Reducing the Immunogenicity of Pulchellin A-Chain, Ribosome-Inactivating Protein Type 2, by Computational Protein Engineering for Potential New Immunotoxins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Protein Sequences
2.2. Modeling of Three-Dimensional Structure
2.3. Three-Dimensional Structure Validation
2.4. Selected Model Refinement
2.5. Predicting Conformational B-Cell Epitopes
2.6. Establishment of Mutants
2.7. Obtaining the 3D Structure of Mutants and Evaluating Their Initial Properties
2.8. Analyzing Immunogenicity of Mutants
2.9. Building Pulchellin Containing All Mutations Model
2.10. Molecular Docking
2.11. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Toxin Selection and Structural Prediction
3.2. Immunogenic Epitopes Prediction and Making Mutants
3.3. Making Mutants and Evaluation Stability and Immunogenicity
3.4. Validation Analysis and Investigating Further Properties of Mutants
3.5. Molecular Docking
3.6. Molecular Dynamic Simulation
3.7. Estimation of Binding Free Energy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IT | Immunotoxin |
MD | Molecular Dynamic |
PAC | Pulchellin A-chain |
PAM | Pulchellin containing All Mutations |
RIP | Ribosome Inactivating Protein |
References
- Zhu, F.; Zhou, Y.K.; Ji, Z.L.; Chen, X.R. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. Front. Plant Sci. 2018, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Tumer, N.E. Introduction to the toxins special issue on plant toxins. Toxins 2015, 7, 4503–4506. [Google Scholar] [CrossRef] [Green Version]
- Antignani, A.; Fitzgerald, D. Immunotoxins: The role of the toxin. Toxins 2013, 5, 1486–1502. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.L.; Goto, L.S.; Dinarte, A.R.; Hansen, D.; Moreira, R.A.; Beltramini, L.M.; Araujo, A.P. Pulchellin, a highly toxic type 2 ribosome-inactivating protein from Abrus pulchellus. Cloning heterologous expression of A-chain and structural studies. FEBS J. 2005, 272, 1201–1210. [Google Scholar] [CrossRef]
- Sadraeian, M.; Honari, H.; Madanchi, H.; Hesaraki, M. Extraction, Cloning and Expression of RTB, as a vaccine adjuvant/carrier, in E. coli and production of mouse polyclonal antibody (Anti-B chain Abs). Iran. J. Pharm. Sci. 2011, 7, 247–254. [Google Scholar]
- Sadraeian, M.; Rasoul-Amini, S.; Mansoorkhani, M.J.; Mohkam, M.; Ghoshoon, M.B.; Ghasemi, Y. Induction of antitumor immunity against cervical cancer by protein HPV-16 E7 in fusion with ricin B chain in tumor-bearing mice. Int. J. Gynecol. Cancer 2013, 23, 809–814. [Google Scholar] [CrossRef]
- Qin, S.; Zhou, H.-X. Dissection of the high rate constant for the binding of a ribotoxin to the ribosome. Proc. Natl. Acad. Sci. USA 2009, 106, 6974–6979. [Google Scholar] [CrossRef] [Green Version]
- Castilho, P.V.; Goto, L.S.; Roberts, L.M.; Araujo, A.P. Isolation and characterization of four type 2 ribosome inactivating pulchellin isoforms from Abrus pulchellus seeds. FEBS J. 2008, 275, 948–959. [Google Scholar] [CrossRef]
- Mazor, R.; Onda, M.; Pastan, I. Immunogenicity of therapeutic recombinant immunotoxins. Immunol. Rev. 2016, 270, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Sadraeian, M.; Guimaraes, F.E.G.; Araujo, A.P.U.; Worthylake, D.K.; LeCour, L.J.; Pincus, S.H. Selective cytotoxicity of a novel immunotoxin based on pulchellin A chain for cells expressing HIV envelope. Sci. Rep. 2017, 7, 7579. [Google Scholar] [CrossRef] [Green Version]
- Kreitman, R.J.; Pastan, I. Antibody fusion proteins: Anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin. Cancer Res. 2011, 17, 6398–6405. [Google Scholar] [CrossRef] [PubMed]
