Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review
Abstract
:1. Introduction
1.1. Carbon Capture, Utilization, and Storage (CCUS)
1.2. Geological Storage
1.3. Injection Strategies: Reservoir Characterization and Underground Storage Policies
1.4. Injection Strategies: Challenges and Optimization Approaches
1.5. Scope and Structure
2. Key Subsurface Policies in CO2 Geological Storage: Outline and Application
2.1. Pressure Management: Controlling Pressure Build-Up and Geomechanical Complications
- (1)
- Closed systems, where the storage formation is surrounded by impervious boundaries and blocked vertically by impervious sealing units.
- (2)
- Semi-closed systems, where the storage system is enclosed laterally by impervious boundaries but overlain and/or underlain by semi-previous sealing units.
- (3)
- Open system, where the lateral boundaries are too far to be affected by pressure disturbances [71].
2.2. Geological Storage Security: Improving Residual and Solubility Trapping
2.3. CO2-EOR Carbon Storage Compliance: Joint Co-Optimization
2.4. Displacement Control: Sweep Efficiency Performance Control in CO2-EGR Applications
3. Optimization of CO2 Injection and Well Control Strategies for CCUS Application in Saline Aquifers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jarvis, S.M.; Samsatli, S. Technologies and Infrastructures Underpinning Future CO2 Value Chains: A Comprehensive Review and Comparative Analysis. Renew. Sustain. Energy Rev. 2018, 85, 46–68. [Google Scholar] [CrossRef]
- Gabrielli, P.; Gazzani, M.; Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage and Biomass to Enable a Net-Zero-CO2 Emissions Chemical Industry. Ind. Eng. Chem. Res. 2020, 59, 7033–7045. [Google Scholar] [CrossRef]
- Bui, M.; Gazzani, M.; Pozo, C.; Puxty, G.D.; Soltani, S.M. Editorial: The Role of Carbon Capture and Storage Technologies in a Net-Zero Carbon Future. Front. Energy Res. 2021, 9, 733968. [Google Scholar] [CrossRef]
- Martin-Roberts, E.; Scott, V.; Flude, S.; Johnson, G.; Haszeldine, R.S.; Gilfillan, S. Carbon Capture and Storage at the End of a Lost Decade. One Earth 2021, 4, 1569–1584. [Google Scholar] [CrossRef]
- Peres, C.B.; Resende, P.M.R.; Nunes, L.J.R.; de Morais, L.C. Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO2 Mitigation Potential Analysis. Clean Technol. 2022, 4, 1193–1207. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Technology Prespectives, Special Report on Carbon Capture Utilisation and Storage; International Energy Agency: Paris, France, 2020. [Google Scholar]
- International Energy Agency. Technology Report; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Darunte, L.A.; Walton, K.S.; Sholl, D.S.; Jones, C.W. CO2 Capture via Adsorption in Amine-Functionalized Sorbents. Curr. Opin. Chem. Eng. 2016, 12, 82–90. [Google Scholar] [CrossRef]
- Tontiwachwuthikul, P.; Idem, R. Recent Progress and New Developments in Post-Combustion Carbon-Capture Technology with Reactive Solvents. In Recent Progress and New Developments in Post-Combustion Carbon-Capture Technology with Reactive Solvents; Future Science Ltd.: London, UK, 2013; pp. 2–8. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Rochelle, G.T. Conventional Amine Scrubbing for CO2 Capture. In Absorption-Based Post-Combustion Capture of Carbon Dioxide; Elsevier: Amsterdam, The Netherlands, 2016; pp. 35–67. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon Capture by Physical Adsorption: Materials, Experimental Investigations and Numerical Modeling and Simulations—A Review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Lv, Y.; Yu, X.; Jia, J.; Tu, S.-T.; Yan, J.; Dahlquist, E. Fabrication and Characterization of Superhydrophobic Polypropylene Hollow Fiber Membranes for Carbon Dioxide Absorption. Appl. Energy 2012, 90, 167–174. [Google Scholar] [CrossRef]
- Lv, Y.; Yu, X.; Tu, S.-T.; Yan, J.; Dahlquist, E. Experimental Studies on Simultaneous Removal of CO2 and SO2 in a Polypropylene Hollow Fiber Membrane Contactor. Appl. Energy 2012, 97, 283–288. [Google Scholar] [CrossRef]
- Blamey, J.; Anthony, E.J.; Wang, J.; Fennell, P.S. The Calcium Looping Cycle for Large-Scale CO2 Capture. Prog. Energy Combust. Sci. 2010, 36, 260–279. [Google Scholar] [CrossRef]
- Fan, L.-S.; Zeng, L.; Wang, W.; Luo, S. Chemical Looping Processes for CO2 Capture and Carbonaceous Fuel Conversion—Prospect and Opportunity. Energy Environ. Sci. 2012, 5, 7254. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X.; Huang, K.; Fu, L.; Azimi, M. Carbon Dioxide Transport via Pipelines: A Systematic Review. J. Clean. Prod. 2020, 266, 121994. [Google Scholar] [CrossRef]
- Neele, F.; de Kler, R.; Nienoord, M.; Brownsort, P.; Koornneef, J.; Belfroid, S.; Peters, L.; van Wijhe, A.; Loeve, D. CO2 Transport by Ship: The Way Forward in Europe. Energy Procedia 2017, 114, 6824–6834. [Google Scholar] [CrossRef]
- Ghiat, I.; Al-Ansari, T. A Review of Carbon Capture and Utilisation as a CO2 Abatement Opportunity within the EWF Nexus. J. CO2 Util. 2021, 45, 101432. [Google Scholar] [CrossRef]
- Rackley, S.A. Introduction to Geological Storage. In Carbon Capture and Storage; Elsevier: Amsterdam, The Netherlands, 2017; pp. 285–304. [Google Scholar] [CrossRef]
