A Spectroscopic Evaluation of the Generation Process of Semiconductor Nanoparticles (ZnO) by DC Arc Plasma
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S.F.; Fuke, S.; Segawa, Y.; et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 2005, 4, 42–46. [Google Scholar] [CrossRef]
- Chu, S.; Wang, G.; Zhou, W.; Lin, Y.; Chernyak, L.; Zhao, J.; Kong, J.; Li, L.; Ren, J.; Liu, J. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Deka Boruah, B. Zinc oxide ultraviolet photodetectors: Rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 2019, 1, 2059–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. 2017, 727, 792–820. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Lin, S. p-type ZnO for photocatalytic water splitting. APL Mater. 2022, 10, 030901. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, R.; Zhou, J.; Qin, Y.; Xu, C.; Hu, Y.; Xu, S. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater. Sci. Eng. R Rep. 2010, 70, 320–329. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Senthilkumar, O.; Yamauchi, K.; Sato, M.; Morito, S.; Ohba, T.; Nakamura, M.; Fujita, Y. Preparation of ZnO nanoparticles for bio-imaging applications. Phys. Status Solidi B 2009, 246, 885–888. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Sanguino, P.; Pina, J.; Abdelmoula, N.; de Melo, J.S.S. Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 2023, 34, 116. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Rhouma, F.I.H.; Sanguino, P.; Guermazi, S.; Khirouni, K.; Vieira, M.T. Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci. Mater. Electron. 2021, 32, 1536–1556. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-J.; Yang, J.-R.; Shiojiri, M. ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition. Semicond. Sci. Technol. 2012, 27, 074005. [Google Scholar] [CrossRef]
- Yuen, C.; Yu, S.F.; Lau, S.P.; Rusli; Chen, T.P. Fabrication of n-ZnO:Al∕p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique. Appl. Phys. Lett. 2005, 86, 241111. [Google Scholar] [CrossRef]
- Baltakesmez, A.; Tekmen, S.; Köç, P.; Tüzemen, S.; Meral, K.; Onganer, Y. UV-visible detector and LED based n-ZnO/p-Si heterojunction formed by electrodeposition. AIP Adv. 2013, 3, 032125. [Google Scholar] [CrossRef]
- Shan, C.X.; Liu, J.S.; Lu, Y.J.; Li, B.H.; Ling, F.C.C.; Shen, D.Z. p-type doping of MgZnO films and their applications in optoelectronic devices. Opt. Lett. 2015, 40, 3041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, M.; Chen, J.; Wang, Y.; Miao, L.; Lu, Y.; He, Y. Multi-component ZnO alloys: Bandgap engineering, hetero-structures, and optoelectronic devices. Mater. Sci. Eng. R Rep. 2022, 147, 100661. [Google Scholar] [CrossRef]
- Look, D.C.; Claflin, B. P-type doping and devices based on ZnO. Phys. Status Solidi B 2004, 241, 624–630. [Google Scholar] [CrossRef]
- Park, C.H.; Zhang, S.B.; Wei, S.-H. Origin of p -type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B 2002, 66, 073202. [Google Scholar] [CrossRef]
- Fujita, Y.; Moriyama, K.; Hiragino, Y.; Furubayashi, Y.; Hashimoto, H.; Yoshida, T. Electroluminescence from nitrogen doped ZnO nanoparticles. Phys. Status Solidi C 2014, 11, 1260–1262. [Google Scholar] [CrossRef]