- Wawrzynczak, E.J.; Watson, G.J.; Cumber, A.J.; Henry, R.V.; Parnell, G.D.; Rieber, E.P.; Thorpe, P.E. Blocked and non-blocked ricin immunotoxins against the CD4 antigen exhibit higher cytotoxic potency than a ricin A chain immunotoxin potentiated with ricin B chain or with a ricin B chain immunotoxin. Cancer Immunol. Immunother. 1991, 32, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Onda, M.; Beers, R.; Xiang, L.; Nagata, S.; Wang, Q.C.; Pastan, I. An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc. Natl. Acad. Sci. USA 2008, 105, 11311–11316. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S.H.; Smallshaw, J.E.; Song, K.; Berry, J.; Vitetta, E.S. Passive and active vaccination strategies to prevent ricin poisoning. Toxins 2011, 3, 1163–1184. [Google Scholar] [CrossRef] [Green Version]
- Flavell, D.J. Countering immunotoxin immunogenicity. Br. J. Cancer 2016, 114, 1177–1179. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Tai, W.; Yang, Y.; Zhao, G.; Zhu, Q.; Sun, S.; Liu, C.; Tao, X.; Tseng, C.K.; Perlman, S.; et al. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Nat. Commun. 2016, 7, 13473. [Google Scholar] [CrossRef] [Green Version]
- Malaei, F.; Hesaraki, M.; Saadati, M.; Ahdi, A.M.; Sadraeian, M.; Honari, H.; Nazarian, S. Immunogenicity of a new recombinant IpaC from Shigella dysenteriae type I in guinea pig as a vaccine candidate. Iran. J. Immunol. 2013, 10, 110–117. [Google Scholar]
- Grinberg, Y.; Benhar, I. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Demmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins. Biomedicines 2017, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, M.; Zhang, C.; Long, S.; Wang, W.; Yin, W.; Cao, Z. Removal of B-cell epitopes for decreasing immunogenicity in recombinant immunotoxin against B-cell malignancies. J. BUON 2016, 21, 1374–1378. [Google Scholar]
- Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012, 40, W294–W297. [Google Scholar] [CrossRef]
- Wang, Y.; Virtanen, J.; Xue, Z.; Zhang, Y. I-TASSER-MR: Automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic Acids Res. 2017, 45, W429–W434. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Källberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; Lu, H.; Xu, J. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 2012, 7, 1511–1522. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository—New features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. [20] VERIFY3D: Assessment of protein models with three-dimensional profiles. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 277, pp. 396–404. [Google Scholar]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Lee, G.R.; Won, J.; Heo, L.; Seok, C. GalaxyRefine2: Simultaneous refinement of inaccurate local regions and overall protein structure. Nucleic Acids Res. 2019, 47, W451–W455. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zheng, D.; Standley, D.M.; Yao, B.; Zacharias, M.; Zhang, C. EPSVR and EPMeta: Prediction of antigenic epitopes using support vector regression and multiple server results. BMC Bioinform. 2010, 11, 381. [Google Scholar] [CrossRef] [Green Version]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef]
- Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Chen, Z.; Zhang, L.; Yan, D.; Mao, T.; Tang, K.; Qiu, T.; Cao, Z. SEPPA 3.0-enhanced spatial epitope prediction enabling glycoprotein antigens. Nucleic Acids Res. 2019, 47, W388–W394. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Glaser, F.; Pupko, T.; Paz, I.; Bell, R.E.; Bechor-Shental, D.; Martz, E.; Ben-Tal, N. ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 2003, 19, 163–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandurangan, A.P.; Ochoa-Montano, B.; Ascher, D.B.; Blundell, T.L. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017, 45, W229–W235. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Szewczak, A.A.; Moore, P.B.; Chang, Y.L.; Wool, I.G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc. Natl. Acad. Sci. USA 1993, 90, 9581–9585. [Google Scholar] [CrossRef] [Green Version]
