Comprehensive Study of Energy Characteristics and Biohazard Assessment of Municipal Solid Waste from the Landfill of the City of Atyrau
Abstract
:1. Introduction
2. Materials and Methods
- -
- ISO 21660-3:2021 Solid recovered fuels—Determination of moisture content using the oven drying method [34]. The essence of the method is to bring to a constant mass the MSW sample in the drying chamber at a temperature of 105 °C and determine the desired parameter by the mass difference.
- -
- ISO 21656:2021 Solid recovered fuels—Determination of ash content [35]. According to this method, the sample in a muffle furnace is heated in steps: first by heating to 250 °C with a holding time of one hour, followed by heating to 550 °C and a holding time of two hours. Air shall be allowed to enter the furnace to ensure complete combustion.
- -
- ISO 22167:2021 Solid recovered fuels—Determination of the content of volatile matter [36]. In this method, the sample is heated for 7 min at 900 ± 10 °C in a tightly closed quartz crucible without access to air.
- -
- ISO 1928:2009 Solid mineral fuels—Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value [37]. Gross calorific value is determined by the combustion of a sample at constant volume and oxygen overpressure of 3 MPa. Modern calorimeters calculate the calorific value automatically by entering the mass of the sample into the memory of the instrument.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, A.H.; López-Maldonado, E.A.; Khan, N.A.; Villarreal-Gómez, L.J.; Munshi, F.M.; Alsabhan, A.H.; Perveen, K. Current solid waste management strategies and energy recovery in developing countries—State of art review. Chemosphere 2022, 291, 133088. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, C.O.; Ozoegwu, C.G.; Ozor, P.A.; Agwu, N.; Mbohwa, C. Waste reduction and utilization strategies to improve municipal solid waste management on Nigerian campuses. Fuel Commun. 2021, 9, 100025. [Google Scholar] [CrossRef]
- The World Bank. Trends in Solid Waste Management. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 23 October 2023).
- Dronia, W.; Połomka, J.; Jędrczak, A. Morphological composition of bio-waste collected selectively in towns and villages during autumn and winter. J. Air Waste Manag. Assoc. 2023, 73, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Dehghanifard, E.; Dehghani, M.H. Evaluation and analysis of municipal solid wastes in Tehran, Iran. MethodsX 2018, 5, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.S.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. Sustainable and long-term management of municipal solid waste: A review. Bioresour. Technol. Rep. 2022, 18, 101067. [Google Scholar] [CrossRef]
- Alam, P.; Sharholy, M.; Khan, A.H.; Ahmad, K.; Alomayri, T.; Radwan, N.; Aziz, A. Energy generation and revenue potential from municipal solid waste using system dynamic approach. Chemosphere 2022, 299, 134351. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Nhung, N.C.; Ramesh, B.; Srinivasan, S.; Rangasamy, G. A review on biological methodologies in municipal solid waste management and landfilling: Resource and energy recovery. Chemosphere 2022, 309, 136630. [Google Scholar] [CrossRef]
- Basinas, P.; Rusín, J.; Chamrádová, K. Dry anaerobic digestion of the fine particle fraction of mechanically-sorted organic fraction of municipal solid waste in laboratory and pilot reactor. Waste Manag. 2021, 136, 83–92. [Google Scholar] [CrossRef]
- Akhilesh, K.; Avlokita, A. Recent trends in solid waste management status, challenges, and potential for the future Indian cities—A review. Curr. Res. Environ. Sustain. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Verma, R.L.; Borongan, G.; Memon, M. Municipal Solid Waste Management in Ho Chi Minh City, Viet Nam, Current Practices and Future Recommendation. Procedia Environ. Sci. 2016, 35, 127–139. [Google Scholar] [CrossRef]
- Ezeudu, O.B.; Ezeudu, T.S.; Ugochukwu, U.C.; Tenebe, I.T.; Ajogu, A.P.; Nwadi, U.V.; Ajaero, C.C. Healthcare Waste Management in Nigeria: A Review. Recycling 2022, 7, 87. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Venkat Rao, N.; Chinna Rao, G.; Priyadarshini, G.; Jeevan Kumar, N. Energy Generation from Municipal Solid Waste by Innovative Technologies—Plasma Gasification. Procedia Mater. Sci. 2015, 10, 513–518. [Google Scholar] [CrossRef]
- Roy, H.; Alam, S.R.; Bin-Masud, R.; Prantika, T.R.; Pervez, M.N.; Islam, M.S.; Naddeo, V. A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective. Sustainability 2022, 14, 10265. [Google Scholar] [CrossRef]
- EPA. Frequent Questions on Energy Recovery from Combustion. Available online: https://www.epa.gov/smm/energy-recovery-combustion-municipal-solid-waste-msw (accessed on 13 October 2023).
