Moving towards Greener Road Transportation: A Review
Abstract
:1. Introduction
2. Environmental Impact of Road Transportation
2.1. Environmental Footprint and Emissions
2.2. Roadmaps, Guidelines and Limitations by Global Institutions and Organizations
3. Decarbonization of the Transportation Sector
3.1. On-Vehicle Methods
3.1.1. Energy Recovery and Energy Savings
3.1.2. Incorporation of Renewable Energy Sources
3.2. Off-Vehicle Methods (Charging Infrastructure and Energy Management Strategies)
4. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating Current |
AEV | All-Electric Vehicle |
AI | Artificial Intelligence |
BEV | Battery Electric Vehicle |
BMS | Battery Management System |
BP | Battery Pack |
CCU | Central Control Unit |
CH4 | Methane |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
COP26 | Climate Change Conference of the Parties |
DC | Direct Current |
DoD | Depth of Discharge |
EIA | Energy Information Administration |
ESS | Energy Storage System |
EU | European Union |
EV | Electric Vehicle |
FCEV | Fuel Cell Electric Vehicle |
F-gases | Fluorinated gases |
FREVUE | Freight Electric Vehicles in Urban Europe |
GDP | Gross Domestic Product |
GHG | Greenhouse Gas |
HC | Unburned hydrocarbon |
HEV | Hybrid Electric Vehicle |
HV | High-DC voltage |
HVAC | Heating Ventilation and Air Conditioning |
ICCT | International Council on Clean Transportation |
ICE | Internal combustion engine |
ICT | Information and Communications Technology |
IEA | International Energy Agency |
IEO | International Energy Outlook |
IPCC | Intergovernmental Panel on Climate Change |
LED | Light-Emitting Diode |
Li-ion | Lithium-ion |
LV | Low-DC voltage |
MPPT | Maximum Power Point Tracking |
N2O | Nitrous oxide |
NO2 | Nitrogen dioxide |
NO | Nitric oxide |
NOx | Nitrogen oxides |
NZE | Near-Zero Emission |
nZEB | (nearly) Zero Energy Building |
OECD | Organization of Economic Cooperation and Development |
PHEV | Plug-in HEV |
PV | Photovoltaic |
RES | Renewable Energy Sources |
ROI | Return-on-Investment |
SAE | Society of Automotive Engineers |
SoC | State of Charge |
TEG | Thermoelectric generator |
US | United States |
V2G | Vehicle-to-Grid |
V2V | Vehicle-to-Vehicle |
VIPV | Vehicle-Integrated Photovoltaic |
WHR | Waste Heat Recovery |
WLTP | World Harmonized Light Vehicle Test Procedure |
References
- European Commission. New Rules for Europe’s Electricity Market. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/electricity_market_factsheet.pdf (accessed on 2 November 2021).
- REN21, 2022, Renewables 2022 Global Status Report (Paris: REN21 Secretariat). ISBN 978-3-948393-04-5. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (accessed on 28 January 2023).
- IEA. Renewable Energy Market Update, Renewable Energy Market Update Outlook for 2022 and 2023. Available online: https://read.oecd-ilibrary.org/energy/renewable-energy-market-update_faf30e5a-en (accessed on 28 January 2023).
- IEA. Transport Reports 2022. Available online: https://www.iea.org/reports/transport (accessed on 16 October 2022).
- IRENA. Energy Transition. Available online: https://www.irena.org/industrytransport (accessed on 9 December 2022).
- Nanaki, E.A.; Koroneos, C.J. Climate change mitigation and deployment of electric vehicles in urban areas. Renew. Energy 2016, 99, 1153–1160. [Google Scholar] [CrossRef]
- World Energy Outlook 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 15 November 2022).
- European Environment Agency, Shaping the Future of Energy in Europe—Clean, Smart and Renewable, Publications Office, 2018. Available online: https://data.europa.eu/doi/10.2800/85058 (accessed on 28 January 2023).
