2015, 143, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos Solitons Fractals 2020, 140, 110121. [Google Scholar] [CrossRef]
- Kausar, T.; Lu, Y.; Kausar, A.; Ali, M.; Yousaf, A. SD-GAN: A style distribution transfer generative adversarial network for COVID-19 detection through X-ray images. IEEE Access 2023, 11, 24545–24560. [Google Scholar] [CrossRef]
Max. Temperature (°C) | Min. Temperature (°C) | Precipitation (mm) | Humidity (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef | p | 95%Cl | Coef | p | 95%Cl | Coef | p | 95%Cl | Coef | p | 95%Cl | |
National | 43,169.21 | 0.000 | 29,660.9, 56,677.52 | −18,713.84 | 0.001 | −29,876.56 −7551.121 | −4671.212 | 0.259 | −12,797.42, 3454.99 | 12,428.73 | 0.000 | 12,428.73, 18,357.53 |
Subnational (Provinces and Federal Territories) | ||||||||||||
Punjab | 15.49 | 0.041 | 0.66, 30.32 | −5.96 | 0.452 | −21.5,9.63 | 10.90 | 0.039 | 0.57, 21.23 | −11.70 | 0.000 | −16.32, −7.07 |
Sindh | −41.55 | 0.000 | −54.06, −29.03 | 48.63 | 0.000 | 38.40, 58.86 | 3.21 | 0.643 | −10.42, 16.85 | 2.29 | 0.143 | −0.77, 5.36 |
KPK | 3.45 | 0.001 | 1.41, 5.48 | −4.27 | 0.000 | −5.74, −2.80 | 1.45 | 0.745 | −7.34, 10.26 | 2.88 | 0.014 | 0.58, 5.18 |
Baluchistan | 1.24 | 0.000 | 0.96, 1.53 | −0.06 | 0.594 | −0.31, 0.18 | 2.94 | 0.046 | 0.05, 5.48 | −0.23 | 0.051 | −0.46, 0.00 |
Federal Territories | ||||||||||||
Islamabad | 0.66 | 0.113 | −0.15, 1.48 | −1.89 | 0.000 | −2.74, −1.04 | 1.89 | 0.041 | 0.08, 3.70 | −0.97 | 0.190 | −2.43, 0.48 |
AJK | −2.52 | 0.014 | −4.54, −0.50 | 8.01 | 0.000 | 5.55, 10.47 | 0.82 | 0.076 | −0.08, 1.73 | −0.18 | 0.508 | −0.74, 0.37 |
Gilgit-Baltistan | 0.40 | 0.000 | 0.30, 0.50 | 0.122 | 0.011 | 0.02, 0.21 | 0.61 | 0.076 | −0.06, 1.28 | −0.08 | 0.259 | −0.23, 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Ali, M.; Asghar, H.; Okamoto, M.; Shirayama, Y.; Talha, Z.; Uzakova, A.; Ahmad, H.S.; Yuasa, M. The Impact of Temperature, Humidity, and Precipitation on COVID-19 Cases: A Study Across National and Subnational Levels in Pakistan. J 2025, 8, 21. https://doi.org/10.3390/j8030021
Ahmad I, Ali M, Asghar H, Okamoto M, Shirayama Y, Talha Z, Uzakova A, Ahmad HS, Yuasa M. The Impact of Temperature, Humidity, and Precipitation on COVID-19 Cases: A Study Across National and Subnational Levels in Pakistan. J. 2025; 8(3):21. https://doi.org/10.3390/j8030021
Chicago/Turabian StyleAhmad, Ishtiaq, Mustajab Ali, Hadiya Asghar, Miyoko Okamoto, Yoshihisa Shirayama, Zoofa Talha, Aida Uzakova, Hafiz Sultan Ahmad, and Motoyuki Yuasa. 2025. "The Impact of Temperature, Humidity, and Precipitation on COVID-19 Cases: A Study Across National and Subnational Levels in Pakistan" J 8, no. 3: 21. https://doi.org/10.3390/j8030021
APA StyleAhmad, I., Ali, M., Asghar, H., Okamoto, M., Shirayama, Y., Talha, Z., Uzakova, A., Ahmad, H. S., & Yuasa, M. (2025). The Impact of Temperature, Humidity, and Precipitation on COVID-19 Cases: A Study Across National and Subnational Levels in Pakistan. J, 8(3), 21. https://doi.org/10.3390/j8030021