- Dadario, N.; Gabriel Filho, L.R.A.; Cremasco, C.P.; Santos, F.A.d.; Rizk, M.C.; Mollo Neto, M. Waste-to-Energy Recovery from Municipal Solid Waste: Global Scenario and Prospects of Mass Burning Technology in Brazil. Sustainability 2023, 15, 5397. [Google Scholar] [CrossRef]
- Klinghoffer, N.; Castaldi, M. Waste to Energy Conversion Technology; Woodhead Publishing: Cambridge, UK, 2013; Chapter 8.4; ISBN 9780857096364. [Google Scholar]
- Milios, L.; Esmailzadeh Davani, A.; Yu, Y. Sustainability Impact Assessment of Increased Plastic Recycling and Future Pathways of Plastic Waste Management in Sweden. Recycling 2018, 3, 33. [Google Scholar] [CrossRef]
- Du, Y.; Ju, T.; Meng, Y.; Lan, T.; Han, S.; Jiang, J. A review on municipal solid waste pyrolysis of different composition for gas production. Fuel Process. Technol. 2021, 224, 107026. [Google Scholar] [CrossRef]
- Ławińska, O.; Korombel, A.; Zajemska, M. Pyrolysis-Based Municipal Solid Waste Management in Poland—SWOT Analysis. Energies 2022, 15, 510. [Google Scholar] [CrossRef]
- Hammoodi, S.I.; Almukhtar, R.S. Thermal Pyrolysis of Municipal Solid Waste (MSW). IOP Conf. Ser. Mater. Sci. Eng. 2019, 579, 012018. [Google Scholar] [CrossRef]
- He, M.; Xiao, B.; Liu, S.; Hu, Z.; Guo, X.; Luo, S.; Yang, F. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J. Anal. Appl. Pyrolysis 2010, 87, 181–187. [Google Scholar] [CrossRef]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef]
- Inderthal, H.; Tai, S.L.; Harrison, S.T.L. Non-Hydrolyzable Plastics—An Interdisciplinary Look at Plastic Bio-Oxidation. Trends Biotechnol. 2021, 39, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Baghani, A.N.; Sorooshian, A.; Delikhoon, M.; Nabizadeh, R.; Nazmara, S.; Bakhtiari, R. Pollution characteristics and noncarcinogenic risk assessment of fungal bioaerosol in different processing units of waste paper and cardboard recycling factory. Toxin Rev. 2021, 40, 752–763. [Google Scholar] [CrossRef]
- Ayele, B.; Weldehanna, D.; Demsiss, W. Serological Evidence and Associated Factors of Hepatitis B Virus and Hepatitis C Virus Among Waste Handlers: A Cross-Sectional Study from Northeastern Ethiopia. Infect. Drug Resist. 2023, 16, 4881–4890. [Google Scholar] [CrossRef] [PubMed]
- Abilmagzhanov, A.Z.; Ivanov, N.S.; Kholkin, O.S.; Adelbaev, I.E. Assessment of the Energetical and Biological Characteristics of Municipal Solid Waste from One of the Largest Landfills in Kazakhstan. Recycling 2022, 7, 80. [Google Scholar] [CrossRef]
- Abilmagzhanov, A.Z.; Ivanov, N.S.; Kholkin, O.S.; Adelbaev, I.E. Study of energy characteristics of solid household waste from the Almaty landfill. Rep., Natl. Acad. Sci. Repub. Kaz. 2021, 5, 73–81. [Google Scholar] [CrossRef]
- Sanitary and Epidemiological Requirements for the Collection, Use, Application, Disposal, Transportation, Storage and Disposal of Production and Consumption Waste. Ministry of Healthcare of the Republic of Kazakhstan. Available online: https://adilet.zan.kz/rus/docs/V2000021934 (accessed on 13 October 2023).
- Method for Determining the Morphological Composition of Solid Domestic Waste. Approved. by order of the Chairman of the Agency of the Republic of Kazakhstan for Construction and Housing and Communal Services. Ministry of Industry and Construction of the Republic of Kazakhstan. Available online: https://online.zakon.kz/Document/?doc_id=31134077 (accessed on 13 October 2023).
- ISO 21645:2021; Solid Recovered Fuels—Methods for Sampling. International Organization for Standardization: Geneva, Switzerland, 2021; p. 56.
