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Abstract: The paper presents a miscellany of unorthodox and, in some cases, paradoxical or contro-
versial items related to computational and applied electromagnetics. The topics include a definition
of the magnetic source field via a line integral, losses in electric power transmission vs. losses
in photonics, homogenization of periodic electromagnetic structures, spurious modes, models of
plasmonic media, and more. It is hoped that this assortment of subjects will be of interest to a broad
audience of scientists and engineers.
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1. Introduction

Computational electromagnetics has been a very active research area for six decades.
The computational capabilities over this time have grown by leaps and bounds due to the
development of various discretization techniques, system solvers, as well as advances in
software and Moore’s-law-driven hardware.

In some cases, this research has led to unexpected or counterintuitive conclusions
and occasionally to misconceptions. The paper presents an assortment of issues of this
kind in the hope that they will be of interest to a wide audience of readers in the field
of computational electromagnetics and related areas of physics, engineering and applied
mathematics. A condensed summary of some of these issues appears in [1] (Chapter 10);
here this material is extended and expanded significantly. While the selection of topics
for this paper is subjective, all of them are directly related to current research in compu-
tational and applied electromagnetics. Among these topics are efficient computation of
magnetic “source fields” as line integrals rather than volume integrals, effective parameters
of metamaterials, a rigorous definition of electric polarization, physically valid boundary
conditions for plasmonic media, spurious modes, and more.

2. The Magnetostatic “Source Field” and the Biot–Savart Law

The governing curl equation for the magnetic field is

∇×H = αJ, α =

{
1, SI
4π
c , Gaussian

(1)

In magnetostatics, J is the density of known excitation currents; beyond statics, J may
include eddy currents and displacement currents. For the purposes of this section, a
distinction between these types of currents does not need to be made, and J is considered
as the total current density regardless of its nature.

As is the case for any linear equation with a nonzero right hand side, one can split
the H field up into a particular one and a homogeneous one, H = Hs + Hh. Any particular
solution Hs is known as a source field, which, by definition, satisfies Equation (1) but does
not need to be subject to any other constraints (such as divergence or boundary conditions).
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The homogeneous part Hh is, also by definition, curl-free. Therefore, if the computational
domain is simply connected, then

Hh = −∇u (2)

where u is the magnetic scalar potential. Hence,

H = Hs + Hh = Hs −∇u (3)

(For complications arising in multiply-connected domains, see [2–5].)
For a given constitutive relationship B = B(H) (linear or nonlinear), the zero-

divergence condition for the B field, along with (3), yields

∇ · B(Hs −∇u) = 0 (4)

In particular, if B = µH (where for brevity dependence on position is not explicitly
indicated), then the following equation for the magnetic scalar potential ensues:

∇ · µ∇u = ∇ · µHs (5)

The magnetic scalar potential formulation and Equations (4) and (5) are known very
well [2,4–10]. The subject of this section is not these equations per se but rather an efficient
way of computing the source field Hs. The standard expression for it is the Biot–Savart law:

HBiot(r) =
α

4π

∫
R3

J(r′)× (r− r′)
|r− r′|3 dr′ (6)

In magnetostatics, integration reduces to the region occupied by the excitation currents.
It is well known that HBiot is the magnetic field produced by currents in free space.

However, in the presence of magnetic materials the Biot–Savart field (6) no longer corre-
sponds to the actual field and is arguably no better than any other source field. At the same
time, expression (6) is computationally expensive because it involves, in general, volume
integration. In the case of line or surface currents the domain of integration reduces to one
or two dimensions, respectively, and the cost of integration is lower. Additionally, clever
ways to reduce the dimensionality of integration exist in special cases of uniform current
distributions [11–13].

What is known less widely is that the source field can always be expressed as a line integral
easily computable in many practical cases [7–9,14]. As a bonus, this field has a zero component
in at least one coordinate direction, which entails additional computational advantages.

To wit, for a given current density distribution J(r), we set out to define a two-
component source field

Hs = Hsx x̂ + Hsyŷ; ∇×Hs = J (7)

Component-wise, this curl condition reads

∂x Hsy − ∂yHsx = Jz (8)

− ∂z Hsy = Jx (9)

∂z Hsx = Jy (10)

Let the current density distribution J(r) occupy a finite region, as is always the case in
practical problems. Without any loss of generality, let us assume that this region is located
in the upper half-space z > 0. Then, from (9) and (10), respectively, we derive

Hsy(x, y, z) = −
∫ (x,y,z)

(x,y,0)
Jx dz (11)
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Hsx(x, y, z) =
∫ (x,y,z)

(x,y,0)
Jy dz (12)

or, in more compact form,

Hs(x, y, z) =
∫

L
J× dz (13)

where L is a straight path from point (x, y, 0) to (x, y, z) for arbitrary x, y, z. A 2D rendition
of this integration is shown in Figure 1.