- Hart, K.; Foloppe, N.; Baker, C.M.; Denning, E.J.; Nilsson, L.; MacKerell Jr, A.D. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 2012, 8, 348–362. [Google Scholar] [CrossRef] [Green Version]
- Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem. 2011, 32, 2359–2368. [Google Scholar] [CrossRef]
- Lemkul, J. From proteins to perturbed hamiltonians: A suite of tutorials for the gromacs-2018 molecular simulation package [article v1. 0]. Living J. Comput. Mol. Sci. 2018, 1, 5068. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef] [PubMed]
- Knodler, M.; Buyel, J.F. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol. Adv. 2021, 47, 107683. [Google Scholar] [CrossRef]
- De Groot, A.S.; Scott, D.W. Immunogenicity of protein therapeutics. Trends Immunol. 2007, 28, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Price, M.; Petrakou, E.; Sekowski, M.; Murray, A. Immunogenicity of the hydrophilic region of the MUC1 mucin protein core. Oncol. Rep. 1997, 4, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Ramya, L.; Pulicherla, K.K. Studies on deimmunization of antileukaemic L-asparaginase to have reduced clinical immunogenicity-an in silico approach. Pathol. Oncol. Res. 2015, 21, 909–920. [Google Scholar] [CrossRef]
- Cantor, J.R.; Panayiotou, V.; Agnello, G.; Georgiou, G.; Stone, E.M. Engineering reduced-immunogenicity enzymes for amino acid depletion therapy in cancer. Methods Enzym. 2012, 502, 291–319. [Google Scholar] [CrossRef]
- Sunita; Sajid, A.; Singh, Y.; Shukla, P. Computational tools for modern vaccine development. Hum. Vaccines Immunother. 2020, 16, 723–735. [Google Scholar] [CrossRef]
- Van Regenmortel, M.H. What is a B-cell epitope? Methods Mol. Biol. 2009, 524, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.T.; Shih, T.C.; Pai, T.W.; Ho, L.P.; Wu, J.L.; Chou, H.Y. Conformational epitope matching and prediction based on protein surface spiral features. BMC Genom. 2021, 22, 116. [Google Scholar] [CrossRef]
- Lon, J.R.; Bai, Y.; Zhong, B.; Cai, F.; Du, H. Prediction and evolution of B cell epitopes of surface protein in SARS-CoV-2. Virol. J. 2020, 17, 165. [Google Scholar] [CrossRef]
- Devi, Y.D.; Goswami, H.B.; Konwar, S.; Doley, C.; Dolley, A.; Devi, A.; Chongtham, C.; Dowerah, D.; Biswa, V.; Jamir, L.; et al. Immunoinformatics mapping of potential epitopes in SARS-CoV-2 structural proteins. PLoS ONE 2021, 16, e0258645. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H.; Yang, J.; Chou, K.C. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 2007, 33, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Jameson, B.A.; Wolf, H. The antigenic index: A novel algorithm for predicting antigenic determinants. Comput. Appl. Biosci. 1988, 4, 181–186. [Google Scholar] [CrossRef]
- Stirpe, F. Ribosome-inactivating proteins. Toxicon 2004, 44, 371–383. [Google Scholar] [CrossRef]
- Olson, M.A. Ricin A-chain structural determinant for binding substrate analogues: A molecular dynamics simulation analysis. Proteins 1997, 27, 80–95. [Google Scholar] [CrossRef]
- Kandasamy, T.; Sudhamalla, B.; Naskar, D. Designing of RNA aptamer against DNA binding domain of the glucocorticoid receptor: A response element-based in-silico approach. J. Biomol. Struct. Dyn. 2022, 40, 1120–1127. [Google Scholar] [CrossRef]