- Bassa de los Mozos, A.; Chandra Mouli, G.R.; Bauer, P. Evaluation of topologies for a solar powered bidirectional electric vehicle charger. IET Power Electron. 2019, 12, 3675–3687. [Google Scholar] [CrossRef]
- Wang, D.; Sechilariu, M.; Locment, F. PV-Powered Charging Station for Electric Vehicles: Power Management with Integrated V2G. Appl. Sci. 2020, 10, 6500. [Google Scholar] [CrossRef]
- Shin, M.; Choi, D.-H.; Kim, J. Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach. IEEE Trans. Ind. Inform. 2020, 16, 3493–3503. [Google Scholar] [CrossRef]
- Hao, D.; Qi, L.; Tairab, A.M.; Ahmed, A.; Azam, A.; Luo, D.; Pan, Y.; Zhang, Z.; Yan, J. Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renew. Energy 2022, 188, 678–697. [Google Scholar] [CrossRef]
- Volkov, S.; Sidorova, V.; Orlov, A.; Ostashenkov, A. RES-powered charging stations for electric vehicles. IOP Conf. Series Mater. Sci. Eng. 2021, 1047, 012182. [Google Scholar] [CrossRef]
- Patel, A.R.; Vyas, D.R.; Markana, A.; Jayaraman, R. A Conceptual Model for Integrating Sustainable Supply Chain, Electric Vehicles, and Renewable Energy Sources. Sustainability 2022, 14, 14484. [Google Scholar] [CrossRef]
- Alkawsi, G.; Baashar, Y.; Abbas, U.D.; Alkahtani, A.A.; Tiong, S.K. Review of Renewable Energy-Based Charging Infrastructure for Electric Vehicles. Appl. Sci. 2021, 11, 3847. [Google Scholar] [CrossRef]
- International Energy Agency. Global EV Outlook 2022 Securing Supplies for An Electric Future. 2022. Available online: www.iea.org/t&c/ (accessed on 11 January 2023).
- Rigogiannis, N.; Voglitsis, D.; Jappe, T.; Papanikolaou, N. Voltage Transients Mitigation in the DC Distribution Network of More/All Electric Aircrafts. Energies 2020, 13, 4123. [Google Scholar] [CrossRef]
- Apostolidou, N.; Rigogiannis, N.; Papanikolaou, N.; Kosmatopoulos, E.B. Flexible Interlinking Converter With Enhanced FRT Capability for On-Board DC Microgrids. IEEE Open J. Veh. Technol. 2022, 4, 25–35. [Google Scholar] [CrossRef]
- Yildirim, M.; Polat, M.; Kurum, H. A survey on comparison of electric motor types and drives used for electric vehicles. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014; pp. 218–223. [Google Scholar] [CrossRef]
- Maroti, P.K.; Padmanaban, S.; Bhaskar, M.S.; Ramachandaramurthy, V.K.; Blaabjerg, F. The state-of-the-art of power electronics converters configurations in electric vehicle technologies. Power Electron. Devices Compon. 2022, 1, 100001. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, D.; Zhang, C. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renew. Energy 2020, 162, 1629–1648. [Google Scholar] [CrossRef]
- Wager, G.; McHenry, M.P.; Whale, J.; Bräunl, T. Testing energy efficiency and driving range of electric vehicles in relation to gear selection. Renew. Energy 2014, 62, 303–312. [Google Scholar] [CrossRef]
- Patel, A.R.; Trivedi, G.; Vyas, D.R.; Mihaita, A.-S.; Padmanaban, S. Framework for User-Centered Access to Electric Charging Facilities via Energy-Trading Blockchain. In Proceedings of the 2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 14–16 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Morrissey, P.; Weldon, P.; O’mahony, M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour. Energy Policy 2016, 89, 257–270. [Google Scholar] [CrossRef]
- Schroeder, A.; Traber, T. The economics of fast charging infrastructure for electric vehicles. Energy Policy 2012, 43, 136–144. [Google Scholar] [CrossRef]
- Meintz, A.; Zhang, J.; Vijayagopal, R.; Kreutzer, C.; Ahmed, S.; Bloom, I.; Burnham, A.; Carlson, R.B.; Dias, F.; Dufek, E.J.; et al. Enabling fast charging—Vehicle considerations. J. Power Sources 2017, 367, 216–227. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Nadolny, A.; Cheng, C.; Lu, B.; Blakers, A.; Stocks, M. Fully electrified land transport in 100% renewable electricity networks dominated by variable generation. Renew. Energy 2022, 182, 562–577. [Google Scholar] [CrossRef]
- Baros, D.; Voglitsis, D.; Papanikolaou, N.P.; Kyritsis, A.; Rigogiannis, N. Wireless Power Transfer for Distributed Energy Sources Exploitation in DC Microgrids. IEEE Trans. Sustain. Energy 2019, 10, 2039–2049. [Google Scholar] [CrossRef]