Figure 1. A schematic illustration of the line integral (13) (2D rendition).

It is straightforward to verify that (8) also holds with this definition of Hs:

∂x Hsy − ∂y Hsx = −
∫ (x,y,z)

(x,y,0)
∂x Jx dz−

∫ (x,y,z)

(x,y,0)
∂y Jy dz

∇·J=0
=

∫ (x,y,z)

(x,y,0)
∂z Jz dz = Jz(x, y, z)− Jz(x, y, 0) = Jz(x, y, z) (14)

With regard to the last transformation, note that Jz(x, y, 0) = 0 by assumption.
Naturally, (13) generalizes to

Hs =
∫

L
J× dl (15)

where dl is any fixed direction in space, as long as the starting plane of that integration
(l = 0) is current-free.

For a general orthogonal coordinate system (q1, q2, q3), one may also seek Hs in the
two-component form [14]

Hs = Hs1q̂1 + Hs2q̂2 (Hs3 = 0) (16)

Then we have component-wise conditions generalizing (8)–(10):

∂q1(h2Hs2)− ∂q2(h1Hs1) = h1h2 J3 (17)

− ∂q3(h2Hs2) = h2h3 J1 (18)

∂q3(h1Hs1) = h3h1 J2 (19)

where h1,2,3 are the Lamé coefficients. Therefore, from the last two equations,

h2Hs2(q1, q2, q3) = −
∫ (q1,q2,q3)

(q1,q2,0)
h2h3 J1 dq3 (20)

h1Hs1(q1, q2, q3) =
∫ (q1,q2,q3)

(q1,q2,0)
h3h1 J2 dq3 (21)
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Verifying (17):

∂q1(h2Hs2)− ∂q2(h1Hs1) = −
∫ (q1,q2,q3)

(q1,q2,0)
∂q1(h2h3 J1) dq3 −

∫ (q1,q2,q3)

(q1,q2,0)
∂q2(h3h1 J2) dq3

∇·J=0
=

∫ (q1,q2,q3)

(q1,q2,0)
∂q3(h1h2 J3) dq3 = h1h2 J3 (22)

where the zero-divergence condition for J was used, viz.:

h1h2h3∇ · J(q1, q2, q3) = ∂q1(h2h3 J1) + ∂q2(h3h1 J2) + ∂q3(h1h2 J3) = 0 (23)

As a common example, in the cylindrical system q1 = z, q2 = r, q3 = φ, the Lamé
coefficients are h1 = h2 = 1, h3 = r, and Equations (20) and (21) become

Hsr(z, r, φ) = −
∫ (z,r,φ)

(z,r,0)
rJz dφ (24)

Hsz(z, r, φ) =
∫ (z,r,φ)

(z,r,0)
rJr dφ (25)

or more compactly

Hs(z, r, φ) =
∫ (z,r,φ)

(z,r,0)
r J× φ̂ dφ (26)

where φ̂ is the unit vector in the angular direction. Expressions in the cylindrical system
are quite useful in applications to rotating electrical machines [7–9,14].

It is interesting to note a discrete analog of analytical two-component fields. In FEM
with edge elements, magnetic fields are defined via their circulations along the edges of
triangular (in 2D), tetrahedral (in 3D) or other elements. There exists the so-called “tree
/co-tree” gauge ([15] and §4.1 of [16]), defined as follows.

Let an FE mesh be considered as a graph, with element nodes as vertices. Pick an
arbitrary node and generate a tree in the graph, with this node as the root. The edges not
in the tree form a co-tree. The discrete curl on each finite element can be defined via the
total circulation of the field around that element in the 2D case or around each face of any
element in 3D. To obtain any prescribed set of values of the discrete curl over all faces, it
suffices to define the source field only on the edges of the co-tree and set the circulations of
the magnetic field to zero on the edges of the tree [15,16].

One final note is that Equation (15), when written in the spherical system with dl ≡ dr,
is a particular case of the Poincaré gauge [17,18].

