Computational Electromagnetics: A Miscellany
Abstract
:1. Introduction
2. The Magnetostatic “Source Field” and the Biot–Savart Law
3. Good or Poor Conductors for Low Loss? (Part 1)
4. Topics in Homogenization
4.1. Introduction
4.2. Boundary Conditions in Effective Medium Theory
4.3. One Layer Is “Bulk”
4.4. Effective Medium Transformation
4.5. Homogenization and Symmetry Breaking
5. “Spurious Modes”
6. TE and TM Modes
7. Electric Polarization
8. Boundary Conditions for Induced Currents
9. Good or Poor Conductors for Low Loss? (Part 2)
10. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FEM | The finite element method |
FD | Finite difference |
BEM | The boundary element method |
FDTD | Finite difference time domain |
References
- Tsukerman, I. Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Bossavit, A. Magnetostatic problems in multiply connected regions: Some properties of the curl operator. IEEE Proc. A Sci. Meas. Technol. 1988, 135, 179–187. [Google Scholar] [CrossRef]
- Kettunen, L.; Forsman, K.; Bossavit, A. Formulation of the eddy current problem in multiply connected regions in terms of h. Int. J. Numer. Methods Eng. 1998, 41, 935–954. [Google Scholar] [CrossRef]
- Kotiuga, P.R. Hodge Decompositions and Computational Electromagnetics. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1985. [Google Scholar]
- Kotiuga, P.R. On making cuts for magnetic scalar potentials in multiply connected regions. J. Appl. Phys. 1987, 61, 3916–3918. [Google Scholar] [CrossRef]
- Carpenter, C. Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies. Proc. Inst. Electr. Eng.–Lond. 1977, 124, 1026–1034. [Google Scholar] [CrossRef]
- Chechurin, V.L. The scalar potential method for computation of electromagnetic fields. Izv. Akad. Nauk. Sssr, Energ. Transp. (Power Eng.) 1979, 17, 95–100. [Google Scholar]
- Kizimovich, Y.P.; Tsukerman, I. Mathematical modelling of a quasi-steady electromagnetic field. Power Eng. (Ussr Acad. Sci.) 1987, 25, 55–66. [Google Scholar]
- Tsukerman, I. Error estimation for finite-element solutions of the eddy currents problem. COMPEL 1990, 9, 83–98. [Google Scholar] [CrossRef]
- Bossavit, A. Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Wilton, D.; Rao, S.; Glisson, A.; Schaubert, D.; Al-Bundak, O.; Butler, C. Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans. Antennas Propag. 1984, 32, 276–281. [Google Scholar] [CrossRef]
- Pissanetzky, S.; Xiang, Y. Analytical expressions for the magnetic field of practical coils. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 1990, 9, 117–121. [Google Scholar] [CrossRef]
- Gyimesi, M.; Lavers, D.; Pawlak, T.; Ostergaard, D. Biot-Savart integration for bars and arcs. IEEE Trans. Magn. 1993, 29, 2389–2391. [Google Scholar] [CrossRef]
- Belousova, V.V.; Bomshtein, I.S.; Chashin, B.B. On finding the sources of rotational fields in the scalar potential method. Izv. Akad. Nauk. Sssr Energ. Transp. (Power Eng.) 1978, 16, 132–134. [Google Scholar]
- Albanese, R.; Rubinacci, G. Magnetostatic field computations in terms of two-component vector potentials. Int. J. Numer. Methods Eng. 1990, 29, 515–532. [Google Scholar] [CrossRef]
- Dubois, F. Discrete vector potential representation of a divergence-free vector field in three-dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal. 1990, 27, 1103–1141. [Google Scholar] [CrossRef]
- Brittin, W.E.; Smythe, W.R.; Wyss, W. Poincare gauge in electrodynamics. Am. J. Phys. 1982, 50, 693–696. [Google Scholar] [CrossRef]
- Cornish, F.H.J. The Poincare and related gauges in electromagnetic theory. Am. J. Phys. 1984, 52, 460–462. [Google Scholar] [CrossRef]
- Khurgin, J.B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 2015, 10, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Mossotti, O.F. Discussione analitica sull’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’elettricità alla superficie di più corpi elettrici disseminati in esso. Mem. Math. Fis. Della Soc. Ital. Della Sci. Resid. Modena 1850, 24, 49–74. [Google Scholar]
- Lorenz, L. Experimentale og theoretiske Undersogelser over Legemernes Brydningsforhold. Vidensk Slsk. Sckrifter 1870, 8, 205. [Google Scholar]