- Baros, D.; Rigogiannis, N.; Drougas, P.; Voglitsis, D.; Papanikolaou, N.P. Transmitter Side Control of a Wireless EV Charger Employing IoT. IEEE Access 2020, 8, 227834–227846. [Google Scholar] [CrossRef]
- Dimitriadou, K.; Rigogiannis, N.; Fountoukidis, S.; Kotarela, F.; Kyritsis, A.; Papanikolaou, N. Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration. Energies 2023, 16, 2057. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Masuda, T.; Araki, K.; Sato, D.; Lee, K.; Kojima, N.; Takamoto, T.; Okumura, K.; Satou, A.; Yamada, K.; et al. Development of high-efficiency and low-cost solar cells for PV-powered vehicles application. Prog. Photovolt. Res. Appl. 2021. [Google Scholar] [CrossRef]
- Saitoh, T.S.; Yamada, N.; Ando, D.; Kurata, K. A grand design of future electric vehicle to reduce urban warming and CO2 emissions in urban area. Renew. Energy 2005, 30, 1847–1860. [Google Scholar] [CrossRef]
- Srivastava, R.S.; Kumar, A.; Thakur, H.; Vaish, R. Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study. Renew. Energy 2022, 181, 384–403. [Google Scholar] [CrossRef]
- Pang, W.; Yu, H.; Zhang, Y.; Yan, H. Solar photovoltaic based air cooling system for vehicles. Renew. Energy 2019, 130, 25–31. [Google Scholar] [CrossRef]
- Perpinias, I.; Rigogiannis, N.; Bogatsis, I.; Kyritsis, A.; Papanikolaou, N. Experimental Performance Benchmark for Maximum Power Point Tracking Algorithms. In Proceedings of the 2022 2nd International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Thessaloniki, Greece, 17–19 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. International Energy Outlook 2019. 2019. Available online: www.eia.gov/ieo (accessed on 22 March 2021).
- BP. Full Report—BP Statistical Review of World Energy 2019. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 20 January 2023).
- Corlu, C.G.; de la Torre, R.; Serrano-Hernandez, A.; Juan, A.A.; Faulin, J. Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities. Energies 2020, 13, 1115. [Google Scholar] [CrossRef] [Green Version]
- Kacprzyk, J.; Kaynak, O.; Pedrycz, W.; Polycarpou, M.; Wang, J. Lecture Notes in Networks and Systems Volume 124 Series Editor. Available online: http://www.springer.com/series/15179 (accessed on 19 June 2022).
- Wuebbles, D.; Easterling, D.; Hayhoe, K.; Knutson, T.; Kopp, R.; Kossin, J.; Kunkel, K.; LeGrande, A.; Mears, C.; Sweet, W.; et al. Ch. 1: Our Globally Changing Climate. Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I. [Google Scholar] [CrossRef] [Green Version]
- Sixth Assessment Report (AR6), Climate Change 2023: Synthesis Report, Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 19 February 2023).
- NASA. The Effects of Climate Change. Available online: https://climate.nasa.gov/effects/ (accessed on 14 February 2023).
- Bieker, G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars. Berlin, 2021. Available online: https://theicct.org/ (accessed on 11 September 2022).
- European Commission. CO2 Emission Performance Standards for Cars and Vans. Available online: https://climate.ec.europa.eu/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/co2-emission-performance-standards-cars-and-vans_en#benefits (accessed on 14 February 2023).
- United Nations. Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on Its Third Session, Held in Glasgow from 31 October to 13 November 2021. Available online: https://unfccc.int/sites/default/files/resource/cma2021_10_add1_adv.pdf (accessed on 12 February 2023).
- European Commision. Electrification of the Transport System Studies and Reports. Available online: https://clepa.eu/mediaroom/electrification-transport-system/ (accessed on 2 March 2023).
- European Commission. Strategy for Reducing Heavy-Duty Vehicles’ Fuel Consumption and CO2 Emissions; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels, 2013. Available online: http://ec.europa.eu/transport/urban/consultations/2011-10-06-cts_en.htm (accessed on 7 April 2022).
- European Commission. Zero Emission Bus Systems. 2013. Available online: https://cordis.europa.eu/project/id/605485 (accessed on 12 April 2022).
