Effect of Detergent, Temperature, and Solution Flow Rate on Ultrasonic Cleaning: A Case Study in the Jewelry Manufacturing Process
Abstract
1. Introduction
2. Background and Tools
2.1. Jewelry Cleaning Process
2.2. Computer Simulation Principle
2.2.1. Harmonic Response Analysis
2.2.2. Computational Fluid Dynamics
2.3. Measurement
2.3.1. Viscosity, Surface Tension, and Density
2.3.2. Ultrasonic Power Concentration
2.3.3. Weighting
2.3.4. Scanning Electron Microscope
3. Methodology
3.1. Fluid Property Measurement of Solution
3.2. Ultrasonic Cleaning Test
3.2.1. Ultrasonic Cleaning Machine
3.2.2. Ultrasonic Power Concentration Measurement
3.2.3. Product Cleaning Test
3.3. Computer Simulation Approach
3.3.1. Computer-Aided Design (CAD) Model and Boundary Conditions
3.3.2. Mesh-Independent Analysis
4. Results and Discussion
4.1. Measurement and Computer Simulation
4.2. Effect of Operating Conditions on Cleaning
4.2.1. Ultrasonic Power Concentration Without Solution Flow
4.2.2. Ultrasonic Power Concentration with Solution Flow
4.3. The Proper Operating Condition
4.4. Industry 5.0, SDGs, Limitations, and Development Opportunities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GIT Information Center, Thailand Gem and Jewelry Import-Export Performance January-December 2024. Available online: https://infocenter.git.or.th/en/article/article-20250207 (accessed on 19 May 2025).
- Atsawawongwiwat, P.; Sanohkham, B.; Kobjaiklang, C. Casual factors influencing the success of the genuine jewelry retail industry in Thailand. Thai Interdiscip. Sustain. Rev. 2024, 13, 313–328. (In Thai) [Google Scholar]
- Busnaina, A.; Kashkoush, I. The effect of time, temperature, and particle size on submicron particle removal using ultrasonic cleaning. Chem. Eng. Comm. 1993, 125, 47–61. [Google Scholar] [CrossRef]
- Fuchs, F.J. Ultrasonic cleaning and washing of surfaces. Power Ultrason. 2015, 577–609. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9781782420286000193?via%3Dihub (accessed on 10 July 2025).
- Verhaagen, B.; Rivas, D.F. Measuring cavitation and its cleaning effect. Ultrason. Sonochem. 2016, 29, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.J. Ultrasonics-Number and Size of Cavitation Bubbles. Available online: https://www.blackstone-ney.com/blog/ultrsonics-number-and-size-of-cavitation-bubbles/ (accessed on 19 May 2025).
- Kanegsberg, B.; Kanegberg, E. Handbook for Critical Cleaning: Applications, Processes, and Controls, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Srathonghuam, K.; Wonganu, B.; Busayaporn, W.; Thongsri, J. Vibration analysis and development of a submersible ultrasonic transducer for an application in the inhibitory activity of pathogenic bacteria. IEEE Access 2021, 9, 142362–142373. [Google Scholar] [CrossRef]
- Goris, Q.; Adams, M.; Stefanidis, G.D.; Gerven, T.V. An in-depth comparison of the ultrasonic horn and plate transducers: Building from fundamentals to application. Chem. Eng. Res. Des. 2025, 215, 580–592. [Google Scholar] [CrossRef]
- Phophayu, S.; Thongsri, J. Vibration analysis of 28 kHz transducer for ultrasonic cleaning based on harmonic response analysis. J. Phys. Conf. Ser. 2022, 2312, 012072. [Google Scholar] [CrossRef]
- Tangsopa, W.; Thongsri, J. Development of an industrial ultrasonic cleaning tank based on harmonic response analysis. Ultrasonics 2019, 91, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Phopayu, S.; Kliangklom, K.; Thongsri, J. Harmonic response analysis of tank design effect on ultrasonic cleaning process. Fluids 2022, 7, 99. [Google Scholar] [CrossRef]