3. Good or Poor Conductors for Low Loss? (Part 1)

Let us first recall that in a lossy material with a scalar dielectric permittivity ε′ and
conductivity σ, the Maxwell curl H equation is, in the SI system,

∇×H = J + ∂tD = σE + ∂t(ε
′E) (27)

In the frequency domain, under the exp(−iωt) phasor convention, the right-hand
side gets expressed in terms of the complex permittivity ε = ε(ω) = ε′(ω) + iε′′(ω):

∇×H = −iωεE, ε = ε′ + iε′′, ε′′
def
=

σ

ω
(28)

(frequency dependence of ε is not explicitly indicated for brevity).
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It is common knowledge that electric power transmission and consumption relies on
good conductors (such as copper or aluminum)—that is, materials with a high conductivity,
σ� ωε′, or equivalently

|ε′′| � ε′ (power applications) (29)

The absolute value for |ε′′| is used because the sign of Im ε depends on the exp(±iωt)
phasor convention. The ratio |ε′′|/ε′ is the standard loss tangent.

Highly conductive materials in electric power applications minimize losses. This
observation appears obvious and unremarkable, until a comparison is drawn with applica-
tions in optics and photonics, where the use of good conductors (e.g., gold or silver) leads
to higher losses. The desirable relation therefore is

|ε′′| � ε′ (optics and photonics) (30)

In the area of plasmonics in particular, it is usually desirable to reduce losses and use
materials with a small imaginary part of the dielectric permittivity [19].

Thus the low-loss conditions in optical vs. traditional electrical applications are
diametrically opposite, and a natural question is: Why?

The first inclination may be to appeal to frequency differences, but conditions (29) and (30)
are frequency independent. I invite the reader to find a more credible explanation. For my
own take on this, see Section 9.

4. Topics in Homogenization
4.1. Introduction

Analysis of heterostructures with fine-scale features is greatly simplified if these
structures can be accurately represented by a homogeneous effective medium. This means
that scattered fields or reaction fields of the homogenized sample are approximately the
same as those of the original heterostructure. Effective medium theories (EMT) were first
developed in the 19th and early 20th century [20–25] and were advanced significantly in the
middle of the 20th century [26–28]; for contemporary reviews, see §9.3 in [1] and [29,30].

With the advent of photonic crystals and metamaterials in the 1990s and in the early
2000s, homogenization theories needed to be enhanced further. The main reason is that, in
contrast with natural materials, in metamaterials the lattice cell size can form an appreciable
fraction of the free-space wavelength, in which case the homogenization theories developed
earlier are not accurate anymore. This is a non-asymptotic case: the lattice cell size is not
assumed to tend to zero.

In the spirit of this paper, I focus on some unorthodox aspects of these theories; for a
detailed analysis or review of EMT, the interested reader is referred to the references cited.

One issue, which (somewhat surprisingly) turns out to be critical, is the role of
boundary conditions for finite samples in addition to field behavior in the bulk. Another
counter-intuitive aspect is that in periodic structures there is no transition to bulk behavior
when the geometric dimensions of the sample increase and reach a certain threshold—even
one lattice layer already exhibits characteristics indistinguishable from those in the bulk.

In eddy current problems typical for electrical machinery, there is a curious case of
“effective medium transformation”: the eddy current problem in laminated magnetic cores
turns, upon homogenization, into a magneto-quasistatic one; eddy currents just cannot be
rendered on the coarse scale.

The last issue addressed in this Section is homogenization of periodic structures
lacking mirror symmetry. At first glance, such structures cannot be accurately homogenized
because the homogeneous sample is, perforce, geometrically symmetric. However, it turns
out that the asymmetry can be adequately represented if the effective material parameters
include magnetoelectric coupling.
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4.2. Boundary Conditions in Effective Medium Theory

It is usually assumed that effective parameters of periodic electromagnetic structures
can be derived from the dispersion relations alone–that is, from the behavior of Bloch
waves in the bulk. The following argument demonstrates, however, that this assumption
cannot be correct. Indeed, the Maxwell equation

∇×H =

[
1
c

]
∂tD (31)

(where the factor in the brackets applies in the Gaussian system but not in SI) is obviously
invariant with respect to the rescaling

H′ = ξH; D′ = ξD (32)

where ξ is an arbitrary factor. Suppose now that the E and B fields are fixed (these
fields are arguably more physical than H and D, since they are directly related to forces
acting on charges). Then transformation (32) results in the following rescaling of the
material parameters:

µ′ = µ/ξ; ε′ = ξε (33)

and Maxwell’s equations hold. Hence the bulk behavior alone does not determine the
material parameters uniquely. What fixes these parameters are the boundary conditions,
which couple the tangential components of the H field in the material and air. For further
details, see §9.3 in [1,31,32]. This conclusion is not yet recognized as widely as it should be,
as boundary effects are difficult to analyze and, moreover, do not play a significant role
in the classical limit of a vanishingly small lattice cell size. Hence, it is tempting to sweep
these effects under the rug. The relevant analyses do exist [33–37], but more work needs
to be done. In particular, boundary effects play a critical role in the still emerging area of
topological photonics [38–45].