- Clausius, R. Die Mechanische Behandlung der Electricität; Springer: Berlin/Heidelberg, Germany, 1879. [Google Scholar]
- Lorenz, L. Ueber die Refractionsconstante. Ann. Der Phys. Und Chem. 1880, 247, 70–103. [Google Scholar] [CrossRef] [Green Version]
- Lorentz, H.A. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Der Phys. 1881, 248, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Garnett, J.C.M. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1904, 203, 385–420. [Google Scholar] [CrossRef] [Green Version]
- Khizhnyak, N.A. Artificial anisotropic dielectrics: I. Artificial anisotropic dielectrics: II. Artificial anisotropic dielectrics: III. Sov. Phys. Tech. Phys. 1957, 27, 2006–2037. [Google Scholar]
- Khizhnyak, N.A. Artificial anisotropic dielectrics formed from two-dimensional lattices of infinite bars and rods. Sov. Phys. Tech. Phys. 1959, 29, 604–614. [Google Scholar]
- Lewin, L. The electrical constants of a material loaded with spherical particles. Proc. Inst. Elec. Eng. 1947, 94, 65–68. [Google Scholar]
- Markel, V.A. Introduction to the Maxwell Garnett approximation: Tutorial. J. Opt. Soc. Am. A 2016, 33, 1244–1256. [Google Scholar] [CrossRef] [Green Version]
- Markel, V.A. Maxwell Garnett approximation (advanced topics): Tutorial. J. Opt. Soc. Am. A 2016, 33, 2237–2255. [Google Scholar] [CrossRef] [Green Version]
- Tsukerman, I.; Markel, V.A. A nonasymptotic homogenization theory for periodic electromagnetic structures. Proc. R. Soc. A 2014, 470, 2014.0245. [Google Scholar] [CrossRef] [Green Version]
- Tsukerman, I. Classical and non-classical effective medium theories: New perspectives. Phys. Lett. A 2017, 381, 1635–1640. [Google Scholar] [CrossRef] [Green Version]
- Meade, R.; Brommer, K.; Rappe, A.; Joannopoulos, J. Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B 1991, 44, 10961–10964. [Google Scholar] [CrossRef]
- Felbacq, D. Anomalous homogeneous behaviour of metallic photonic crystals. J. Phys. Math. Gen. 2000, 33, 815–821. [Google Scholar] [CrossRef]
- Markel, V.A.; Schotland, J.C. Homogenization of Maxwell’s equations in periodic composites: Boundary effects and dispersion relations. Phys. Rev. E 2012, 85, 066603. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.Y.; Jiang, L.J.; Markel, V.A.; Tsukerman, I. Surface waves in three-dimensional electromagnetic composites and their effect on homogenization. Opt. Express 2013, 21, 10412–10421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, X.; Meng, L.L.; Jiang, L.J.; Sha, W.; Yang, F. Efficient calculation of large finite periodic structures based on surface wave analysis. IEEE Trans. Antennas Propag. 2015, 63, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Khanikaev, A.B.; Mousavi, S.H.; Tse, W.K.; Kargarian, M.; MacDonald, A.H.; Shvets, G. Photonic topological insulators. Nat. Mater. 2013, 12, 233–239. [Google Scholar] [CrossRef]
- Lu, L.; Joannopoulos, J.D.; Soljacic, M. Topological photonics. Nat. Photonics 2014, 8, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Khanikaev, A.B.; Mousavi, S.H.; Shvets, G. Guiding electromagnetic waves around sharp corners: Topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 2015, 114, 127401. [Google Scholar] [CrossRef]
- Kim, M.; Jacob, Z.; Rho, J. Recent advances in 2D, 3D and higher-order topological photonics. Light–Sci. Appl. 2020, 9, 1–30. [Google Scholar] [CrossRef]
- Khanikaev, A.B.; Shvets, G. Two-dimensional topological photonics. Nat. Photonics 2017, 11, 763–773. [Google Scholar] [CrossRef]
- Segev, M.; Bandres, M.A. Topological photonics: Where do we go from here? Nanophotonics 2021, 10, 425–434. [Google Scholar] [CrossRef]
- Lustig, E.; Segev, M. Topological photonics in synthetic dimensions. Adv. Opt. Photonics 2021, 13, 426–461. [Google Scholar] [CrossRef]
- Nemirovsky, L.; Cohen, M.I.; Lumer, Y.; Lustig, E.; Segev, M. Synthetic-space photonic topological insulators utilizing dynamically invariant structure. Phys. Rev. Lett. 2021, 127, 093901. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.N.M.S.; Tsukerman, I.; Markel, V.A. Homogenization of periodic structures: One layer is “bulk”. 2021; submitted. [Google Scholar]