- Abdalqader, A.; Hamad, T.J. Municipal Solid Waste Composition Determination Supporting the Integrated Solid Waste Management in Gaza Strip. Int. J. Environ. Sci. Dev. 2012, 3, 172–176. [Google Scholar] [CrossRef]
- ASTM D5231-92; Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM International: West Conshohocken, PA, USA, 2016.
- ISO 21660-3:2021; Solid Recovered Fuels—Determination of Moisture Content Using the Oven Dry Method—Part 3: Moisture in General Analysis Sample. International Organization for Standardization: Geneva, Switzerland, 2021; p. 10.
- ISO 21656:2021; Solid Recovered Fuels—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2021; p. 13.
- ISO 22167:2021; Solid Recovered Fuels—Determination of Content of Volatile Matter. International Organization for Standardization: Geneva, Switzerland, 2021; p. 15.
- ISO 1928:2009; Solid Mineral Fuels—Determination of Gross Calorific Value by The Bomb Calorimetric Method and Calculation of Net Calorific Value. International Organization for Standardization: Geneva, Switzerland, 2009; p. 59.
- Zhu, Y.; Zhang, Y.; Luo, D.; Chong, Z.; Li, E.; Kong, X. A review of municipal solid waste in China: Characteristics, compositions, influential factors and treatment technologies. Environ. Dev. Sustain. 2020, 23, 6603–6622. [Google Scholar] [CrossRef]
- Phuntsho, S.; Dulal, I.; Yangden, D.; Tenzin, U.M.; Herat, S.; Shon, H.; Vigneswaran, S. Studying municipal solid waste generation and composition in the urban areas of Bhutan. Waste Manag. Res. 2010, 28, 545–551. [Google Scholar] [CrossRef]
- Palanivel, T.M.; Sulaiman, H. Generation and Composition of Municipal Solid Waste (MSW) in Muscat, Sultanate of Oman. APCBEE Procedia 2014, 10, 96–102. [Google Scholar] [CrossRef]
- Khan, S.; Anjum, R.; Raza, S.T.; Bazai, N.A.; Ihtisham, M. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere 2022, 288 Pt 1, 132403. [Google Scholar] [CrossRef]
- Brown, R.M.; Hoover, A.N.; Klinger, J.L.; Wahlen, B.D.; Hartley, D.; Lee, H.; Thompson, V.S. Decontamination of Mixed Paper and Plastic Municipal Solid Waste Increases Low and High Temperature Conversion Yields. Front. Energy Res. 2022, 10, 834832. [Google Scholar] [CrossRef]
- Abushammala, H.; Masood, M.A.; Ghulam, S.T.; Mao, J. On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy. Sustainability 2023, 15, 6915. [Google Scholar] [CrossRef]
- Areeprasert, C.; Asingsamanunt, J.; Srisawat, S.; Kaharn, J.; Inseemeesak, B.; Phasee, P.; Khaobang, C.; Siwakosit, W.; Chiemchaisri, C. Municipal Plastic Waste Composition Study at Transfer Station of Bangkok and Possibility of its Energy Recovery by Pyrolysis. Energy Procedia 2017, 107, 222–226. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Agamuthu, P. Plastics in municipal solid waste: What, where, how and when? Waste Manag. Res. 2019, 37, 1061–1062. [Google Scholar] [CrossRef] [PubMed]
- Juanga-Labayen, J.P.; Labayen, I.V.; Yuan, Q. A Review on Textile Recycling Practices and Challenges. Textiles 2022, 2, 174–188. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalão, J.P.S. Economic and environmental benefits of using textile waste for the production of thermal energy. J. Clean. Prod. 2018, 171, 1353–1360. [Google Scholar] [CrossRef]
- Kaur, A.; Bharti, R.; Sharma, R. Municipal solid waste as a source of energy. Mater. Today Proc. 2023, 81 Pt 2, 904–915. [Google Scholar] [CrossRef]