4.3. One Layer Is “Bulk”

Suppose that one starts with just a single layer of lattice cells, periodic and infinite in
two directions. Let the number of layers, and thus the thickness of the sample, be gradually
increased. Intuitively, one would expect that when the thickness has reached a certain
threshold, the effective material properties of the structure will exhibit transition to their
bulk values. However, it turns out that for periodic structures such a transition does not
take place; in some sense, one layer is already “bulk” [46]. This can be explained as follows.

Fields can be described as a superposition of Bloch waves in periodic heterostructures
and of plane waves in homogeneous ones. Therefore, if Bloch waves and plane waves
can be put into a one-to-one correspondence, then the fields outside the periodic and
homogenized structures will be indistinguishable. The number of layers is thus irrelevant
because Bloch waves do not depend on it. This one-to-one correspondence is established if
the wave vectors and boundary impedances of the Bloch and plane waves are the same,
which is possible to achieve exactly for a fixed angle of incidence and approximately for a
range of angles. A detailed analysis can be found in [46].

4.4. Effective Medium Transformation

In standard effective medium theories, the type of the problem under consideration
does not change upon homogenization. For example, a stationary heat transfer problem in
a heterogeneous structure is, upon homogenization, still a heat transfer problem, with some
effective parameters. Likewise, a wave problem remains a wave problem in an effective
medium, and so on.

However, there is a peculiar case where homogenization changes qualitatively the
character of the problem, both mathematical and physical. This has to do with eddy currents
in stratified structures, typical for various types of electrical machines. To reduce induced



J 2021, 4 887

currents and losses, magnetic cores are usually laminated: thin conducting magnetic sheets
are coated with a thin layer of insulation, so that eddy currents are confined to the laminated
sheets and cannot run across the whole magnetic core. As shown in [47], this eddy current
problem becomes, under typical assumptions, mathematically a magneto-quasistatic one
with a complex magnetic permeability. Here is a brief explanation of why this happens.

Consider cylindrical geometry typical for electric machines. The stratified structure is
assumed to be infinite in the longitudinal (z) direction. Under this assumption, homoge-
nization leads to fields and currents that cannot depend on z and do not have z-components.
Then from the ∇×H = J equation in the cylindrical system (displacement currents are
neglected in the eddy current problem), one has

Jz = 0; Jr = r−1∂φHz − ∂zHφ = 0− 0 = 0; Jφ = ∂zHr − ∂r Hz = 0− 0 = 0 (34)

This shows that in this setup eddy currents cannot be represented on the coarse scale,
and the character of the problem has indeed changed qualitatively: eddy current equations
have turned into magneto-quasistatic ones [47].

4.5. Homogenization and Symmetry Breaking

Consider a periodic structure lacking mirror symmetry; a prototypical example is a
layered medium composed of two alternating layers with different widths and/or different
material properties. One manifestation of this asymmetry is that the phase of the reflection
coefficient depends on which side the sample is illuminated from [48,49]. Since such a
structure is to be replaced with a uniform medium upon homogenization, it appears that
there is no way to preserve this intrinsic symmetry breaking (ISB) [49] (in contrast with
extrinsic symmetry breaking (ESB), which may occur if the external media on the two sides
of the structure are different).

One way to account for ISB is via an additional artificial layer introduced on the
boundary of the sample [50]; however, such a layer is extrinsic to the sample and works
only for one-sided illumination.

Propitiously, the homogenization procedure of [31,32] automatically accounts for
ISB via an effective material tensor with magnetoelectric coupling terms. This tensor is
independent of the illumination conditions, accounts for anisotropy and magnetic effects,
and does not require additional artificial layers, nonlocality of material response or other
amendments. The technical details can be found in [49].