- Schöbinger, M.; Tsukerman, I.; Hollaus, K. Effective medium transformation: The case of eddy currents in laminated iron cores. IEEE Trans. Magn. 2021, 57, 11. [Google Scholar] [CrossRef]
- Herzig Sheinfux, H.; Kaminer, I.; Plotnik, Y.; Bartal, G.; Segev, M. Subwavelength multilayer dielectrics: Ultrasensitive transmission and breakdown of effective-medium theory. Phys. Rev. Lett. 2014, 113, 243901. [Google Scholar] [CrossRef] [PubMed]
- Tsukerman, I.; Hossain, A.N.M.S.; Chong, Y.D. Homogenization of layered media: Intrinsic and extrinsic symmetry breaking. EPL (Europhys. Lett.) 2021, 133, 17003. [Google Scholar] [CrossRef]
- Lei, X.; Mao, L.; Lu, Y.; Wang, P. Revisiting the effective medium approximation in all-dielectric subwavelength multilayers: Breakdown and rebuilding. Phys. Rev. B 2017, 96, 035439. [Google Scholar] [CrossRef]
- Monk, P. Finite Element Methods for Maxwell’s Equations; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Davies, J.B.; Fernandez, F.A.; Philippou, G.Y. Finite-element analysis of all modes in cavities with circular symmetry. IEEE Trans. MTT 1982, 30, 1975–1980. [Google Scholar] [CrossRef]
- Mur, G. The fallacy of edge elements. IEEE Trans. Magn. 1998, 34, 3244–3247. [Google Scholar] [CrossRef]
- Caorsi, S.; Fernandes, P.; Raffetto, M. On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 2000, 38, 580–607. [Google Scholar] [CrossRef]
- Bossavit, A. Solving Maxwell equations in a closed cavity, and the question of “spurious modes”. IEEE Trans. Magn. 1990, 26, 702–705. [Google Scholar] [CrossRef]
- Tsukerman, I. Spurious numerical solutions in electromagnetic resonance problems. IEEE Trans. Magn. 2003, 39, 1405–1408. [Google Scholar] [CrossRef]
- Boffi, D.; Fernandes, P.; Gastaldi, L.; Perugia, I. Computational models of electromagnetic resonators: Analysis of edge element approximation. SIAM J. Numer. Anal. 1999, 36, 1264–1290. [Google Scholar] [CrossRef]
- Boffi, D. A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 2001, 14, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Monk, P.; Demkowicz, L. Discrete compactness and the approximation of Maxwell’s equations in R3. Math. Comp. 2001, 70, 507–523. [Google Scholar] [CrossRef]
- Markel, V.A.; Tsukerman, I. Applicability of effective medium description to photonic crystals in higher bands: Theory and numerical analysis. Phys. Rev. B 2016, 93, 224202. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, T.; Koshiba, M. Time-domain beam propagation method for nonlinear optical propagation analysis and its application to photonic crystal circuits. J. Light. Technol. 2004, 22, 684–691. [Google Scholar] [CrossRef]
- Shadrivov, I.V.; Sukhorukov, A.A.; Kivshar, Y.S. Complete band gaps in one-dimensional left-handed periodic structures. Phys. Rev. Lett. 2005, 95, 193903. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, A.; Thomas, J.R.; Jaruwatanadilok, S. Electromagnetic waves over half-space metamaterials of arbitrary permittivity and permeability. IEEE Trans. Antennas Propag. 2005, 53, 915–921. [Google Scholar] [CrossRef]
- Popov, V.; Lavrinenko, A.V.; Novitsky, A. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation. Phys. Rev. B 2016, 94, 085428. [Google Scholar] [CrossRef] [Green Version]
- Shvets, G.; Urzhumov, Y.A. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys. Rev. Lett. 2004, 93, 243902. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Watanabe, Y.; Katayama, Y.; Yan, X.Y.; Cole, J.B. Simulation of light propagation in two-dimensional photonic crystals with a point defect by a high-accuracy finite-difference time-domain method. J. Appl. Phys. 2002, 92, 1181–1184. [Google Scholar] [CrossRef]
- Meisels, R.; Gajic, R.; Kuchar, F.; Hingerl, K. Negative refraction and flat-lens focusing in a 2D square-lattice photonic crystal at microwave and millimeter wave frequencies. Opt. Express 2006, 14, 6766–6777. [Google Scholar] [CrossRef]
- Johnson, S.G.; Joannopoulos, J.D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 2001, 8, 173–190. [Google Scholar] [CrossRef] [Green Version]
- Spaldin, N.A. A beginner guide to the modern theory of polarization. J. Sol. St. Chem. 2012, 195, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Addiego, C.; Wang, H.; Yan, X.; Hou, Y.; Ji, D.; Heikes, C.; Zhang, Y.; Li, L.; Huyan, H.; et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 2019, 575, 480–484. [Google Scholar] [CrossRef]