- International Energy Agency. Putting CO2 to Use; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Yuan, Z.; Eden, M.R.; Gani, R. Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Ind. Eng. Chem. Res. 2016, 55, 3383–3419. [Google Scholar] [CrossRef]
- Tomić, L.; Karović-Maričić, V.; Danilović, D.; Crnogorac, M. Criteria for CO2 Storage in Geological Formations. Podzemn. Rad. 2018, 61–74. [Google Scholar] [CrossRef]
- Ji, X.; Zhu, C. CO2 Storage in Deep Saline Aquifers. In Novel Materials for Carbon Dioxide Mitigation Technology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 299–332. [Google Scholar] [CrossRef]
- Mohammadian, E.; Jan, B.M.; Azdarpour, A.; Hamidi, H.; Othman, N.H.B.; Dollah, A.; Hussein, S.N.B.C.M.; Sazali, R.A.B. CO2-EOR/Sequestration: Current Trends and Future Horizons. In Enhanced Oil Recovery Processes—New Technologies; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Ren, B.; Li, H.-Y.; Yang, Y.-Z.; Wang, Z.-Q.; Wang, B.; Xu, J.-C.; Agarwal, R. CO2 Storage with Enhanced Gas Recovery (CSEGR): A Review of Experimental and Numerical Studies. Pet. Sci. 2022, 19, 594–607. [Google Scholar] [CrossRef]
- Hannis, S.; Lu, J.; Chadwick, A.; Hovorka, S.; Kirk, K.; Romanak, K.; Pearce, J. CO2 Storage in Depleted or Depleting Oil and Gas Fields: What Can We Learn from Existing Projects? Energy Procedia 2017, 114, 5680–5690. [Google Scholar] [CrossRef]
- Gassara, O.; Estublier, A.; Garcia, B.; Noirez, S.; Cerepi, A.; Loisy, C.; le Roux, O.; Petit, A.; Rossi, L.; Kennedy, S.; et al. The Aquifer-CO2 Leak Project: Numerical Modeling for the Design of a CO2 Injection Experiment in the Saturated Zone of the Saint-Emilion (France) Site. Int. J. Greenh. Gas. Control 2021, 104, 103196. [Google Scholar] [CrossRef]
- Michael, K.; Allinson, G.; Golab, A.; Sharma, S.; Shulakova, V. CO2 Storage in Saline Aquifers II–Experience from Existing Storage Operations. Energy Procedia 2009, 1, 1973–1980. [Google Scholar] [CrossRef]
- Chadwick, R.A. Offshore CO2 Storage: Sleipner Natural Gas Field beneath the North Sea. In Geological Storage of Carbon Dioxide (CO2); Elsevier: Amsterdam, The Netherlands, 2013; pp. 227–250, 251e–253e. [Google Scholar] [CrossRef]
- Quinn, M. Concurrent 8. Presentation for: Carbon Capture and Storage: A Review of Australian Projects. APPEA J. 2022, 62, 334–341. [Google Scholar] [CrossRef]
- El-hoshoudy, A.N.; Desouky, S. CO2 Miscible Flooding for Enhanced Oil Recovery. In Carbon Capture, Utilization and Sequestration; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Perera, M.; Gamage, R.; Rathnaweera, T.; Ranathunga, A.; Koay, A.; Choi, X. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis. Energies 2016, 9, 481. [Google Scholar] [CrossRef]
- IEA. Can CO2-EOR Really Provide Carbon-Negative Oil? International Energy Agency: Paris, France, 2019. [Google Scholar]
- International Energy Agency. Storing CO2 through Enhanced Oil Recovery; International Energy Agency: Paris, France, 2015. [Google Scholar]
- Clemens, T.; Wit, K. CO2 Enhanced Gas Recovery Studied for an Example Gas Reservoir. In All Days, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October 2002; OnePetro: Richardson, TX, USA, 2002. [Google Scholar] [CrossRef]
- Al-Hashami, A.; Ren, S.R.; Tohidi, B. CO2 Injection for Enhanced Gas Recovery and Geo-Storage: Reservoir Simulation and Economics. In All Days, Proceedings of the SPE Europec/EAGE Annual Conference, Madrid, Spain, 13–16 June 2005; OnePetro: Richardson, TX, USA, 2005. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Benson, S.M. Carbon Sequestration with Enhanced Gas Recovery: Identifying Candidate Sites for Pilot Study. In Proceedings of the First National Conference on Carbon Sequestration, Washington, DC, USA, 14–17 May 2001. [Google Scholar]
- Michael, K.; Neal, P.R.; Allinson, G.; Ennis-King, J.; Hou, W.; Paterson, L.; Sharma, S.; Aiken, T. Injection Strategies for Large-Scale CO2 Storage Sites. Energy Procedia 2011, 4, 4267–4274. [Google Scholar] [CrossRef]
- Pruess, K.; García, J.; Kovscek, T.; Oldenburg, C.; Rutqvist, J.; Steefel, C.; Xu, T. Code Intercomparison Builds Confidence in Numerical Simulation Models for Geologic Disposal of CO2. Energy 2004, 29, 1431–1444. [Google Scholar] [CrossRef]
- Class, H.; Ebigbo, A.; Helmig, R.; Dahle, H.K.; Nordbotten, J.M.; Celia, M.A.; Audigane, P.; Darcis, M.; Ennis-King, J.; Fan, Y.; et al. A Benchmark Study on Problems Related to CO2 Storage in Geologic Formations. Comput. Geosci. 2009, 13, 409–434. [Google Scholar] [CrossRef]
- Xu, T.; Kharaka, Y.K.; Doughty, C.; Freifeld, B.M.; Daley, T.M. Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot. Chem. Geol. 2010, 271, 153–164. [Google Scholar] [CrossRef]
- Doughty, C. Modeling Geologic Storage of Carbon Dioxide: Comparison of Non-Hysteretic and Hysteretic Characteristic Curves. Energy Convers. Manag. 2007, 48, 1768–1781. [Google Scholar] [CrossRef]
- Daley, T.M.; Myer, L.R.; Peterson, J.E.; Majer, E.L.; Hoversten, G.M. Time-Lapse Crosswell Seismic and VSP Monitoring of Injected CO2 in a Brine Aquifer. Environ. Geol. 2008, 54, 1657–1665. [Google Scholar] [CrossRef]