- Dong, J.; Chi, Y.; Tang, Y.; Ni, M.; Nzihou, A.; Weiss-Hortala, E.; Huang, Q. Effect of Operating Parameters and Moisture Content on Municipal Solid Waste Pyrolysis and Gasification. Energy Fuels 2016, 30, 3994–4001. [Google Scholar] [CrossRef]
- Gawande, N.A.; Reinhart, D.R.; Thomas, P.A.; McCreanor, P.T.; Townsend, T.G. Municipal solid waste in situ moisture content measurement using an electrical resistance sensor. Waste Manag. 2003, 23, 667–674. [Google Scholar] [CrossRef]
- He, T.; Niu, D.; Chen, G.; Wu, F.; Chen, Y. Exploring Key Components of Municipal Solid Waste in Prediction of Moisture Content in Different Functional Areas Using Artificial Neural Network. Sustainability 2022, 14, 15544. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D.C.W. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. J. Hazard. Mater. 2021, 411, 125132. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Chuieh, T.Y. Life Cycle Assessment of Reusing Fly Ash from Municipal Solid Waste Incineration. Procedia Eng. 2015, 118, 984–991. [Google Scholar] [CrossRef]
- Post, W.; Kuijpers, L.J.; Zijlstra, M.; van der Zee, M.; Molenveld, K. Effect of Mineral Fillers on the Mechanical Properties of Commercially Available Biodegradable Polymers. Polymers 2021, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Móczó, J.; Pukánszky, B. Polypropylene Handbook; Springer: Cham, Germany, 2019; pp. 357–417. ISBN 978-3-030-12903-3. [Google Scholar] [CrossRef]
- Siddique, R. Use of municipal solid waste ash in concrete. Resour. Conserv. Recycl. 2010, 55, 83–91. [Google Scholar] [CrossRef]
- Fabricius, A.L.; Renner, M.; Voss, M.; Funk, M.; Perfoll, A.; Gehring, F.; Graf, R.; Fromm, S.; Duester, L. Municipal waste incineration fly ashes: From a multi-element approach to market potential evaluation. Environ. Sci Eur. 2020, 32, 88. [Google Scholar] [CrossRef]
- Liu, L.; Kong, S.; Zhang, Y.; Wang, Y.; Xu, L.; Yan, Q.; Lingaswamy, A.P.; Shi, Z.; Lv, S.; Niu, H.; et al. Morphology, composition, and mixing state of primary particles from combustion sources—Crop residue, wood, and solid waste. Sci. Rep. 2017, 7, 5047. [Google Scholar] [CrossRef] [PubMed]
- Vaičienė, M.; Simanavičius, E. The Effect of Municipal Solid Waste Incineration Ash on the Properties and Durability of Cement Concrete. Materials 2022, 15, 4486. [Google Scholar] [CrossRef]
- Pinto, F.; Costa, P.; Gulyurtlu, I.; Cabrita, I. Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J. Anal. Appl. Pyrolysis 1999, 51, 39–55. [Google Scholar] [CrossRef]
- Wu, C.H.; Chang, C.Y.; Tseng, C.H.; Lin, J.P. Pyrolysis product distribution of waste newspaper in MSW. J. Anal. Appl. Pyrolysis 2003, 67, 41–53. [Google Scholar] [CrossRef]
- Scheibe, A.S.; Pimenta de Araujo, I.; Janssen, L.; Amabile de Campos, T.; de Paulo Martins, V.; Vasques Mendonça, A.R.; Borges Valle, J.A.; Siqueira Curto Valle, R.C.; Guelli Ulson de Souza, S.M.A.; Ulson de Souza, A.A. Products from pyrolysis textile sludge as a potential antibacterial and alternative source of fuel oil. Clean. Eng. Technol. 2022, 6, 100408. [Google Scholar] [CrossRef]
- Akdağ, A.S.; Atımtay, A.; Sanin, F.D. Comparison of fuel value and combustion characteristics of two different RDF samples. Waste Manag. 2016, 47, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, M.; Siddiqi, M.H.; Liu, X.; Qureshi, T. Study of Hyrothermally RDF Samples for Energy Applications: Thermo-gravimetric Analysis. In IOP Conference Series: Earth and Environmental Science, Dali, China, 17–19 July 2020; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 565, p. 012096. [Google Scholar] [CrossRef]