5. “Spurious Modes”

As a model problem, consider electromagnetic resonances in a cavity Ω with perfectly
conductive walls. The electric field is described by the well-known curl-curl equation:

∇× µ−1∇× E − α2εE = 0, α =

{
ω, SI
k, Gaussian

(35)

where k = ω/c is the wavenumber. The tangential component of the electrical field on the
domain boundary is zero:

n̂× E = 0 on ∂Ω (36)

where n̂ is the unit normal to the boundary.
The weak formulation of this problem adopted in finite element analysis reads:

(µ−1∇× E,∇× E′)− α2(εE, E′) = 0, E, ∀E′ ∈ H0(curl, Ω) (37)

where E′ is a test function and H0(curl, Ω) is the subspace of functions that belong to
H(curl, Ω) and have zero tangential traces on the boundary ∂Ω (for a rigorous functional-
analytic definition of these spaces, see e.g., [51]).

In the 1970s—early 1980s, traditional nodal elements were applied to (37). Unex-
pectedly, nodal FEM produced nonphysical solutions, which became known as “spurious



J 2021, 4 888

modes” [52]. A typical feature of these modes was a nonzero divergence of the D field
throughout, which of course is incorrect for the actual electrical field in homogeneous
subdomains. This was indeed surprising because nodal FEM had proved to be reliable in
many other problems—magnetostatics, eddy currents, etc.

For a long time, the source of the parasitic modes was not clear, but it was also
discovered that FEM with edge elements did not produce such modes. This led to the
following misconception: the “spurious modes” are presumably absent in edge element
analysis because the lowest order element-wise basis functions in the Nédélec–Whitney
edge elements [10] are divergence-free; as a side note, it was also stated that these elements
could not be applied to fields with nonzero divergence [53].

If such statements were true, then first order nodal elements would be perfect for the
Laplace equation (because the Laplacian of a linear function is exactly zero) and could not
be applied at all to, say, a general Poisson equation. What matters in the weak formulation
is what happens not only inside the element but at the inter-element boundaries as well.
For spurious modes, the divergence-free property of edge elements is in fact irrelevant [54].

A sensible explanation was given in 1990 by Bossavit [55]. The following is a con-
densed version of that (see [55,56] for details).

For the zero-divergence condition to hold in a weak sense, one needs the test field to
be a gradient, E′ = ∇u′. Then the ∇× E′ term in the weak formulation (37) vanishes and
one arrives at the weak form of the zero-divergence condition for the D field:

(εE,∇u′) = 0, (38)

For this condition to hold on the discrete level, the space of test functions has to
contain a sufficiently rich—in some sense—subspace of gradients. It can be shown that this
is not true for traditional nodal elements [56] but is true for edge elements.

Arguments along these lines are convincing but do not constitute a complete theory
of spectral convergence. Such theories are quite sophisticated and revolve around the
so-called “discrete compactness” condition [54,57–59].

Curiously, spurious modes of analytical rather than numerical nature exist in periodic
structures; see Figure 1 in [60], Appendix A in [60].

6. TE and TM Modes

In contrast with the other sections, this one is concerned with the nomenclature rather
than principles. However, terminological confusion can be unpleasant and detrimental to
scientific discourse. Transverse Electric (TE) and Transverse Magnetic (TM) modes are a
case in point.

In waveguide theory, the TE and TM modes are defined unambiguously as having no
electric field or no magnetic field, respectively, along the axis of the guide. Unfortunately,
when translated to wave propagation, this terminology becomes much less clear. What
exactly are the electric or magnetic field “transverse” to? This is not just a question of
semantics. Tables 1 and 2 [1] show that different researchers attribute opposite meanings to
the TE/TM designations.

Table 1. Definitions of the TE mode differ. Table adapted by permission from Springer Table 8.1 in [1]
©2020.

One-Component E, Two-Component H One-Component H, Two-Component E

[48,61–64] [65–67] and p. 179 in [68]
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Table 2. A few representative quotes on TE/TM modes. Table adapted by permission from Springer
Table 8.2 in [1] ©2020.

One-Component E, Two-Component H One-Component H, Two-Component E

“Transmission of s- (TE-) polarized light
through the metal-dielectric structure...” [64]
“TE-polarized ... waves ... have the component
of the electric field parallel to the layers
(E = Ey)” [62]
[The primary variables are] “electric field ex for
TE modes and magnetic field hx for TM modes,
respectively.” [61]

“...consider a TE-polarized electromagnetic
wave, with nonvanishing Hz, Ex, and Ey
components” [65]
“the magnetic field along z (TE fields) or the
electric field along z (TM fields) p. 179 in [68]
“... The TM mode in which the electric field is
parallel to the axis of the holes, and the TE
mode in which it is perpendicular.” [66]
“The polarization of the incident wave is TM in
the first band and TE in the second band
(E parallel and perpendicular to the rods,
respectively)” [67]

The TE/TM terminology is ubiquitous in the literature, and it would be counterpro-
ductive to argue against its use. However, because of the ambiguities noted above, it would
be highly desirable to state clearly in each research paper which components of which
fields are zero and which are not.