- Hovorka, S.; Benson, S.; Doughty, C.; Freifeld, B.; Sakurai, S.; Daley, T.; Kharaka, Y. Measuring permanence of CO2 storage in saline formation: The Frio experiment. Environ. Geosiences 2006, 13, 105–121. [Google Scholar] [CrossRef]
- Singh, V.; Cavanagh, A.; Hansen, H.; Nazarian, B.; Iding, M.; Ringrose, P. Reservoir modeling of CO2 plume behavior calibrated against monitoring data from Slepiner, Norway. In All Days, Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010; OnePetro: Richardson, TX, USA, 2010. [Google Scholar] [CrossRef]
- Dai, Z.; Xu, L.; Xiao, T.; McPherson, B.; Zhang, X.; Zheng, L.; Dong, S.; Yang, Z.; Soltanian, M.R.; Yang, C.; et al. Reactive Chemical Transport Simulations of Geologic Carbon Sequestration: Methods and Applications. Earth Sci. Rev. 2020, 208, 103265. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Hajirezaie, S.; Hosseini, S.A.; Dashtian, H.; Amooie, M.A.; Meyal, A.; Ershadnia, R.; Ampomah, W.; Islam, A.; Zhang, X. Multicomponent Reactive Transport of Carbon Dioxide in Fluvial Heterogeneous Aquifers. J. Nat. Gas. Sci. Eng. 2019, 65, 212–223. [Google Scholar] [CrossRef]
- Phade, A.; Gupta, Y. Reservoir Pressure Management Using Waterflooding: A Case Study. In All Days, Proceedings of the SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, CA, USA, 31 March–2 April 2008; OnePetro: Richardson, TX, USA, 2008. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Weingarten, M.; Ge, S. Induced Seismicity: The Potential Hazard from Shale Gas Development and CO2 Geologic Storage. Geosci. J. 2016, 20, 137–148. [Google Scholar] [CrossRef]
- Rutqvist, J.; Birkholzer, J.T.; Tsang, C.-F. Coupled Reservoir–Geomechanical Analysis of the Potential for Tensile and Shear Failure Associated with CO2 Injection in Multilayered Reservoir–Caprock Systems. Int. J. Rock Mech. Min. Sci. 2008, 45, 132–143. [Google Scholar] [CrossRef]
- Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F. Estimating Maximum Sustainable Injection Pressure during Geological Sequestration of CO2 Using Coupled Fluid Flow and Geomechanical Fault-Slip Analysis. Energy Convers. Manag. 2007, 48, 1798–1807. [Google Scholar] [CrossRef]
- Carroll, S.; Hao, Y.; Aines, R. Transport and Detection of Carbon Dioxide in Dilute Aquifers. Energy Procedia 2009, 1, 2111–2118. [Google Scholar] [CrossRef]
- Bachu, S. CO2 Storage in Geological Media: Role, Means, Status and Barriers to Deployment. Prog. Energy Combust. Sci. 2008, 34, 254–273. [Google Scholar] [CrossRef]
- Damen, K.; Faaij, A.; Turkenburg, W. Health, Safety and Environmental Risks of Underground CO2 Storage—Overview of Mechanisms and Current Knowledge. Clim. Chang. 2006, 74, 289–318. [Google Scholar] [CrossRef]
- Heggland, R. Detection of Gas Migration from a Deep Source by the Use of Exploration 3D Seismic Data. Mar. Geol. 1997, 137, 41–47. [Google Scholar] [CrossRef]
- Zweigel, P.; Hamborg, M.; Arts, R.; Lothe, A.; Sylta, Ø.; Tømmerås, A. Prediction of Migration of CO2 Injected into an Underground Depository: Reservoir Geology and Migration Modelling in the Sleipner Case (North Sea). In Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 13–16 August 2000. [Google Scholar]
- Birkholzer, J.T.; Zhou, Q. Basin-Scale Hydrogeologic Impacts of CO2 Storage: Capacity and Regulatory Implications. Int. J. Greenh. Gas Control 2009, 3, 745–756. [Google Scholar] [CrossRef]
- Davies, L.L.; Uchitel, K.; Ruple, J. Understanding Barriers to Commercial-Scale Carbon Capture and Sequestration in the United States: An Empirical Assessment. Energy Policy 2013, 59, 745–761. [Google Scholar] [CrossRef]
- Santibanez-Borda, E.; Govindan, R.; Elahi, N.; Korre, A.; Durucan, S. Maximising the Dynamic CO2 Storage Capacity through the Optimisation of CO2 Injection and Brine Production Rates. Int. J. Greenh. Gas. Control 2019, 80, 76–95. [Google Scholar] [CrossRef]
- Court, B.; Bandilla, K.W.; Celia, M.A.; Buscheck, T.A.; Nordbotten, J.M.; Dobossy, M.; Janzen, A. Initial Evaluation of Advantageous Synergies Associated with Simultaneous Brine Production and CO2 Geological Sequestration. Int. J. Greenh. Gas Control 2012, 8, 90–100. [Google Scholar] [CrossRef]
- Buscheck, T.A.; Sun, Y.; Hao, Y.; Wolery, T.J.; Bourcier, W.; Tompson, A.F.B.; Jones, E.D.; Julio Friedmann, S.; Aines, R.D. Combining Brine Extraction, Desalination and Residual-Brine Reinjection with CO2 Storage in Saline Formations: Implications for Pressure Management, Capacity and Risk Mitigation. Energy Procedia 2011, 4, 4283–4290. [Google Scholar] [CrossRef]
- Piao, J.; Han, W.S.; Kang, P.K.; Min, B.; Kim, K.-Y.; Han, G.; Park, J.G. A Hybrid Optimization Methodology Identifying Optimal Operating Conditions for Carbon Dioxide Injection in Geologic Carbon Sequestration. Int. J. Greenh. Gas Control 2020, 98, 103067. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Cather, M.; Will, R.; Gunda, D.; Dai, Z.; Soltanian, M.R. Optimum Design of CO2 Storage and Oil Recovery under Geological Uncertainty. Appl. Energy 2017, 195, 80–92. [Google Scholar] [CrossRef]
- Babaei, M.; Pan, I.; Korre, A.; Shi, J.-Q.; Govindan, R.; Durucan, S.; Quinn, M. CO2 Storage Well Rate Optimisation in the Forties Sandstone of the Forties and Nelson Reservoirs Using Evolutionary Algorithms and Upscaled Geological Models. Int. J. Greenh. Gas Control 2016, 50, 1–13. [Google Scholar] [CrossRef]