- Wojtacha-Rychter, K.; Smoliński, A. Multi-Case Study on Environmental and Economic Benefits through Co-Burning Refuse-Derived Fuels and Sewage Sludge in Cement Industry. Materials 2022, 15, 4176. [Google Scholar] [CrossRef] [PubMed]
- Kara, M. Environmental and economic advantages associated with the use of RDF in cement kilns. Resour. Conserv. Recycl. 2012, 68, 21–28. [Google Scholar] [CrossRef]
- Boumanchar, I.; Chhiti, Y.; M’hamdi Alaoui, F.E.; Sahibed-Dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Manag. Res. 2019, 37, 578–589. [Google Scholar] [CrossRef] [PubMed]
- McPhail, A.S.; Griffin, R.; El-Halwagi, M.; Medlock, K.; Alvarez, P.J. Environmental, Economic, and Energy Assessment of the Ultimate Analysis and Moisture Content of Municipal Solid Waste in a Parallel Co-Combustion Process. Energy Fuels 2014, 28, 1453–1462. [Google Scholar] [CrossRef]
- Rezaei, M.; Ghobadian, B.; Samadi, S.H.; Karimi, S. Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy 2018, 152, 46–56. [Google Scholar] [CrossRef]
- Gu, Q.; Wu, W.; Jin, B.; Zhou, Z. Analyses for Synthesis Gas from Municipal Solid Waste Gasification under Medium Temperatures. Processes 2020, 8, 84. [Google Scholar] [CrossRef]
- Lu, J.S.; Chang, Y.; Poon, C.S.; Lee, D.J. Slow pyrolysis of municipal solid waste (MSW): A review. Bioresour. Technol. 2020, 312, 123615. [Google Scholar] [CrossRef]
- Gerba, C.P.; Tamimi, A.H.; Pettigrew, C.; Weisbrod, A.V.; Rajagopalan, V. Sources of microbial pathogens in municipal solid waste landfills in the United States of America. Waste Manag. Res. 2011, 29, 781–790. [Google Scholar] [CrossRef]
- Ghanbarian, M.; Ghanbarian, M.; Ghanbarian, M.; Mahvi, A.H.; Hosseini, M. Determination of bacterial and fungal bioaerosols in municipal solid-waste processing facilities of Tehran. J. Environ. Health Sci. Eng. 2020, 18, 865–872. [Google Scholar] [CrossRef]
- Gutberlet, J.; Uddin, S.M.N. Household waste and health risks affecting waste pickers and the environment in low- and middle-income countries. Int. J. Occup. Environ. Health 2017, 23, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Sakka, M.; Kimura, T.; Sakka, K.; Ohmiya, K. Hydrogen Gas Generation from Refuse-derived Fuel (RDF) under Wet Conditions. Biosci. Biotechnol. Biochem. 2004, 68, 466–467. [Google Scholar] [CrossRef] [PubMed]
Type of Waste, % wt. | Sample Number | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Food waste | 21.20 | 49.09 | 25.07 | 0 | 0 | 25.30 | 0 | 39.68 | 45.87 | 82.28 |
Paper and cardboard | 30.32 | 9.69 | 10.28 | 47.44 | 39.79 | 23.59 | 42.77 | 11.18 | 11.30 | 0 |
Polymers | 23.23 | 30.25 | 49.11 | 39.30 | 24.35 | 14.38 | 39.26 | 33.57 | 16.96 | 9.42 |
Glass | 11.69 | 9.80 | 0 | 0 | 27.80 | 0 | 0 | 11.38 | 0 | 0 |
Ferrous metals | 0 | 0 | 0 | 0 | 0 | 0.95 | 2.59 | 2.32 | 0 | 0 |
Non-ferrous metals | 6.36 | 0.69 | 1.23 | 0 | 3.93 | 0 | 0 | 0 | 0.52 | 0 |
Textiles | 0 | 0 | 6.94 | 0.56 | 4.12 | 16.74 | 15.38 | 1.86 | 23.25 | 0 |
Wood | 2.74 | 0 | 2.69 | 0 | 0 | 5.50 | 0 | 0 | 0 | 0 |
Hazardous waste | 0 | 0.49 | 0 | 0 | 0 | 1.04 | 0 | 0 | 0 | 0 |
Leather, bones, rubber | 0 | 0 | 4.68 | 3.70 | 0 | 0 | 0 | 0 | 0 | 0 |
Municipal waste residue after removal of all other components | 4.46 | 0 | 0 | 8.99 | 0 | 12.50 | 0 | 0 | 2.11 | 8.30 |