- Wood, R.J.; Vévert, C.; Lee, J.; Bussemaker, M.J. Combined effects of flow, surface stabilization and salt concentration in aqueous solution to control and enhance sonoluminescence. Ultrason. Sonochem. 2019, 58, 104683. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J.; Vévert, C.; Lee, J.; Bussemaker, M.J. Flow effect on phenol degradation and sonoluminescence at different ultrasonic frequencies. Ultrason. Sonochem. 2020, 63, 104892. [Google Scholar] [CrossRef] [PubMed]
- Tangsopa, W.; Thongsri, J. A novel ultrasonic cleaning tank developed by harmonic response analysis and computational fluid dynamics. Metals 2020, 10, 335. [Google Scholar] [CrossRef]
- Awad, S.B.; Nagarajan, R. Chapter 6-Ultrasonic Cleaning. In Developments in Surface Contamination and Cleaning; Kohli, R., Mittal, K.L., Eds.; William Andrew Publishing: Oxford, UK, 2010; pp. 225–280. [Google Scholar]
- Phanomwan na Ayudhya, P.; Tangjitsitcharoen, S. Reduction of defects in jewelry manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2017, 215, 012016. [Google Scholar] [CrossRef]
- Zhou, B.; Feng, H.; Pearlstein, A.J. Continuous-flow ultrasonic washing system for fresh produce surface decontamination. Innov. Food Sci. Emerg. Technol. 2012, 16, 427–435. [Google Scholar] [CrossRef]
- Ansys, Inc. Harmonic Analysis; ANSYS Inc.: Southpointe, FL, USA, 2016. [Google Scholar]
- Zhang, R.; Wu, C.; Zhang, Y. A novel technique to predict harmonic response of particle-damping structure based on ANSYS® secondary development technology. Int. J. Mech. Sci. 2018, 144, 877–886. [Google Scholar] [CrossRef]
- ANSYS, Inc. Chapter 1 Basic Fluid Flow. In Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- ANSYS, Inc. Chapter 4 Turbulence. In Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- ThermoFisher Scientific, HAAKETM MARSTM Rheometer. Available online: https://www.thermofisher.com/order/catalog/product/379-0600?SID=srch-srp-379-0600 (accessed on 18 June 2025).
- Dataphysics Understanding Interfaces, Optical Contact Angle Measuring and Contour Analysis System of the OCA Series. Available online: https://www.dataphysics-instruments.com/products/oca/ (accessed on 29 July 2025).
- NGL Cleaning Technology, UPC 3000 Ultrasonic Process Controller. Available online: https://www.ngl-group.com/wp-content/uploads/2024/09/upc-3000-en-pdf.pdf (accessed on 28 May 2025).
- A&D Company, Ltd., GR Series Analytical Balances: Instruction Manual GR-200. Available online: https://www.aandd.jp/products/manual/balances/gr.pdf (accessed on 5 August 2025).
- Anton Paar GmbH, Viscosity Table-Measurement Data. Available online: https://wiki.anton-paar.com/th-th/water/ (accessed on 5 August 2025).
- The Engineering ToolBox, Surface Tension of Water. Available online: https://www.engineeringtoolbox.com/surface-tension-d_962.html (accessed on 7 August 2025).
- Issayeva, A.U.; Syrlybayeva, E.Z.; Zhymadullayeva, A.I.; Balgabekova, A. The effect of detergents on the anatomical changes in the roots of beans. J. Educ. Policy Entrep. Res. 2015, 2, 18–22. [Google Scholar]
- Mousavi, S.A.; Khodadoos, F. Effects of detergents on natural ecosystems and wastewater treatment process: A review. Environ. Sci. Pollu. Res. 2019, 26, 26439–26448. [Google Scholar] [CrossRef] [PubMed]
- Heidari, H.; Karimi, S. Effect of contaminated water (handwashing detergent) on seed germination traits in wheat, mung bean, and chickpea. Tenside Surf. Deterg. 2024, 61, 189–193. [Google Scholar] [CrossRef]
- United Nations Development Programme. What Are the Sustainable Development Goals. Available online: https://www.undp.org/sustainable-development-goals (accessed on 8 August 2025).