- Quak, H.; Nesterova, N.; Rooijen, T. Possibilities and Barriers for Using Electric-powered Vehicles in City Logistics Practice. Transp. Res. Procedia 2016, 12, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Dalle, T. Frevue: Validating Freight Electric Vehicles in Urban Europe—Final Report. Available online: https://frevue.eu/ (accessed on 24 April 2022).
- European Parliament and Council of European Union. REGULATION (EU) 2019/1242 of the European Parliament and of the council of 20 June 2019. Off. J. Eur. Union 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/1242/oj (accessed on 2 March 2023).
- EGCI Ad-hoc Industrial Advisory Group. European Green Cars Initiative PPP Multi-Annual Roadmap and Long-Term Strategy. Available online: http://www.emic-bg.org/files/files/EGCI_Roadmap.pdf (accessed on 21 January 2023).
- European Commission. HORIZON 2020 WORK PROGRAMME 2014–2015. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-intro_en.pdf (accessed on 2 March 2023).
- European Commission. OBJECTIVES Sustainable Mobility. 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/e07369e2-4404-11eb-b59f-01aa75ed71a1/language-en (accessed on 2 May 2022).
- European Parliament News. EU Ban on the Sale of New Petrol and Diesel Cars from 2035 Explained. 13 February 2023. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20221019STO44572/eu-ban-on-sale-of-new-petrol-and-diesel-cars-from-2035-explained (accessed on 10 March 2023).
- EU Parliament Votes to End Combustion Vehicle Sales in 2035. Available online: https://www.electrive.com/2022/06/09/eu-parliament-votes-to-end-combustion-vehicle-sales-in-2035/ (accessed on 2 March 2023).
- Atabani, A.; Badruddin, I.A.; Mekhilef, S.; Silitonga, A. A review on global fuel economy standards, labels and technologies in the transportation sector. Renew. Sustain. Energy Rev. 2011, 15, 4586–4610. [Google Scholar] [CrossRef]
- Pan, H.; Qi, L.; Zhang, Z.; Yan, J. Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review. Appl. Energy 2021, 286, 116518. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Zhang, J.; Li, Y.; Yuan, Y. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Convers. Manag. 2015, 92, 469–482. [Google Scholar] [CrossRef]
- Apostolidou, N.; Papanikolaou, N. Energy Saving Estimation of Athens Trolleybuses Considering Regenerative Braking and Improved Control Scheme. Resources 2018, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Orr, B.; Akbarzadeh, A.; Mochizuki, M.; Singh, R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl. Therm. Eng. 2016, 101, 490–495. [Google Scholar] [CrossRef]
- Karri, M.; Thacher, E.; Helenbrook, B. Exhaust energy conversion by thermoelectric generator: Two case studies. Energy Convers. Manag. 2011, 52, 1596–1611. [Google Scholar] [CrossRef]
- Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery. J. Electron. Mater. 2010, 39, 1446–1455. [Google Scholar] [CrossRef]
- Fan, Y.; Ge, L.; Hua, W. Multiple-input DC-DC converter for the thermoelectric-photovoltaic energy system in Hybrid Electric Vehicles. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010. [Google Scholar] [CrossRef]
- Plotnikov, V.V.; Carter, C.W.; Stayancho, J.M.; Paudel, N.R.; Mahabaduge, H.; Kwon, D.-S.; Grice, C.R.; Compaan, A.D. Semitransparent PV windows with sputtered CdS/CdTe thin films. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 405–408. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Kim, S.; Rhi, S.-H. A Thermoelectric Generator Using Engine Coolant for Light-Duty Internal Combustion Engine-Powered Vehicles. J. Electron. Mater. 2011, 40, 812–816. [Google Scholar] [CrossRef]
- LaGrandeur, J.; Crane, D.; Hung, S.; Mazar, B.; Eder, A. Automotive Waste Heat Conversion to Electric Power using Skutterudite, TAGS, PbTe and BiTe. In Proceedings of the 2006 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006; pp. 343–348. [Google Scholar] [CrossRef]
- Mori, M.; Yamagami, T.; Sorazawa, M.; Miyabe, T.; Takahashi, S.; Haraguchi, T. Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid. SAE Int. J. Mater. Manuf. 2011, 4, 1268–1276. [Google Scholar] [CrossRef]
- Kim, J.; Baek, D.; Ding, C.; Lin, S.; Shin, D.; Lin, X.; Wang, Y.; Cho, Y.H.; Park, S.H.; Chang, N. Dynamic Reconfiguration of Thermoelectric Generators for Vehicle Radiators Energy Harvesting Under Location-Dependent Temperature Variations. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1241–1253. [Google Scholar] [CrossRef]
- Al-Yafeai, D.; Darabseh, T.; Mourad, A.-H.I. A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems. Energies 2020, 13, 2336. [Google Scholar] [CrossRef]
- Perpinias, I.; Rigogiannis, N.; Bogatsis, I.; Vagiannis, N.; Roidos, I.; Zournatzis, A.; Nterekas, A.; Kyritsis, A.; Papanikolaou, N. Energy Harvesting Techniques for Thermal City-Buses. In Proceedings of the 2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 1–4 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Apostolidou, N.; Valsamas, F.; Baros, D.; Loupis, M.; Dasteridis, V.; Kokkinis, C. Innovative Energy-Recovery Unit for the LED-Lighting System of Heavy-Duty Vehicles. Clean Technol. 2021, 3, 581–593. [Google Scholar] [CrossRef]
- Lightyear One, Lightyear Solar Roof and Hood. Available online: https://lightyear.one (accessed on 8 December 2022).