- Tjoa, S.E.E.; Vianney, Y.M.; Putra, S.E.D. In silico mutagenesis: Decreasing the immunogenicity of botulinum toxin type A. J. Biomol. Struct. Dyn. 2019, 37, 4767–4778. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, R.E.; Haider, M.K. Hydrogen bonds in proteins: Role and strength. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wang, C.; Greene, D.A.; Xiao, L.; Qi, R.; Luo, R. Recent developments and applications of the MMPBSA method. Front. Mol. Biosci. 2018, 4, 87. [Google Scholar] [CrossRef]
Models | Verify 3D (%) | ERRAT | ProSA-Web | Ramachandran Plot (%) |
---|---|---|---|---|
Selected GALAXY Model Before refinement | 98.01% | 95.88 | −7.61 | F = 94.7, AA = 4.8 GA = 0.0, D = 0.4 |
Selected GALAXY Model After refinement | 98.01% | 97.51 | −7.74 | F = 93.4, AA = 6.1 GA = 0.0, D = 0.4 |
Wild Type and Mutant Residues | DiscoTope Score Threshold: −3.7 | EPSVR Score | SEPPA Score Threshold: 0.089 | Ellipro Conformational Score Threshold: 0.5 | Pseudo ΔΔG of Protein | Stability |
---|---|---|---|---|---|---|
Wild type: T82 | −3.58 | 94 | 0.190 | 0.734 | - | |
T82A | −4.96 | 76 | 0.169 | 0.733 | 0.12 | |
Wild type: T100 | −3.37 | 90 | 0.223 | 0.734 | - | |
T100A | −4.4 | 86.00 | 0.337 | 0.732 | 0.35 | |
Wild type: D101 | −2.41 | 90 | 0.247 | 0.734 | - | |
D101V | −4.33 | 82.00 | 0.260 | 0.735 | −0.26 | |
Wild type: Q121 | −1.65 | 87 | 0.088 | 0.572 | - | |
Q121A | −3.96 | 67.00 | 0.046 | 0.567 | 0.24 | |
Wild type: N146 | −2.53 | 96 | 0.234 | 0.713 | - | |
N146V | −5.22 | 75.00 | 0.200 | 0.723 | 0.02 | |
Wild type: D147 | −3.65 | 98 | 0.075 | 0.758 | - | |
D147A | −5.85 | 96.00 | 0.063 | 0.722 | 0.15 | |
Wild type: R149 | −3.65 | 94 | 0.073 | 0.758 | - | |
R149A | −6.15 | 88.00 | 0.051 | 0.654 | 0.33 |
Mutant | Side Chain Accessibility % (SDM) | Side Chain Accessibility (Discovery Studio) | Hydrophobicity (Kyte and Doolittle) | |||
---|---|---|---|---|---|---|
Original Residue | Mutant | Original Residue | Mutant | Original Residue | Mutant | |
T82A | 103.3 | 92.7 | 94.15 | 49.31 | −0.7 | 1.8 |
T100A | 74.1 | 66.7 | 64.80 | 38.74 | −0.7 | 1.8 |
D101V | 92.4 | 92.4 | 81.99 | 85.54 | −3.5 | 4.2 |
Q121A | 81.4 | 80.5 | 115.71 | 47.29 | −3.5 | 1.8 |
N146V | 104 | 96.3 | 104.95 | 96.61 | −3.5 | 4.2 |
D147A | 42.9 | 46 | 37.68 | 20.63 | −3.5 | 1.8 |
R149A | 57.4 | 45.5 | 116.47 | 29.68 | −4.5 | 1.8 |
Number of Bonds or Interactions | PAC Wild Type | PAC Mutants | PAM | Abrin-A | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T82A | T100A | D101V | Q121A | N146V | D147A | R149A | ||||
Number of H-bonds | 7 | 21 | 11 | 15 | 10 | 14 | 15 | 16 | 15 | 6 |
Number of π-π interactions | 0 | 3 | 2 | 6 | 0 | 2 | 4 | 6 | 1 | 2 |
Number of π–Sigma interactions | 5 | 1 | 1 | 2 | 1 | 8 | 0 | 3 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleki, R.; Fu, L.; Diaz, R.S.; Guimarães, F.E.G.; Cabral-Marques, O.; Cabral-Miranda, G.; Sadraeian, M. Reducing the Immunogenicity of Pulchellin A-Chain, Ribosome-Inactivating Protein Type 2, by Computational Protein Engineering for Potential New Immunotoxins. J 2023, 6, 85-101. https://doi.org/10.3390/j6010006
Maleki R, Fu L, Diaz RS, Guimarães FEG, Cabral-Marques O, Cabral-Miranda G, Sadraeian M. Reducing the Immunogenicity of Pulchellin A-Chain, Ribosome-Inactivating Protein Type 2, by Computational Protein Engineering for Potential New Immunotoxins. J. 2023; 6(1):85-101. https://doi.org/10.3390/j6010006
Chicago/Turabian StyleMaleki, Reza, Libing Fu, Ricardo Sobhie Diaz, Francisco Eduardo Gontijo Guimarães, Otávio Cabral-Marques, Gustavo Cabral-Miranda, and Mohammad Sadraeian. 2023. "Reducing the Immunogenicity of Pulchellin A-Chain, Ribosome-Inactivating Protein Type 2, by Computational Protein Engineering for Potential New Immunotoxins" J 6, no. 1: 85-101. https://doi.org/10.3390/j6010006