- Kashkooli, S.B.; Gandomkar, A.; Riazi, M.; Tavallali, M.S. Coupled Optimization of Carbon Dioxide Sequestration and CO2 Enhanced Oil Recovery. J. Pet. Sci. Eng. 2022, 208, 109257. [Google Scholar] [CrossRef]
- Shamshiri, H.; Jafarpour, B. Optimization of Geologic CO2 Storage in Heterogeneous Aquifers Through Improved Sweep Efficiency. In All Days, Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization, New Orleans, LA, USA, 10–12 November 2010; OnePetro: Richardson, TX, USA, 2010. [Google Scholar] [CrossRef]
- Liu, D.C.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Cameron, D.A.; Durlofsky, L.J. Optimization of Well Placement, CO2 Injection Rates and Brine Cycling for Geological Carbon Sequestration. Int. J. Greenh. Gas Control 2012, 10, 100–112. [Google Scholar] [CrossRef]
- Hooke, R.; Jeeves, T.A. “Direct Search” Solution of Numerical and Statistical Problems. J. ACM 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Zhou, Q.; Birkholzer, J.T.; Tsang, C.-F.; Rutqvist, J. A Method for Quick Assessment of CO2 Storage Capacity in Closed and Semi-Closed Saline Formations. Int. J. Greenh. Gas Control 2008, 2, 626–639. [Google Scholar] [CrossRef]
- Ehlig-Economides, C.; Economides, M.J. Sequestering Carbon Dioxide in a Closed Underground Volume. J. Pet. Sci. Eng. 2010, 70, 123–130. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005. [Google Scholar]
- Kaldi, J.; Bachu, S. Geologic Carbon Sequestration: Prediction and Verification. In Geologic Carbon Sequestration: Prediction and Verification, Proceedings of the AAPG/SEG/SPE Hedberg Conference, Vancouver, BC, Canada, 16–19 August 2009; AAPG Search and Discovery: Tulsa, OK, USA, 2009. [Google Scholar]
- Nicot, J.-P. Evaluation of Large-Scale CO2 Storage on Fresh-Water Sections of Aquifers: An Example from the Texas Gulf Coast Basin. Int. J. Greenh. Gas Control 2008, 2, 582–593. [Google Scholar] [CrossRef]
- Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K. Modeling Basin- and Plume-Scale Processes of CO2 Storage for Full-Scale Deployment. Groundwater 2009, 48, 494–514. [Google Scholar] [CrossRef] [PubMed]
- Birkholzer, J.; Zhou, Q.; Tsang, C. Large-Scale Impact of CO2 Storage in Deep Saline Aquifers: A Sensitivity Study on Pressure Response in Stratified Systems. Int. J. Greenh. Gas Control 2009, 3, 181–194. [Google Scholar] [CrossRef]
- Szulczewski, M.L.; MacMinn, C.W.; Juanes, R. How Pressure Buildup and CO2 Migration Can Both Constrain Storage Capacity in Deep Saline Aquifers. Energy Procedia 2011, 4, 4889–4896. [Google Scholar] [CrossRef]
- Sarkarfarshi, M.; Malekzadeh, F.A.; Gracie, R.; Dusseault, M.B. Parametric Sensitivity Analysis for CO2 Geosequestration. Int. J. Greenh. Gas Control 2014, 23, 61–71. [Google Scholar] [CrossRef]
- Zhao, H.; Liao, X.; Chen, Y.; Zhao, X. Sensitivity Analysis of CO2 Sequestration in Saline Aquifers. Pet. Sci. 2010, 7, 372–378. [Google Scholar] [CrossRef]
- Birkholzer, J.T.; Cihan, A.; Zhou, Q. Impact-Driven Pressure Management via Targeted Brine Extraction—Conceptual Studies of CO2 Storage in Saline Formations. Int. J. Greenh. Gas Control 2012, 7, 168–180. [Google Scholar] [CrossRef]
- Cihan, A.; Birkholzer, J.T.; Bianchi, M. Optimal Well Placement and Brine Extraction for Pressure Management during CO2 Sequestration. Int. J. Greenh. Gas Control 2015, 42, 175–187. [Google Scholar] [CrossRef]
- Al Hameli, F.; Belhaj, H.; al Dhuhoori, M. CO2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment. Energies 2022, 15, 7805. [Google Scholar] [CrossRef]
- Shamshiri, H.; Jafarpour, B. Controlled CO2 Injection into Heterogeneous Geologic Formations for Improved Solubility and Residual Trapping. Water Resour. Res. 2012, 48, W02530. [Google Scholar] [CrossRef]
- Weir, G.J.; White, S.P.; Kissling, W.M. Reservoir Storage and Containment of Greenhouse Gases. Energy Convers. Manag. 1995, 36, 531–534. [Google Scholar] [CrossRef]
- Lindeberg, E.; Wessel-Berg, D. Vertical Convection in an Aquifer Column under a Gas Cap of CO2. Energy Convers. Manag. 1997, 38, S229–S234. [Google Scholar] [CrossRef]
- McPherson, B.J.O.L.; Cole, B.S. Multiphase CO2 Flow, Transport and Sequestration in the Powder River Basin, Wyoming, USA. J. Geochem. Explor. 2000, 69–70, 65–69. [Google Scholar] [CrossRef]
- Ennisking, J.; Paterson, L. Rate of Dissolution Due to Convective Mixing in the Underground Storage of Carbon Dioxide. In Greenhouse Gas Control Technologies, Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 1–4 October 2002; Elsevier: Amsterdam, The Netherlands, 2003; pp. 507–510. [Google Scholar] [CrossRef]
- Kumar, A.; Ozah, R.; Noh, M.; Pope, G.A.; Bryant, S.; Sepehrnoori, K.; Lake, L.W. Reservoir Simulation of CO2 Storage in Deep Saline Aquifers. SPE J. 2005, 10, 336–348. [Google Scholar] [CrossRef]
- Obi, E.-O.I.; Blunt, M.J. Streamline-Based Simulation of Carbon Dioxide Storage in a North Sea Aquifer. Water Resour. Res. 2006, 42, W03414. [Google Scholar] [CrossRef]
- Qi, R.; Laforce, T.; Blunt, M. Design of Carbon Dioxide Storage in Aquifers. Int. J. Greenh. Gas Control 2009, 3, 195–205. [Google Scholar] [CrossRef]