- Sono Motors GmBh. Sion. Available online: https://sonomotors.com/en/sion/ (accessed on 8 December 2022).
- Hyundai Motor Company. 2020 SONATA Hybrid-Solar Roof Panel. Available online: https://www.hyundaiusa.com/us/en/vehicles/sonata-hybrid (accessed on 8 December 2022).
- Sagaria, S.; Duarte, G.; Neves, D.; Baptista, P. Photovoltaic integrated electric vehicles: Assessment of synergies between solar energy, vehicle types and usage patterns. J. Clean. Prod. 2022, 348, 131402. [Google Scholar] [CrossRef]
- Macias, J.; Herrero, R.; Nunez, R.; Anton, I. On the effect of cell interconnection in Vehicle Integrated Photovoltaics: Modelling energy under different scenarios. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 1336–1339. [Google Scholar] [CrossRef]
- Günther, H.-O.; Kannegiesser, M.; Autenrieb, N. The role of electric vehicles for supply chain sustainability in the automotive industry. J. Clean. Prod. 2015, 90, 220–233. [Google Scholar] [CrossRef]
- Patel, A.R.; Vyas, D.R.; Patel, R.S. Making resilient transition towards net-zero freight transport process easier through socio-economic, regulatory and political factors: Case study of Mahesana city in India. In Proceedings of the 9th International Workshop on Sustainable Road Freight (SRF), Online Conference, 12–14 December 2022. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Heinrich, M.; Kutter, C.; Basler, F.; Mittag, M.; Alanis, L.E.; Eberlein, D.; Schmid, A.; Reise, C.; Kroyer, T.; Neuhaus, D.H.; et al. Potential and challenges of vehicle integrated photovoltaics for passenger cars. In Proceedings of the 37th European Conference and Exhibition, Online, 7–11 September 2020. [Google Scholar]
- Eitner, U.; Ebert, M.; Zech, T.; Schmid, C.; Watts, A.; Heinrich, M. Solar potential on commercial trucks: Results of an irradiance measurement campaign on 6 trucks in Europe and USA. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017. [Google Scholar]
- Commault, B.; Duigou, T.; Maneval, V.; Gaume, J.; Chabuel, F.; Voroshazi, E. Overview and Perspectives for Vehicle-Integrated Photovoltaics. Appl. Sci. 2021, 11, 11598. [Google Scholar] [CrossRef]
- Alanis, L.E.; Neuhaus, D.H.; Kutter, C.; Heinrich, M. Yield Potential of Vehicle Integrated Photovoltaics on Commercial Trucks And Vans. 2021. Available online: https://www.researchgate.net/publication/355126708 (accessed on 22 January 2023).
- Mohamed, N.; Aymen, F.; Altamimi, A.; Khan, Z.A.; Lassaad, S. Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources. Sustainability 2022, 14, 2551. [Google Scholar] [CrossRef]
- Robledo, C.B.; Oldenbroek, V.; Abbruzzese, F.; van Wijk, A.J. Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building. Appl. Energy 2018, 215, 615–629. [Google Scholar] [CrossRef]
- Ezzat, M.F.; Dincer, I. Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle. Energy Convers. Manag. 2016, 129, 284–292. [Google Scholar] [CrossRef]
- Motahhir, S.; Editors, A.M.E. Green Energy and Technology. Available online: http://www.springer.com/series/8059 (accessed on 27 April 2022).