7. Electric Polarization

Most textbooks define polarization as the “dipole moment per unit volume”. However,
simple examples and critical analysis show that this definition is flawed. Indeed, imagine a
chain of alternating charges +q, −q, +q, −q, . . . as a toy model of an ionic crystal (Figure 1
in [30,69]). Clearly, the “dipole moment per unit volume” cannot be unambiguously
defined and will depend on whether the chain is partitioned into the “+ –” set of dipoles or,
alternatively, into the “– +” set. The standard definition is even more dubious for realistic
continuous electron charge distributions which cannot be partitioned meaningfully into
individual dipoles—e.g., Figure 3 in [70], Figure 2 in [71], Figure 5 in [72], Figure 5 in [73].
The textbook definition is narrowly applicable only in the case of well-defined and well-
separated dipoles.

These issues are discussed thoroughly, and with a reference to the “the modern theory
of polarization” (MTP) [71,74–76], in [77], where the following approach is advocated.

Let polarization be treated as a characteristic not of a single state of a physical medium
but of an adiabatic transition from one state (“unperturbed”) to another one (“perturbed”).
The charge continuity equation, which must hold during this transition, is

∇ · j = −∂λρ (39)

where j = j(λ) is the current density as a function of an adiabatic parameter λ ∈ [0, 1]
(λ = 0 in the initial state and λ = 1 in the final state). This leads to the following
constructive definition of polarization [77]:

p(r) ≡ p(r, λ = 1) =
∫ 1

0
j(r, λ) dλ (40)

Polarization so defined satisfies the classical condition

∇ · p(r) = −δρ(r) (41)

Definition (40) is general: the charge distribution can be finite or infinite; periodic or
nonperiodic; discrete or continuous; molecular-scale, microscale or macroscale; electrically
neutral or (counter-intuitively) non-neutral; corresponding to spontaneous polarization
(as, e.g., in ferroelectrics) or to polarization induced by external electric fields, at any
temperature. There is no need to group charges into “molecules” of any kind or to partition
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a continuous charge distribution into a set of dipoles. Note that even if the charge density
distribution ρ(r) is not neutral, the perturbation δρ(r) is.

Analysis of fields and polarization in natural materials involves two scales: fine
(molecular) and coarse (macroscopic). More generally, one may consider coarse-graining
a fine-scale distribution by convolving it with a smooth integration kernel (e.g., a sharp
Gaussian). Since convolution commutes with differential operators, relationships such
as (41) are preserved after coarse-graining. However, adjustments may need to be made at
the boundaries of a finite charge distribution or material sample [77].

As a simple illustrative example, suppose that a charged microparticle of dust is
displaced in space over a small segment 0 ≤ x ≤ a. Then, according to the proposed
definition of polarization p(r),

p(r) = q Π0≤x≤a(r) δ(y)δ(z) x̂ (42)

where q is the charge of the particle, Π[0,a] is the characteristic function of the segment
(equal to 1 within [0, a] and zero elsewhere); the δs are the Dirac delta functions. This
polarization can be used to compute the change in the far field due to the displacement [77].
Furthermore, if there is a cloud of charged microparticles, each being randomly or non-
randomly displaced by a small amount, then by coarse-graining the p(r) one would obtain
a large-scale counterpart of dielectric polarization P(r) [77].

8. Boundary Conditions for Induced Currents

Induced currents are a feature of all non-static electromagnetic phenomena in con-
ducting media. At power frequencies, eddy currents are ubiquitous in electrical machinery;
at optical frequencies, the induced currents are often detrimental in conductors and lossy
dielectrics, although in some practical cases these losses can be put to good use [78,79].