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and industry 5.0-inception, conception and perception. J. Manu. Sys. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Amiri, M.; Mikielewicz, J.; Ziółkowski, P.; Mikielewicz, D. Optimizing CO2 purification in a negative CO2 emission power plant. Chem. Eng. Technol. 2024, 47, e202300568. [Google Scholar] [CrossRef]
Solution | Detergent | Concentration (%) | Temperature (°C) |
---|---|---|---|
W | - | - | 30, 60 |
S | S | 3 | |
N | N | ||
U | U |
Property | S | N | U |
---|---|---|---|
Color | Yellow | Clear | Brown |
Density (ρ) | 565 kg/m3 | 1090 kg/m3 | 990–1007 kg/m3 |
Dynamic viscosity (μ) | 1500 mPa·s | 50 mPa·s | 35.19–53.85 mPa·s |
pH | 5 | 9.8–11.8 | 8.0–12.0 |
Surfactant | Anionic | Non-ionic | Non-ionic |
Solution | Concentration | Temperature (°C) | μ (mPa·s) | γ (N/m) | ρ (kg/m3) |
---|---|---|---|---|---|
W | - | 30 | 0.86574 ± 0.01506 | 0.0723 ± 0.0006 | 906.4667 ± 0.0425 |
- | 60 | 0.54945 ± 0.00614 | - | 891.3000 ± 0.0152 | |
U | 3% | 30 | 1.52975 ± 0.03298 | 0.0248 ± 0.0002 | 889.1333 ± 0.0325 |
60 | 0.65414 ± 0.02364 | - | 887.1000 ± 0.0121 | ||
N | 30 | 0.90365 ± 0.01295 | 0.0293 ± 0.0004 | 909.3667 ± 0.0155 | |
60 | 0.52834 ± 0.01849 | - | 879.3333 ± 0.0087 | ||
S | 3% | 30 | 0.88242 ± 0.00519 | 0.0258 ± 0.0001 | 891.0667 ± 0.0185 |
60 | 0.51318 ± 0.00710 | - | 879.3333 ± 0.0087 |
Case | Solution | Concentration (%) | Temperature (°C) | Solution Flow Rate (L/min) | UPC (W/L) |
---|---|---|---|---|---|
OP1 | Water | - | 30 | 0 | 14.6 ± 1.5 |
OP2 | U | 3% | 30 | 0 | 19.2 ± 1.5 |
OP3 | U | 3% | 60 | 5 | 17.6 ± 1.9 |
OP4 | N | 3% | 30 | 0 | 18.2 ± 1.5 |
OP5 | N | 3% | 60 | 5 | 16.8 ± 1.1 |
OP6 | S | 3% | 30 | 0 | 17.6 ± 1.8 |
OP7 | S | 3% | 60 | 5 | 16.4 ± 0.9 |
Case | Energy Consumption (kWh) | η | |||
---|---|---|---|---|---|
Generator | Heater | Water Pump | Total | ||
OP1 | 0.075 | 0 | 0 | 0.075 | 0.815% |
OP2 | 0.075 | 0 | 0 | 0.075 | 22.088% |
OP3 | 0.075 | 1.467 | 0.008 | 1.550 | 93.890% |
OP4 | 0.075 | 0 | 0 | 0.075 | 20.685% |
OP5 | 0.075 | 1.467 | 0.008 | 1.550 | 72.940% |
OP6 | 0.075 | 0 | 0 | 0.075 | 6.667% |
OP7 | 0.075 | 1.467 | 0.008 | 1.550 | 53.609% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juangjai, N.; Chaiaiad, C.; Thongsri, J. Effect of Detergent, Temperature, and Solution Flow Rate on Ultrasonic Cleaning: A Case Study in the Jewelry Manufacturing Process. Clean Technol. 2025, 7, 83. https://doi.org/10.3390/cleantechnol7040083
Juangjai N, Chaiaiad C, Thongsri J. Effect of Detergent, Temperature, and Solution Flow Rate on Ultrasonic Cleaning: A Case Study in the Jewelry Manufacturing Process. Clean Technologies. 2025; 7(4):83. https://doi.org/10.3390/cleantechnol7040083
Chicago/Turabian StyleJuangjai, Natthakarn, Chatchapat Chaiaiad, and Jatuporn Thongsri. 2025. "Effect of Detergent, Temperature, and Solution Flow Rate on Ultrasonic Cleaning: A Case Study in the Jewelry Manufacturing Process" Clean Technologies 7, no. 4: 83. https://doi.org/10.3390/cleantechnol7040083
APA StyleJuangjai, N., Chaiaiad, C., & Thongsri, J. (2025). Effect of Detergent, Temperature, and Solution Flow Rate on Ultrasonic Cleaning: A Case Study in the Jewelry Manufacturing Process. Clean Technologies, 7(4), 83. https://doi.org/10.3390/cleantechnol7040083