- Resta, R.; Vanderbilt, D. Theory of polarization: A modern approach. In Physics of Ferroelectrics: A Modern Perspective; Rabe, K.M., Ahn, C.H., Triscone, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 105, pp. 31–68. [Google Scholar]
- Yu, L.; Lu, S.K.; Jiang, Y.L.; Xiao, B.; Tang, X.; Ru, H.Q. First-principles calculation of structural and electronic properties of Ti-doped B13C2. Procedia Eng. 2011, 12, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Fujima, T.; Shimizu, N.; Arimatsu, H. p-n control of AlMgB14-Based thermoelectric materials by metal site occupancy. Materials 2019, 12, 632. [Google Scholar] [CrossRef] [Green Version]
- King-Smith, R.D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651–1654. [Google Scholar] [CrossRef]
- Resta, R. Electrical polarization and orbital magnetization: The modern theories. J. -Phys.-Condens. Matter 2010, 22, 123201. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Tsukerman, I. Polarization of arbitrary charge distributions: The classical electrodynamics perspective. Rev. Phys. 2021, 7, 100061. [Google Scholar] [CrossRef]
- Ndukaife, J.C.; Shalaev, V.M.; Boltasseva, A. Plasmonics—Turning loss into gain. Science 2016, 351, 334–335. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Cooper, T.A.; Zeng, L.; Ni, G.; Tong, J.K.; Tsurimaki, Y.; Huang, Y.; Meroueh, L.; Mahan, G.; Chen, G. Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photon. 2017, 9, 775–827. [Google Scholar] [CrossRef]
- Hiremath, K.R.; Zschiedrich, L.; Schmidt, F. Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using Nedelec finite elements. J. Comput. Phys. 2012, 231, 5890–5896. [Google Scholar] [CrossRef] [Green Version]
- Hille, A.; Moeferdt, M.; Wolff, C.; Matyssek, C.; Rodríguez-Oliveros, R.; Prohm, C.; Niegemann, J.; Grafström, S.; Eng, L.M.; Busch, K. Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic Drude model. J. Phys. Chem. C 2016, 120, 1163–1169. [Google Scholar] [CrossRef]
- Miano, G.; Rubinacci, G.; Tamburrino, A. Numerical modeling for the analysis of plasmon oscillations in metallic nanoparticles. IEEE Trans. Antennas Propag. 2010, 58, 2920–2933. [Google Scholar] [CrossRef]
- Miano, G.; Rubinacci, G.; Tamburrino, A. Numerical modeling for plasmonics. Int. J. Appl. Electromagn. Mech. 2011, 35, 79–91. [Google Scholar] [CrossRef]
- Schöbinger, M.; Hollaus, K.; Tsukerman, I. Homogenization of laminated magnetic cores and the role of surface charges. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, 11–15 September 2017; pp. 971–972. [Google Scholar]
One-Component E, Two-Component H | One-Component H, Two-Component E |
---|---|
[48,61,62,63,64] | [65,66,67] and p. 179 in [68] |
One-Component E, Two-Component H | One-Component H, Two-Component E |
---|---|
“Transmission of s- (TE-) polarized light through the metal-dielectric structure…” [64] “TE-polarized … waves … have the component of the electric field parallel to the layers ()” [62] [The primary variables are] “electric field for TE modes and magnetic field for TM modes, respectively.” [61] | “…consider a TE-polarized electromagnetic wave, with nonvanishing , , and components” [65] “the magnetic field along z (TE fields) or the electric field along z (TM fields) p. 179 in [68] “… The TM mode in which the electric field is parallel to the axis of the holes, and the TE mode in which it is perpendicular.” [66] “The polarization of the incident wave is TM in the first band and TE in the second band (E parallel and perpendicular to the rods, respectively)” [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukerman, I. Computational Electromagnetics: A Miscellany. J 2021, 4, 881-896. https://doi.org/10.3390/j4040060
Tsukerman I. Computational Electromagnetics: A Miscellany. J. 2021; 4(4):881-896. https://doi.org/10.3390/j4040060
Chicago/Turabian StyleTsukerman, Igor. 2021. "Computational Electromagnetics: A Miscellany" J 4, no. 4: 881-896. https://doi.org/10.3390/j4040060
APA StyleTsukerman, I. (2021). Computational Electromagnetics: A Miscellany. J, 4(4), 881-896. https://doi.org/10.3390/j4040060