It is typical to assume that at the boundary of a conducting region (e.g., a metal
particle) the normal component Jn of the current density is zero because, intuitively, the
current cannot cross the surface. However, this justification is not accurate. In fact, the
divergence condition for the current density is

∇ · J = −∂tρ (43)

where ρ is the volume charge density.
At the boundary of the conducting region, this divergence condition becomes

Jn = −∂tρS (44)

where ρS is the surface charge density, which does not have to be zero. An intuitive physical
picture is that of electrons bouncing back and forth between the walls of a conducting
domain, leading to repeated accumulation and depletion of charges on this or that side of
the boundary.

As an important case, let us consider the popular hydrodynamic model of electron
flow in plasmonic structures. This model comes in several flavors; in one version, the
equation for the “hydrodynamic” current density JHD in the frequency domain is, according
to [80] and using the notation of that paper,

β2∇(∇ · JHD(r, ω)) + ω(ω + iγ) JHD(r, ω) = iωω2
pε0E(r, ω) (45)

where ωp = en
1
2
0 (ε0me)

− 1
2 is the plasma frequency of the free electron gas, β is a parameter

related to the Fermi velocity, n0 is the equilibrium density of the electron gas, me is the
effective electron mass, γ is the damping constant (inverse of the collision time). This
equation describes the hydrodynamic current driven by an electric field E.
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This hydrodynamic equation is coupled with the Maxwell electric field equation,
written in the SI system of units:

∇× µ−1
0 ∇× E(r, ω)−ω2εE(r, ω) = iω JHD(r, ω) (46)

This model is cited here for reference; the goal of this section is to draw attention to
the Jn = 0 condition imposed e.g., in p. 5892 in [80,81]; quote: “...in order to confine the
electron fluid to the nanoparticle, we impose the so-called slip boundary condition, i.e., the
normal component of the current density vanishes at the particle’s surface” p. 1165 in [81].

Admirably, Miano et al. have developed a physically consistent model with a correct
boundary condition for J and presented a finite element/boundary integral numerical
solution [82,83].

The role surface charges ultimately play in conducting structures depends on the
strength of the capacitive effects. For large structures such as stator cores of electrical
machines with their typical geometric and physical parameters, the capacitive effects were
found to be very weak [84]. However, for small particles and other micro- or nanoscale
structures, the situation may very well be different.

9. Good or Poor Conductors for Low Loss? (Part 2)

Let us return to the paradox of Section 3: why are low losses associated with good
conductors in some cases and poor ones in other cases? That is, how can the opposite
conditions |ε′′| � ε′ and |ε′′| � ε′ be reconciled?

Let us start with the following analogy. There are two different but equivalent expres-
sions for power dissipation P in a resistor R:

P = I2R (47)

P =
V2

R
(48)

with the standard notation for voltage V and current I. If one maintains a fixed value of
the current, (47) shows that low loss corresponds to low resistance. On the other hand,
if a fixed value of voltage is maintained, (48) shows that low loss corresponds to high
resistance. (In electric machine design, cases analogous to these two are sometimes called
“current driven” and “voltage driven,” respectively.)

To understand the relevance of this analogy to the topic of this section, let us examine
two model problems. In the first one, an electromagnetic wave impinges on a slab of a lossy
material and propagates through that slab; normal incidence is assumed for simplicity.
This setup is sketched in Figure 2a; the E field is in the z direction (along the slab).

The voltage V across a given section [z+, z−] of the slab is

V =
∫ z−

z+
E dz (49)

The loss P in that section is due to the current density

J = σE (50)

and is equal to

P =
∫ z−

z+
dz
∫

S
σE2dS ∼ E2l σS ∼ (El)2 σS

l
∼ V2

r
; l ≡ |z− − z+| (51)

Here S and r = l/(σS) are the cross-section and static resistance of the slab, respec-
tively. The ‘∼’ sign indicates estimates, accurate for wavelengths much longer than the
geometric dimensions of the slab, when the field variation across the slab can be neglected.
However, the main conclusion holds in any event: the losses are lower for lower conduc-



J 2021, 4 892

tivity (higher resistance). Figure 2b is a qualitative representation of losses in the slab via
an equivalent circuit. As a side note, the magnetic field H is related to losses only in a
roundabout way, via its connection to E in Maxwell’s equations, so there is no need to
consider H in this qualitative analysis.

(a) (b)

Figure 2. (a) Schematics of a wave impinging on a lossy dielectric slab at normal incidence. E is the
total electric field in the slab. (b) A qualitative equivalent circuit. The voltage V across a given section
[z+, z−] of the slab is the line integral of E over that segment (see text). Resistance r represents losses
in the slab.