- Fujita, Y.; Yanase, S.; Nishikori, H.; Hiragino, Y.; Furubayashi, Y.; Lin, J.; Yoshida, T. Near ultraviolet light emitting diodes using ZnMgO:N/ZnO hetero-junction grown by MOVPE. J. Cryst. Growth 2017, 464, 226–230. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.F.; Wang, Z.W.; Li, W.S. Controlled fabrication of ordered structure-based ZnO films by electrochemical deposition. Thin Solid Films 2014, 573, 74–78. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Zhang, J.; Deng, T.; Wu, J. Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowire homojunction. Appl. Phys. B 2008, 90, 543–546. [Google Scholar] [CrossRef]
- Sang, N.X.; Beng, T.C.; Jie, T.; Fitzgerald, E.A.; Jin, C.S. Fabrication of p-type ZnO nanorods/n-GaN film heterojunction ultraviolet light-emitting diodes by aqueous solution method. Phys. Status Solidi A 2013, 210, 1618–1623. [Google Scholar] [CrossRef]
- Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016, 19, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Aneesh, P.M.; Vanaja, K.A.; Jayaraj, M.K. Synthesis of ZnO Nanoparticles by Hydrothermal Method; Gaburro, Z., Cabrini, S., Eds.; SPIE: San Diego, CA, USA, 2007; p. 66390J. [Google Scholar]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Avdeeva, A.V.; Zang, X.; Muradova, A.G.; Yurtov, E.V. Formation of Zinc-Oxide Nanorods by the Precipitation Method. Semiconductors 2017, 51, 1724–1727. [Google Scholar] [CrossRef]
- Hiragino, Y.; Tanaka, T.; Takeuchi, H.; Takeuchi, A.; Lin, J.; Yoshida, T.; Fujita, Y. Synthesis of nitrogen-doped ZnO nanoparticles by RF thermal plasma. Solid-State Electron. 2016, 118, 41–45. [Google Scholar] [CrossRef]
- Zhu, G.P.; Xu, C.X.; Wu, X.F.; Yang, Y.; Sun, X.W.; Cui, Y.P. Zinc Oxide Nanorods Grown by Arc Discharge. J. Electron. Mater. 2007, 36, 494–497. [Google Scholar] [CrossRef]
- Ko, T.S.; Yang, S.; Hsu, H.C.; Chu, C.P.; Lin, H.F.; Liao, S.C.; Lu, T.C.; Kuo, H.C.; Hsieh, W.F.; Wang, S.C. ZnO nanopowders fabricated by dc thermal plasma synthesis. Mater. Sci. Eng. B 2006, 134, 54–58. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Senthilkumar, O.; Morito, S.; Ohba, T.; Fujita, Y. Synthesis of zinc oxide nanoparticles by dc arc dusty plasma. J. Nanoparticle Res. 2012, 14, 1205. [Google Scholar] [CrossRef]
- Shafiqul, I.M.; Deep, R.; Lin, J.; Yoshida, T.; Fujita, Y. The Role of Nitrogen Dopants in ZnO Nanoparticle-Based Light Emitting Diodes. Nanomaterials 2022, 12, 358. [Google Scholar] [CrossRef] [PubMed]
- Shafiqul, I.M.; Deep, R.; Lin, J.; Yoshida, T.; Fujita, Y. Demonstration and Evaluation of p-Type and n-Type ZnO Nanoparticles-Based Homojunction UV Light-Emitting Diodes. Phys. Status Solidi RRL—Rapid Res. Lett. 2022, 16, 2100556. [Google Scholar] [CrossRef]
- Domingos, R.F.; Baalousha, M.A.; Ju-Nam, Y.; Reid, M.M.; Tufenkji, N.; Lead, J.R.; Leppard, G.G.; Wilkinson, K.J. Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes. Environ. Sci. Technol. 2009, 43, 7277–7284. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.-Q.; Zhou, H.; Li, Y.-P.; Huang, Z.; Zheng, J.-C.; Wang, J.-O.; Qian, H.; Ibrahim, K.; Chen, X.; et al. Influence of nitrogen and magnesium doping on the properties of ZnO films. Chin. Phys. B 2016, 25, 076105. [Google Scholar] [CrossRef]