Total, % | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Type of Waste | Paper, Cardboard | Polymers | Textiles | Wood | Total |
---|---|---|---|---|---|
Total mass, g | 9396 | 14,499 | 3184 | 536 | 27,615 |
% of total mass of MSW | 18.09 | 27.92 | 6.13 | 1.03 | 53.18 |
% of total combustible mass of MSW | 34.02 | 52.50 | 11.53 | 1.94 | 100.00 |
Spectrum | O | Na | Mg | Al | Si | P | S | Cl | Ca | Ti | Cr | Fe | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectrum 1 | 40.48 | 0.53 | 2.04 | 8.07 | 11.42 | 0.27 | 4.44 | 3.27 | 25.06 | 2.67 | 0.28 | 1.48 | 100.00 |
Spectrum 2 | 40.81 | 0.42 | 1.93 | 7.80 | 12.81 | 0.30 | 3.03 | 2.92 | 23.92 | 3.83 | 0.32 | 1.94 | 100.00 |
Spectrum 3 | 40.05 | 0.40 | 1.88 | 7.94 | 11.97 | 0.57 | 3.65 | 3.24 | 26.09 | 2.63 | 0.31 | 1.27 | 100.00 |
Average | 40.45 | 0.45 | 1.95 | 7.94 | 12.06 | 0.38 | 3.71 | 3.14 | 25.02 | 3.04 | 0.30 | 1.56 | 100.00 |
σ | 0.31 | 0.06 | 0.07 | 0.11 | 0.57 | 0.14 | 0.58 | 0.16 | 0.89 | 0.56 | 0.02 | 0.28 |
№ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Vd Avg. Total % |
---|---|---|---|---|---|---|---|---|---|---|---|
Vd1, % | 93.48 | 87.63 | 82.92 | 80.32 | 83.25 | 80.51 | 72.00 | 84.34 | 86.83 | 76.66 | 82.79 |
Vd2, % | 93.18 | 87.40 | 82.87 | 80.34 | 83.69 | 79.95 | 72.91 | 84.25 | 86.91 | 76.41 | 82.79 |
Vd avg., % | 93.33 | 87.52 | 82.89 | 80.33 | 83.47 | 80.23 | 72.45 | 84.29 | 86.87 | 76.53 | 82.79 |
σ | 0.15 | 0.12 | 0.03 | 0.01 | 0.22 | 0.28 | 0.46 | 0.05 | 0.04 | 0.13 |
№ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
, mJ/kg | 34.68 | 29.53 | 24.76 | 19.61 | 29.34 | 20.16 | 17.09 | 26.34 | 26.13 | 32.79 |
, mJ/kg | 35.09 | 29.90 | 25.43 | 20.50 | 29.70 | 20.94 | 20.42 | 27.08 | 26.71 | 33.35 |
Sample | The Number of Microorganisms, Colony Forming Units (CFU)/mL | ||||
---|---|---|---|---|---|
Bacteria | Actinomycetes | Microscopic Fungi | Bacteria of the Escherichia coli Group | ||
Filamentous Mushrooms | Yeast | ||||
3 | (2.2 ± 0.2) × 108 | (2.0 ± 0.6) × 106 | (1.5 ± 0.1) × 105 | (1.5 ± 0.4) × 105 | (4.5 ± 0.4) × 106 |
9 | (4.2 ± 0.3) × 108 | not detected | (1.3 ± 0.0) × 104 | (1.4 ± 0.4) × 104 | (1.6 ± 0.1) × 107 |
10 | (8.4 ± 0.9) × 108 | (8.5 ± 1.0) × 104 | (1.4 ± 0.3) × 105 | (5.0 ± 0.0) × 104 | (1.4 ± 0.3) × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, N.S.; Abilmagzhanov, A.Z.; Kholkin, O.S.; Adelbaev, I.E. Comprehensive Study of Energy Characteristics and Biohazard Assessment of Municipal Solid Waste from the Landfill of the City of Atyrau. Clean Technol. 2024, 6, 49-61. https://doi.org/10.3390/cleantechnol6010004
Ivanov NS, Abilmagzhanov AZ, Kholkin OS, Adelbaev IE. Comprehensive Study of Energy Characteristics and Biohazard Assessment of Municipal Solid Waste from the Landfill of the City of Atyrau. Clean Technologies. 2024; 6(1):49-61. https://doi.org/10.3390/cleantechnol6010004
Chicago/Turabian StyleIvanov, Nikolay S., Arlan Z. Abilmagzhanov, Oleg S. Kholkin, and Iskander E. Adelbaev. 2024. "Comprehensive Study of Energy Characteristics and Biohazard Assessment of Municipal Solid Waste from the Landfill of the City of Atyrau" Clean Technologies 6, no. 1: 49-61. https://doi.org/10.3390/cleantechnol6010004
APA StyleIvanov, N. S., Abilmagzhanov, A. Z., Kholkin, O. S., & Adelbaev, I. E. (2024). Comprehensive Study of Energy Characteristics and Biohazard Assessment of Municipal Solid Waste from the Landfill of the City of Atyrau. Clean Technologies, 6(1), 49-61. https://doi.org/10.3390/cleantechnol6010004