In the second problem, a power line with some resistance r connects a generator V to
a resistive load R (Figure 3). The losses in the line are

Pline = I2r =
V2

(R + r)2 r (52)

Figure 3. Schematic of power transmission from a generator V to a load R through a lossy line r.

In this case, lower losses correspond to lower resistance r (under the natural assump-
tion r < R). This conclusion would be even more obvious if the generator acted as a current
source rather than a voltage source.

The qualitative analysis above explains why lower conductivity leads to lower losses
in optics/photonics but to higher losses in power transmission.

10. Discussion and Conclusions

Even though computational electromagnetics is quite a mature area already, this paper
highlights a few unconventional or counter-intuitive ideas. First, it is shown that the source
field in magnetostatic or eddy current problems can be represented via a line integral as an
alternative to the Biot–Savart law. The line integral has several advantages: it is much more
efficient computationally and, as a bonus, produces a “source field” with a zero component
along one of the coordinate directions. A loose discrete analogy of that is the so-called
tree/co-tree gauge in finite element analysis with edge elements.

A paradox arises with regard to applications of conducting materials in electric power
transmission on the one hand and optics and photonics on the other. In electrical engineer-
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ing, good conductors (materials with a high conductivity, such as copper or aluminum)
are expected to have low losses. The opposite is true in optics and photonics, where di-
electrics with zero or negligible conductivity are employed. Why is there such a qualitative
difference between traditional areas of electrical engineering and optics/photonics? The
answer given in this paper lies in the different type of excitation in those two cases. Electric
power transmission can be qualitatively characterized as “current-driven”, while wave
transmission in photonics can be schematically viewed as “voltage-driven”. In the first
instance, the lower the resistance (the higher the conductivity), the lower the losses; in the
second case, the opposite is true.

Another subject reviewed in this paper is effective medium theory for periodic electro-
magnetic heterostructures. Attention is drawn to several unorthodox aspects of homoge-
nization. The first one is that boundary conditions are as important for homogenization
theory of metamaterials as is the bulk behavior of waves. The second aspect is that for
periodic structures there is no salient transition to bulk properties when the thickness of the
sample is gradually increased. That is, one lattice layer is, in a sense, already “bulk”. Third,
structures lacking mirror symmetry can be accurately homogenized if the effective parame-
ters include magnetoelectric coupling. Finally, mentioned in the section on homogenization
is “effective medium transformation”—a special case of stratified magnetic structures such
as laminated cores of electrical machines. In that case, under a few natural assumptions,
the qualitative physical nature of the problem changes upon homogenization. Namely,
if the fields in the fine-scale (stratified) structure are governed by Maxwell’s equations
in the eddy current approximation, fields in the homogenized structure are governed by
magneto-quasistatic equations with complex magnetic permeability.

Yet another issue summarized in the paper is the so-called spurious (nonphysical)
modes, which manifest themselves in the nodal FEM electromagnetic eigenvalue problems
such as cavity resonances. The source of this problem and some misconceptions in its
analysis are outlined. Spurious Bloch modes in periodic media are mentioned in passing.

A short note is related to the use of the terms TE and TM modes. Even though this
nomenclature is natural to electrical engineers, it turns out that in the literature there is no
uniformity with regard to its use: different authors attribute opposite meanings to the TE
and TM terms.

The notion of electric polarization turns out, upon closer inspection, to be much
more subtle than the standard textbooks would lead one to believe. The classical defi-
nition as the “dipole moment per unit volume” does not stand up to scrutiny. Instead,
electric polarization can be properly defined as a function of not just one state but of a
transition between two nearby states. This definition is quite general and applies to any
charge distributions—microscopic or macroscopic, periodic or non-periodic, electrically
neutral or not, etc. The analysis outlined in the paper is in the framework of classical
electrodynamics, but references are given to the “modern theory of polarization”, which is
quantum-mechanical.

Finally, attention is drawn to the fact that the correct boundary condition for currents
induced in conducting materials is not the zero normal component of these currents at the
boundary. Clearly, in classical electrodynamics currents cannot “go through” the boundary
and escape; however, they may certainly lead to accumulation or depletion of surface
charges on the boundary. For large-scale objects, such as conducting parts of electric
machines, these capacitive effects appear to be negligible; however, this may not be the case
in nano-plasmonics—for example, in the popular hydrodynamic models of the electron gas.

It is hoped that the cases considered in this paper will stimulate further discussion and
a fresh look at various problems of computational electromagnetics. Even in this mature
area, there are unsolved problems and out-of-the-box ideas.
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