- Juanes, R.; Spiteri, E.J.; Orr, F.M.; Blunt, M.J. Impact of Relative Permeability Hysteresis on Geological CO2 Storage. Water Resour. Res. 2006, 42, W12418. [Google Scholar] [CrossRef]
- Rackley, S.A. Carbon Capture and Storage; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Matter, J.M.; Kelemen, P.B. Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nat. Geosci. 2009, 2, 837–841. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rezaee, R.; Bing, C.H.; Nagarajan, R.; Hamid, M.A. CO2 Storage in Depleted Gas Reservoirs: A Study on the Effect of Residual Gas Saturation. Petroleum 2018, 4, 95–107. [Google Scholar] [CrossRef]
- Liu, Q.; Maroto-Valer, M.M. Study of Mineral Trapping of CO2 and Seal Leakage Mitigation. Energy Procedia 2014, 63, 5490–5494. [Google Scholar] [CrossRef]
- Leonenko, Y.; Keith, D.W. Reservoir Engineering To Accelerate the Dissolution of CO2 Stored in Aquifers. Environ. Sci. Technol. 2008, 42, 2742–2747. [Google Scholar] [CrossRef]
- Kumar, D. Optimization of Well Settings to Maximize Residually Trapped CO2 in Geologic Carbon Sequestration. Master’s Thesis, Stanford University, Stanford, CA, USA, 2007. [Google Scholar]
- Hassanzadeh, H.; Pooladi-Darvish, M.; Keith, D.W. Accelerating CO2 Dissolution in Saline Aquifers for Geological Storage—Mechanistic and Sensitivity Studies. Energy Fuels 2009, 23, 3328–3336. [Google Scholar] [CrossRef]
- Nghiem, L.; Yang, C.; Shrivastava, V.; Kohse, B.; Hassam, M.; Card, C. Risk Mitigation through the Optimization of Residual Gas and Solubility Trapping for CO2 Storage in Saline Aquifers. Energy Procedia 2009, 1, 3015–3022. [Google Scholar] [CrossRef]
- Nghiem, L.; Shrivastava, V.; Kohse, B.; Hassam, M.; Yang, C. Simulation and Optimization of Trapping Processes for CO2 Storage in Saline Aquifers. J. Can. Pet. Technol. 2010, 49, 15–22. [Google Scholar] [CrossRef]
- Shafaei, M.J.; Abedi, J.; Hassanzadeh, H.; Chen, Z. Reverse Gas-Lift Technology for CO2 Storage into Deep Saline Aquifers. Energy 2012, 45, 840–849. [Google Scholar] [CrossRef]
- Rasmusson, K.; Rasmusson, M.; Tsang, Y.; Niemi, A. A Simulation Study of the Effect of Trapping Model, Geological Heterogeneity and Injection Strategies on CO2 Trapping. Int. J. Greenh. Gas Control 2016, 52, 52–72. [Google Scholar] [CrossRef]
- Vo Thanh, H.; Sugai, Y.; Nguele, R.; Sasaki, K. Robust Optimization of CO2 Sequestration through a Water Alternating Gas Process under Geological Uncertainties in Cuu Long Basin, Vietnam. J. Nat. Gas. Sci. Eng. 2020, 76, 103208. [Google Scholar] [CrossRef]
- Burton, M.; Bryant, S.L. Surface Dissolution: Minimizing Groundwater Impact and Leakage Risk Simultaneously. Energy Procedia 2009, 1, 3707–3714. [Google Scholar] [CrossRef]
- Tao, Q.; Bryant, S.L. Optimization of Injection/Extraction Rates for Surface-Dissolution Process. SPE J. 2014, 19, 598–607. [Google Scholar] [CrossRef]
- Kovscek, A.R.; Cakici, M.D. Geologic Storage of Carbon Dioxide and Enhanced Oil Recovery. II. Cooptimization of Storage and Recovery. Energy Convers. Manag. 2005, 46, 1941–1956. [Google Scholar] [CrossRef]
- Leach, A.; Mason, C.F.; van‘t Veld, K. Co-Optimization of Enhanced Oil Recovery and Carbon Sequestration. Resour. Energy Econ. 2011, 33, 893–912. [Google Scholar] [CrossRef]
- Malik, Q.M.; Islam, M.R. CO2 Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas Storage with Horizontal Wells. In All Days, Proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 3–5 April 2000; OnePetro: Richardson, TX, USA, 2000. [Google Scholar] [CrossRef]
- Jessen, K.; Kovscek, A.R.; Orr, F.M. Increasing CO2 Storage in Oil Recovery. Energy Convers. Manag. 2005, 46, 293–311. [Google Scholar] [CrossRef]
- Asghari, K.; Aldliwe, A. Optimization of Carbon Dioxide Sequestration and Improved Oil Recovery in Oil Reservoirs. In Greenhouse Gas Control Technologies 7; Elsevier: Amsterdam, The Netherlands, 2005; pp. 381–389. [Google Scholar] [CrossRef]
- Asghari, K.; Al-Dliwe, A.; Mahinpey, N. Effect of Operational Parameters on Carbon Dioxide Storage Capacity in a Heterogeneous Oil Reservoir: A Case Study. Ind. Eng. Chem. Res. 2006, 45, 2452–2456. [Google Scholar] [CrossRef]
- Babadagli, T. Optimization of CO2 Injection for Sequestration/Enhanced Oil Recovery and Current Status in Canada. In Advances in the Geological Storage of Carbon Dioxide; Kluwer Academic Publishers: Dordrecht, The Netherlands; pp. 261–270. [CrossRef]
- Trivedi, J.J.; Babadagli, T. Optimal Injection Strategies for CO2 and Flue Gas Sequestration during Tertiary Oil Recovery. Oil Gas Eur. Mag. 2007, 33, 22–26. [Google Scholar]
- Trivedi, J.J.; Babadagli, T.; Lavoie, R.G.; Nimchuk, D. Acid gas sequestration during tertiary oil recovery: Optimal injection strategies and importance of operational parameters. J. Can. Pet. Technol. 2007, 46, 60–68. [Google Scholar] [CrossRef]
- Qi, R.; LaForce, T.C.; Blunt, M.J. Design of Carbon Dioxide Storage in Oilfields. In All Days, Proceedigns of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008; OnePetro: Richardson, TX, USA, 2008. [Google Scholar] [CrossRef]
- Pamukçu, Y.Z.; Gumrah, F. A Numerical Simulation Study of Carbon-Dioxide Sequestration into a Depleted Oil Reservoir. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 1348–1367. [Google Scholar] [CrossRef]