- Kelly, N.A.; Gibson, T.L.; Ouwerkerk, D.B. Generation of high-pressure hydrogen for fuel cell electric vehicles using photovoltaic-powered water electrolysis. Int. J. Hydrog. Energy 2011, 36, 15803–15825. [Google Scholar] [CrossRef]
- Kyritsis, A.; Roman, E.; Kalogirou, S.; Nikoletatos, J.; Agathokleous, R.; Mathas, E.; Tselepis, S. Households with Fibre Reinforced Composite BIPV modules in Southern Europe under Net Metering Scheme. Renew. Energy 2019, 137, 167–176. [Google Scholar] [CrossRef]
- Kim, S.; Holz, M.; Park, S.; Yoon, Y.; Cho, E.; Yi, J. Future Options for Lightweight Photovoltaic Modules in Electrical Passenger Cars. Sustainability 2021, 13, 2532. [Google Scholar] [CrossRef]
- Ivanov, R.; Evtimov, I.; Ivanova, D.; Staneva, G.; Kadikyanov, G.; Sapundzhiev, M. Possibilies for Improvement the Ecological Effect of Battery Electric Vehicles Using Renewable Energy. In Proceedings of the 2020 7th International Conference on Energy Efficiency and Agricultural Engineering, EE and AE 2020, Ruse, Bulgaria, 12–14 November 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Statista Research Department. Electricity Demand in Greece from 2000 to 2021. Jan. 2023. Available online: https://www.statista.com/statistics/1153829/energy-demand-greece/#:~:text=In%202021%2C%20Greece%27s%20energy%20demand%20stood%20at%2058.6,gas%2C%20at%2044.8%20percent%2C%20followed%20by%20renewable%20sources (accessed on 5 February 2023).
- Lan, T.; Jermsittiparsert, K.; Alrashood, S.T.; Rezaei, M.; Al-Ghussain, L.; Mohamed, M.A. An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand. Energies 2021, 14, 569. [Google Scholar] [CrossRef]
- Savio, D.A.; Juliet, V.A.; Chokkalingam, B.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach. Energies 2019, 12, 168. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Wang, M.; Shen, X.S. Optimal PV sizing scheme for the PV-integrated fast charging station. In Proceedings of the 2016 8th International Conference on Wireless Communications and Signal Processing, WCSP 2016, Yangzhou, China, 13–15 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Ul-Haq, A.; Cecati, C.; Al-Ammar, E.A. Modeling of a Photovoltaic-Powered Electric Vehicle Charging Station with Vehicle-to-Grid Implementation. Energies 2017, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Marinescu, C.; Barote, L. Toward a practical solution for residential RES based EV charging system. In Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, Brasov, Romania, 25–27 May 2017; pp. 771–776. [Google Scholar] [CrossRef]
- Shariff, S.M.; Alam, M.S.; Ahmad, F.; Rafat, Y.; Asghar, M.S.J.; Khan, S. System Design and Realization of a Solar-Powered Electric Vehicle Charging Station. IEEE Syst. J. 2020, 14, 2748–2758. [Google Scholar] [CrossRef]
- Tran, V.T.; Islam, R.; Muttaqi, K.M.; Sutanto, D. An Efficient Energy Management Approach for a Solar-Powered EV Battery Charging Facility to Support Distribution Grids. IEEE Trans. Ind. Appl. 2019, 55, 6517–6526. [Google Scholar] [CrossRef]
- Torreglosa, J.P.; García-Triviño, P.; Fernández-Ramirez, L.M.; Jurado, F. Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station. Energy Convers. Manag. 2016, 108, 1–13. [Google Scholar] [CrossRef]
- Bhatti, A.R.; Salam, Z.; Ashique, R.H. Electric Vehicle Charging Using Photovoltaic based Microgrid for Remote Islands. Energy Procedia 2016, 103, 213–218. [Google Scholar] [CrossRef]