- Hanif, M.; Salik, M.; Baig, M.A. Laser Based Optical Emission Studies of Zinc Oxide (ZnO) Plasma. Plasma Chem. Plasma Process. 2013, 33, 1167–1178. [Google Scholar] [CrossRef]
- Kato, H.; Yamamuro, T.; Ogawa, A.; Sano, M. Impact of Mixture Gas Plasma of N2 and O2 as the N Source on ZnO-Based Ultraviolet Light-Emitting Diodes Fabricated by Molecular Beam Epitaxy. Appl. Phys. Express 2011, 4, 091105. [Google Scholar] [CrossRef]
- Shaikh, N.M.; Rashid, B.; Hafeez, S.; Jamil, Y.; Baig, M.A. Measurement of electron density and temperature of a laser-induced zinc plasma. J. Phys. Appl. Phys. 2006, 39, 1384–1391. [Google Scholar] [CrossRef]
- Xiong, G.; Ucer, K.B.; Williams, R.T.; Lee, J.; Bhattacharyya, D.; Metson, J.; Evans, P. Donor-acceptor pair luminescence of nitrogen-implanted ZnO single crystal. J. Appl. Phys. 2005, 97, 043528. [Google Scholar] [CrossRef]
- Yang, S.; Tian, X.; Wang, L.; Wei, J.; Qi, K.; Li, X.; Xu, Z.; Wang, W.; Zhao, J.; Bai, X.; et al. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence. Appl. Phys. Lett. 2014, 105, 071901. [Google Scholar] [CrossRef]
- Itohara, D.; Shinohara, K.; Yoshida, T.; Fujita, Y. p-Channel and n-Channel Thin-Film-Transistor Operation on Sprayed ZnO Nanoparticle Layers. J. Nanomater. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Ji, Y.L.; Xu, H.; Simon, P.; Wu, Z. Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure. J. Am. Chem. Soc. 2002, 124, 14864–14865. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Zhu, H.; Wu, Y.; Chen, M.; Zhu, Y.; Gui, X.; Tang, Z. Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices. Adv. Funct. Mater. 2016, 26, 3696–3702. [Google Scholar] [CrossRef]
Parameters | (100) | (002) | (101) |
---|---|---|---|
2θ (degree) | 31.61 | 34.26 | 36.09 |
FWHM (degree) | 0.157 | 0.139 | 0.156 |
dhkl (Å) | 2.827 | 2.614 | 2.486 |
Crystallite size (nm) | 54.9 | 62.4 | 55.6 |
a (Å) | 3.258 | ||
c (Å) | 5.221 | ||
c/a | 1.60 | ||
Unit cell vol (Å)3 | 47.99 | ||
APF | 0.754 |
Wavelength λ (nm) | Transitions | Statistical Weight g | Transition Probability A (s−1) | Excitation Energy E (cm−1) |
---|---|---|---|---|
481.05 | 4s5s 3S1 → 4s4p 3P2 | 3 | 7.00 × 107 | 53,672.24 |
636.23 | 4s4d 1D2 → 4s4p 1P1 | 5 | 4.65 × 107 | 62,458.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deep, R.; Akazawa, T.; Yoshida, T.; Fujita, Y. A Spectroscopic Evaluation of the Generation Process of Semiconductor Nanoparticles (ZnO) by DC Arc Plasma. J 2023, 6, 207-219. https://doi.org/10.3390/j6020016
Deep R, Akazawa T, Yoshida T, Fujita Y. A Spectroscopic Evaluation of the Generation Process of Semiconductor Nanoparticles (ZnO) by DC Arc Plasma. J. 2023; 6(2):207-219. https://doi.org/10.3390/j6020016
Chicago/Turabian StyleDeep, Raj, Takuma Akazawa, Toshiyuki Yoshida, and Yasuhisa Fujita. 2023. "A Spectroscopic Evaluation of the Generation Process of Semiconductor Nanoparticles (ZnO) by DC Arc Plasma" J 6, no. 2: 207-219. https://doi.org/10.3390/j6020016
APA StyleDeep, R., Akazawa, T., Yoshida, T., & Fujita, Y. (2023). A Spectroscopic Evaluation of the Generation Process of Semiconductor Nanoparticles (ZnO) by DC Arc Plasma. J, 6(2), 207-219. https://doi.org/10.3390/j6020016