- Xiao, C.; Harris, M.L.; Wang, F.; Grigg, R. Field Testing and Numerical Simulation of Combined CO2 Enhanced Oil Recovery and Storage in the SACROC Unit. In All Days, Proceedings of the Canadian Unconventional Resources Conference, Calgary, AB, Canada, 15–17 November 2011; OnePetro: Richardson, TX, USA, 2011. [Google Scholar] [CrossRef]
- Sobers, L.E.; Blunt, M.J.; LaForce, T.C. Design of Simultaneous Enhanced Oil Recovery and Carbon Dioxide Storage With Potential Application to Offshore Trinidad. SPE J. 2013, 18, 345–354. [Google Scholar] [CrossRef]
- Li, L.; Khorsandi, S.; Johns, R.T.; Dilmore, R.M. CO2 Enhanced Oil Recovery and Storage Using a Gravity-Enhanced Process. Int. J. Greenh. Gas Control 2015, 42, 502–515. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Pouladi, B.; Barghi, T. Numerical Modeling of CO2 Injection Scenarios in Petroleum Reservoirs: Application to CO2 Sequestration and EOR. J. Nat. Gas. Sci. Eng. 2016, 30, 38–49. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.; Grigg, R.B.; Cather, M.; Gragg, E.; Will, R.A.; White, M.; Moodie, N.; Dai, Z. Performance Assessment of CO2-Enhanced Oil Recovery and Storage in the Morrow Reservoir. Geomech. Geophys. Geo-Energy Geo-Resour. 2017, 3, 245–263. [Google Scholar] [CrossRef]
- Kamali, F.; Hussain, F. Field-Scale Simulation of CO2 Enhanced Oil Recovery and Storage through SWAG Injection Using Laboratory Estimated Relative Permeabilities. J. Pet. Sci. Eng. 2017, 156, 396–407. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; McPherson, B.; Will, R.A.; Lee, S.; Dai, Z.; Pan, F. Co-Optimization of CO2-EOR and Storage Processes in Mature Oil Reservoirs. Greenh. Gases Sci. Technol. 2017, 7, 128–142. [Google Scholar] [CrossRef]
- Mokhtari, R.; Ayatollahi, S.; Hamid, K.; Zonnouri, A. Co-Optimization of Enhanced Oil Recovery and Carbon Dioxide Sequestration in a Compositionally Grading Iranian Oil Reservoir; Technical and Economic Approach. In Day 1 Mon, Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 7 November 2016; OnePetro: Richardson, TX, USA, 2016. [Google Scholar] [CrossRef]
- Eshraghi, S.E.; Rasaei, M.R.; Zendehboudi, S. Optimization of Miscible CO2 EOR and Storage Using Heuristic Methods Combined with Capacitance/Resistance and Gentil Fractional Flow Models. J. Nat. Gas. Sci. Eng. 2016, 32, 304–318. [Google Scholar] [CrossRef]
- Kamali, F.; Cinar, Y. Co-Optimizing Enhanced Oil Recovery and CO2 Storage by Simultaneous Water and CO2 Injection. Energy Explor. Exploit. 2014, 32, 281–300. [Google Scholar] [CrossRef]
- Dai, Z.; Middleton, R.; Viswanathan, H.; Fessenden-Rahn, J.; Bauman, J.; Pawar, R.; Lee, S.-Y.; McPherson, B. An Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery. Environ. Sci. Technol. Lett. 2014, 1, 49–54. [Google Scholar] [CrossRef]
- Su, K.; Liao, X.; Zhao, X.; Zhang, H. Coupled CO2 Enhanced Oil Recovery and Sequestration in China’s Demonstration Project: Case Study and Parameter Optimization. Energy Fuels 2013, 27, 378–386. [Google Scholar] [CrossRef]
- Forooghi, A.; Hamouda, A.A.; Eilertsen, T. Co-Optimization of CO2 EOR and Sequestration Process in a North Sea Chalk Reservoir. In All Days, Proceedings of the SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, United Arab Emirates, 19–21 October 2009; OnePetro: Richardson, TX, USA, 2009. [Google Scholar] [CrossRef]
- Le Van, S.; Chon, B.H. Evaluating the Critical Performances of a CO2–Enhanced Oil Recovery Process Using Artificial Neural Network Models. J. Pet. Sci. Eng. 2017, 157, 207–222. [Google Scholar] [CrossRef]
- Kwak, D.-H.; Kim, J.-K. Techno-Economic Evaluation of CO2 Enhanced Oil Recovery (EOR) with the Optimization of CO2 Supply. Int. J. Greenh. Gas Control 2017, 58, 169–184. [Google Scholar] [CrossRef]
- Song, Z.; Li, Z.; Wei, M.; Lai, F.; Bai, B. Sensitivity Analysis of Water-Alternating-CO2 Flooding for Enhanced Oil Recovery in High Water Cut Oil Reservoirs. Comput. Fluids 2014, 99, 93–103. [Google Scholar] [CrossRef]
- Safarzadeh, M.A.; Motahhari, S.M. Co-Optimization of Carbon Dioxide Storage and Enhanced Oil Recovery in Oil Reservoirs Using a Multi-Objective Genetic Algorithm (NSGA-II). Pet. Sci. 2014, 11, 460–468. [Google Scholar] [CrossRef]
- Ettehadtavakkol, A.; Lake, L.W.; Bryant, S.L. CO2-EOR and Storage Design Optimization. Int. J. Greenh. Gas Control 2014, 25, 79–92. [Google Scholar] [CrossRef]
- Jahangiri, H.R.; Zhang, D. Ensemble Based Co-Optimization of Carbon Dioxide Sequestration and Enhanced Oil Recovery. Int. J. Greenh. Gas Control 2012, 8, 22–33. [Google Scholar] [CrossRef]
- Jahangiri, H.R.; Zhang, D. Optimization of the Net Present Value of Carbon Dioxide Sequestration and Enhanced Oil Recovery. In All Days, Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2011; OnePetro: Richardson, TX, USA, 2011. [Google Scholar] [CrossRef]
- Ghomian, Y.; Sepehrnoori, K.; Pope, G.A. Efficient Investigation of Uncertainties in Flood Design Parameters for Coupled CO2 Sequestration and Enhanced Oil Recovery. In All Days, Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization, New Orleans, LA, USA, 10–12 November 2010; OnePetro: Richardson, TX, USA, 2010. [Google Scholar] [CrossRef]