- Al Wahedi, A.; Bicer, Y. Assessment of a stand-alone hybrid solar and wind energy-based electric vehicle charging station with battery, hydrogen, and ammonia energy storages. Energy Storage 2019, 1, e84. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lu, L.; Han, X.; Ouyang, M.; Feng, X. Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station. Appl. Energy 2020, 259, 114146. [Google Scholar] [CrossRef]
- Bhatti, A.R.; Salam, Z. A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system. Renew. Energy 2018, 125, 384–400. [Google Scholar] [CrossRef]
- Mishra, S.; Dwivedi, G.; Upadhyay, S.; Chauhan, A. Modelling of standalone solar photovoltaic based electric bike charging. Mater. Today Proc. 2021, 49, 473–480. [Google Scholar] [CrossRef]
- Das, R.; Thirugnanam, K.; Kumar, P.; Lavudiya, R.; Singh, M. Mathematical Modeling for Economic Evaluation of Electric Vehicle to Smart Grid Interaction. IEEE Trans. Smart Grid 2013, 5, 712–721. [Google Scholar] [CrossRef]
- Thirugnanam, K.; TP, E.R.J.; Singh, M.; Kumar, P. Mathematical Modeling of Li-Ion Battery Using Genetic Algorithm Approach for V2G Applications. IEEE Trans. Energy Convers. 2014, 29, 332–343. [Google Scholar] [CrossRef]
- Thirugnanam, K.; Joy, T.P.E.R.; Singh, M.; Kumar, P. Modeling and Control of Contactless Based Smart Charging Station in V2G Scenario. IEEE Trans. Smart Grid 2013, 5, 337–348. [Google Scholar] [CrossRef]
- Singh, M.; Thirugnanam, K.; Kumar, P.; Kar, I. Real-Time Coordination of Electric Vehicles to Support the Grid at the Distribution Substation Level. IEEE Syst. J. 2013, 9, 1000–1010. [Google Scholar] [CrossRef]
- Rashid, M.; Maruf, N.I.; Akhtar, T. An RES-based Grid Connected Electric Vehicle Charging Station for Bangladesh. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques, Dhaka, Bangladesh, 10–12 January 2019; pp. 205–210. [Google Scholar] [CrossRef]
- Tulpule, P.J.; Marano, V.; Yurkovich, S.; Rizzoni, G. Economic and environmental impacts of a PV powered workplace parking garage charging station. Appl. Energy 2013, 108, 323–332. [Google Scholar] [CrossRef]
- Chandra, G.R.; Bauer, P.; Zeman, M. System design for a solar powered electric vehicle charging station for workplaces. Appl. Energy 2016, 168, 434–443. [Google Scholar] [CrossRef] [Green Version]
- IEEE Staff. 2016 IEEE Transportation Electrification Conference and Expo (ITEC); IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Arfeen, Z.A.; Abdullah, P.; Sheikh, U.U.; Sule, A.H.; Alqaraghuli, H.T.; Soremekun, R.K. Rule-Based Enhanced Energy Management Scheme for Electric Vehicles Fast-Charging Workplace Using Battery Stacks and Solar Power. In Proceedings of the 2020 IEEE International Conference on Power and Energy, Virtual, 7–8 December 2020; pp. 113–118. [Google Scholar] [CrossRef]
- Martins, J.F.; Pires, V.F.; Gomes, L.; Dias, O.P. Plug-in electric vehicles integration with renewable energy building facility—building/vehicle interface. In Proceedings of the 2009 International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 18–20 March 2009; pp. 202–205. [Google Scholar] [CrossRef]
- Ashique, R.H.; Salam, Z.; Aziz, M.J.B.A.; Bhatti, A.R. Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control. Renew. Sustain. Energy Rev. 2017, 69, 1243–1257. [Google Scholar] [CrossRef]
- Schmidt, J.; Gass, V.; Schmid, E. Land use changes, greenhouse gas emissions and fossil fuel substitution of biofuels compared to bioelectricity production for electric cars in Austria. Biomass Bioenergy 2011, 35, 4060–4074. [Google Scholar] [CrossRef]
- Al Wahedi, A.; Bicer, Y. Development of an off-grid electrical vehicle charging station hybridized with renewables including battery cooling system and multiple energy storage units. Energy Rep. 2020, 6, 2006–2021. [Google Scholar] [CrossRef]
- He, F.; Fathabadi, H. Novel standalone plug-in hybrid electric vehicle charging station fed by solar energy in presence of a fuel cell system used as supporting power source. Renew. Energy 2020, 156, 964–974. [Google Scholar] [CrossRef]
- Wang, Y.; Kazemi, M.; Nojavan, S.; Jermsittiparsert, K. Robust design of off-grid solar-powered charging station for hydrogen and electric vehicles via robust optimization approach. Int. J. Hydrog. Energy 2020, 45, 18995–19006. [Google Scholar] [CrossRef]
AEV Model | Battery Capacity (kWh) | (WLTP) Electric Range (km) | Energy Consumption (kWh/100 km) |
---|---|---|---|
Audi e-Tron | 71 | 336 | 21.13 |
Audi Q4 e-tron 35 | 52 | 306 | 18.2 |
Audi Q8 e-tron 50 quattro | 89 | 410 | 21.4 |
BMW iX3 | 67 | 453 | 16.8 |
BMW i4 M50 | 80.7 | 415 | 18.6 |
DS 3 Crossback E-Tense | 50 | 320 | 15.63 |
Fiat 500 e | 23.8 | 180 | 13.22 |
Honda e | 35.5 | 220 | 16.14 |
Hyundai Kona Electric | 30 | 305 | 9.84 |
Hyundai IONIQ 6 Long Range AWD | 77.4 | 519 | 14.3 |
Jaguar I Pace | 90 | 470 | 19.15 |
KΙA e-Niro | 39.2 | 289 | 13.56 |
KΙA e-Soul | 64 | 452 | 14.16 |
ΚΙA ΕV6 | 77.4 | 528 | 14.66 |
Mazda MX-30 | 35.5 | 237 | 14.98 |
Mercedes EQS SUV 580 4MATIC | 120 | 511 | 21.2 |
Mercedes EQE 350 4MATIC | 100 | 507 | 17.9 |
Mercedes EQC | 80 | 354 | 22.6 |
Mini Cooper SE | 32.6 | 270 | 12.07 |
Nissan LEAF | 40 | 270 | 14.81 |
Opel Corsa-e | 50 | 330 | 15.15 |
Opel Moka-e | 50 | 324 | 15.43 |
Peugeot e-2008 | 50 | 320 | 15.63 |
Peugeot e-208 | 50 | 340 | 14.71 |
Porsche Taycan | 93 | 484 | 19.21 |
Skoda Citigo E IV | 36.8 | 260 | 14.15 |
Smart EQ fortwo | 17.6 | 159 | 11.07 |
Jeep Avenger Electric | 50.8 | 385 | 16.9 |
Tesla Model Y | 57.5 | 430 | 16.7 |
Tesla Model 3 | 73.5 | 455 | 16.15 |
Tesla Model S | 85 | 624 | 13.62 |
Tesla Model X | 75 | 528 | 14.2 |
Toyota bZ4X | 71.4 | 460 | 15.52 |
Volvo C40 Recharge | 78 | 420 | 18.57 |
VW e-Golf | 35.8 | 231 | 15.5 |
VW e-up | 32.4 | 260 | 12.46 |
VW ID.3 | 45 | 352 | 12.78 |
VW ID.4 | 77 | 520 | 14.81 |
Ford Mustang Mach-E ER RWD | 98.7 | 600 | 15.2 |
Dacia Spring Electric 45 | 26.8 | 230 | 10.9 |
CUPRA Born 170 kW–77 kWh | 82 | 492 | 15.7 |
Electric Capacity of the Charging Point (kWAC) | Charging Time (min) |
---|---|
3.7 kWAC (Mode I) | 689 |
22 kWAC (Mode II) | 116 |
50 kWDC (Mode III) | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigogiannis, N.; Bogatsis, I.; Pechlivanis, C.; Kyritsis, A.; Papanikolaou, N. Moving towards Greener Road Transportation: A Review. Clean Technol. 2023, 5, 766-790. https://doi.org/10.3390/cleantechnol5020038
Rigogiannis N, Bogatsis I, Pechlivanis C, Kyritsis A, Papanikolaou N. Moving towards Greener Road Transportation: A Review. Clean Technologies. 2023; 5(2):766-790. https://doi.org/10.3390/cleantechnol5020038
Chicago/Turabian StyleRigogiannis, Nick, Ioannis Bogatsis, Christos Pechlivanis, Anastasios Kyritsis, and Nick Papanikolaou. 2023. "Moving towards Greener Road Transportation: A Review" Clean Technologies 5, no. 2: 766-790. https://doi.org/10.3390/cleantechnol5020038
APA StyleRigogiannis, N., Bogatsis, I., Pechlivanis, C., Kyritsis, A., & Papanikolaou, N. (2023). Moving towards Greener Road Transportation: A Review. Clean Technologies, 5(2), 766-790. https://doi.org/10.3390/cleantechnol5020038