- Ghomian, Y.; Pope, G.A.; Sepehrnoori, K. Hysteresis and Field-Scale Optimization of WAG Injection for Coupled CO2-EOR and Sequestration. In All Days, Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008; OnePetro: Richardson, TX, USA, 2008. [Google Scholar] [CrossRef]
- Ghomian, Y.; Urun, M.; Pope, G.A.; Sepehrnoori, K. Investigation of Economic Incentives for CO2 Sequestration. In All Days, Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008; OnePetro: Richardson, TX, USA, 2008. [Google Scholar] [CrossRef]
- Vanderburgt, M.; Cantle, J.; Boutkan, V. Carbon Dioxide Disposal from Coal-Based IGCC’s in Depleted Gas Fields. Energy Convers. Manag. 1992, 33, 603–610. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Pruess, K.; Benson, S.M. Process Modeling of CO2 Injection into Natural Gas Reservoirs for Carbon Sequestration and Enhanced Gas Recovery. Energy Fuels 2001, 15, 293–298. [Google Scholar] [CrossRef]
- Rebscher, D.; Oldenburg, C.M. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2005. [Google Scholar] [CrossRef]
- Fan, L.; Tan, Q.; Li, H.; Xu, J.; Wang, X.; Liu, S. Simulation on Effects of Injection Parameters on CO2 Enhanced Gas Recovery in a Heterogeneous Natural Gas Reservoir. Adv. Theory Simul. 2021, 4, 2100127. [Google Scholar] [CrossRef]
- Kalra, S.; Wu, X. CO2 Injection for Enhanced Gas Recovery. In All Days, Proceedings of the SPE Western North American and Rocky Mountain Joint Meeting, Denver, CO, USA, 15–18 April 2014; OnePetro: Richardson, TX, USA, 2014. [Google Scholar] [CrossRef]
- Luo, F.; Xu, R.-N.; Jiang, P.-X. Numerical Investigation of the Influence of Vertical Permeability Heterogeneity in Stratified Formation and of Injection/Production Well Perforation Placement on CO2 Geological Storage with Enhanced CH4 Recovery. Appl. Energy 2013, 102, 1314–1323. [Google Scholar] [CrossRef]
- Patel, M.J.; May, E.F.; Johns, M.L. Inclusion of Connate Water in Enhanced Gas Recovery Reservoir Simulations. Energy 2017, 141, 757–769. [Google Scholar] [CrossRef]
- Jikich, S.A.; Smith, D.H.; Sams, W.N.; Bromhal, G.S. Enhanced Gas Recovery (EGR) with Carbon Dioxide Sequestration: A Simulation Study of Effects of Injection Strategy and Operational Parameters. In All Days, Proceedings of the SPE Eastern Regional Meeting, Pittsburgh, PA, USA, 7–11 October 2003; OnePetro: Richardson, TX, USA, 2003. [Google Scholar] [CrossRef]
- Hussen, C.; Amin, R.; Madden, G.; Evans, B. Reservoir Simulation for Enhanced Gas Recovery: An Economic Evaluation. J. Nat. Gas Sci. Eng. 2012, 5, 42–50. [Google Scholar] [CrossRef]
- Hou, Z.; Gou, Y.; Taron, J.; Gorke, U.J.; Kolditz, O. Thermo-Hydro-Mechanical Modeling of Carbon Dioxide Injection for Enhanced Gas-Recovery (CO2-EGR): A Benchmarking Study for Code Comparison. Environ. Earth Sci. 2012, 67, 549–561. [Google Scholar] [CrossRef]
- Liu, S.; Agarwal, R.; Sun, B.; Wang, B.; Li, H.; Xu, J.; Fu, G. Numerical Simulation and Optimization of Injection Rates and Wells Placement for Carbon Dioxide Enhanced Gas Recovery Using a Genetic Algorithm. J. Clean. Prod. 2021, 280, 124512. [Google Scholar] [CrossRef]
- Zangeneh, H.; Jamshidi, S.; Soltanieh, M. Coupled Optimization of Enhanced Gas Recovery and Carbon Dioxide Sequestration in Natural Gas Reservoirs: Case Study in a Real Gas Field in the South of Iran. Int. J. Greenh. Gas Control 2013, 17, 515–522. [Google Scholar] [CrossRef]
- Biagi, J.; Agarwal, R.; Zhang, Z. Simulation and Optimization of Enhanced Gas Recovery Utilizing CO2. Energy 2016, 94, 78–86. [Google Scholar] [CrossRef]
- You, J.; Ampomah, W.; Sun, Q.; Kutsienyo, E.J.; Balch, R.S.; Dai, Z.; Cather, M.; Zhang, X. Machine Learning Based Co-Optimization of Carbon Dioxide Sequestration and Oil Recovery in CO2-EOR Project. J. Clean. Prod. 2020, 260, 120866. [Google Scholar] [CrossRef]
- Yeten, B.; Durlofsky, L.; Aziz, K. Optimization of Nonconventional Well Type, Location and Trajectory. In All Days, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October 2002; Society of Petroleum Engineers; OnePetro: Richardson, TX, USA, 2002. [Google Scholar] [CrossRef]
- Yang, C.; Card, C.; Nghiem, L. Economic Optimization and Uncertainty Assessment of Commercial SAGD Operations. In All Days, Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 12–14 June 2007; Petroleum Society of Canada; OnePetro: Richardson, TX, USA, 2007. [Google Scholar] [CrossRef]
- Nghiem, L.; Yang, C.; Shrivastava, V.; Kohse, B.; Hassam, M.; Chen, D.; Card, C. Optimization of Residual Gas and Solubility Trapping for CO2 Storage in Saline Aquifers. In All Days, Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2–4 February 2009; OnePetro: Richardson, TX, USA, 2009. [Google Scholar] [CrossRef]
- Zhang, Z.; Agarwal, R.K. Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers for Vertical and Horizontal Well Injection. Comput. Geosci. 2012, 16, 891–899. [Google Scholar] [CrossRef]
- Zhang, Z.; Agarwal, R. Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers. Comput. Fluids 2013, 80, 79–87. [Google Scholar] [CrossRef]
- Zhang, Z.; Agarwal, R.K. Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers for Enhanced Storage Capacity and Secured Sequestration. Energy Environ. 2013, 4, 387–398. [Google Scholar]
- Cihan, A.; Birkholzer, J.; Bianchi, M. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction. Energy Procedia 2014, 63, 5325–5332. [Google Scholar] [CrossRef]
- Tarrahi, M.; Afra, S. Optimization of Geological Carbon Sequestration in Heterogeneous Saline Aquifers through Managed Injection for Uniform CO2 Distribution. In All Days, Proceedings of the Carbon Management Technology Conference (CMTC), Sugar Land,, TX, USA, 17–19 November 2015; OnePetro: Richardson, TX, USA, 2015. [Google Scholar] [CrossRef]
- Stopa, J.; Janiga, D.; Wojnarowski, P.; Czarnota, R. Optimization of Well Placement and Control to Maximize CO2 Trapping during Geologic Sequestration. AGH Drill. Oil Gas 2016, 33, 93. [Google Scholar] [CrossRef]
- Borda, E.S.; Govindan, R.; Elahi, N.; Korre, A.; Durucan, S. The Development of a Dynamic CO2 Injection Strategy for the Depleted Forties and Nelson Oilfields Using Regression-Based Multi-Objective Programming. Energy Procedia 2017, 114, 3335–3342. [Google Scholar] [CrossRef]
- González-Nicolás, A.; Cihan, A.; Petrusak, R.; Zhou, Q.; Trautz, R.; Riestenberg, D.; Godec, M.; Birkholzer, J.T. Pressure Management via Brine Extraction in Geological CO2 Storage: Adaptive Optimization Strategies under Poorly Characterized Reservoir Conditions. Int. J. Greenh. Gas Control 2019, 83, 176–185. [Google Scholar] [CrossRef]
Region | Operational Commercial CCS Facilities | Storage Capacity (Mtpa) |
---|---|---|
North and South America | 19 | 32.3 |
Europe | 4 | 1.5 |
Asia-Pacific | 4 | 5.1 |
Middle East | 3 | 3.7 |
Total | 30 | 42.6 |
Year | Authors | Optimization Approach | Objective Function(s) |
---|---|---|---|
2007 | Kumar | Conjugate gradient method | Maximize residual trapped CO2/minimize gas saturation in the top layer of an aquifer model (various cases) |
2009 | Nghiem et al. | Procedure developed by Yang et al. | Maximize trapping efficiency index that involves both residual and solubility trapping indices |
2010 | Nghiem et al. | Pareto-optimal solutions with a bi-objective optimization approach | Quantifying tradeoffs between residual and dissolution trapping optimization |
2010 | Shamshiri and Jafarpour | BFGS algorithm | (1) Minimize the difference in CO2 production rates among pseudo-producers to improve sweep efficiency. In addition, minimize an extra term in the objective function, which penalizes the difference of CO2 production rates among the pseudo-producers (2) Direct optimization of the total stored CO2 in the aquifer |
2012 | Shamshiri and Jafarpour | BFGS algorithm | (1) Minimize the difference of CO2 production rates among pseudo-producers to improve sweep efficiency (2) Maximize the stored CO2 in the aquifer |
2012 | Cameron and Durlofsky | Hooke–Jeeves direct search (HJDS) method | Minimize the long-term amount of mobile CO2 in a saline aquifer with constraints on the decision variables, including the optimization of location and injection schedule of multiple CO2 injectors and the optimization of brine cycling parameters |
2011, 2013 | Zhang and Agarwal | Genetic algorithm-based optimizer in TOUGH2 | Optimize CO2 sequestration efficiency and reduce CO2 plume dispersion for a water-alternating gas injection system (WAG) |
2013 | Zhang and Agarwal | Modified well injectivity and Bezier curve | Optimize aquifer storage efficiency while accounting for the caprock pressure as a constraint |
2014, 2015 | Cihan et al. | Differential evolution algorithm | Minimize the ratio of extracted fluid (brine) to that of injected fluid (CO2) as the objective function with constraints to prevent CO2 breakthrough at production wells and avoid excessive pressure |
2015 | Tarrahi and Afra | Gradient-based optimization technique | Maximize total CO2 stored in the aquifer in the form of residual and dissolved trapping |
2016 | Babaei et al. | Evolutionary optimization algorithm | Minimize the fraction of CO2 that is in a free gaseous state outside the licensed regions and maximize the amount of dissolved and residual trapped CO2 |
2016 | Stopa et al. | Genetic algorithm and the particle swarm optimization (PSO) technique | Minimize the volume of free CO2 gas at the top of a heterogeneous aquifer (minimize the risk of CO2 leakage by minimizing the volume of free CO2 gas at the top of a heterogeneous aquifer) |
2017 | Santibanez-Borda et al. | Simplex method and GRG method on a linear regression, regularized linear regression, and multivariate adaptive regression splines (MARS) | Maximize the amount of CO2 injected into the reservoir |
2019 | Gonzalez-Nicolas et al. | Constrained differential evolution an algorithm modified by a differential evolution algorithm | Minimize the volume of produced brine by minimizing the production volume ratio (produced/injected volume) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, I.; Gaganis, V. Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review. Clean Technol. 2023, 5, 609-637. https://doi.org/10.3390/cleantechnol5020031
Ismail I, Gaganis V. Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review. Clean Technologies. 2023; 5(2):609-637. https://doi.org/10.3390/cleantechnol5020031
Chicago/Turabian StyleIsmail, Ismail, and Vassilis Gaganis. 2023. "Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review" Clean Technologies 5, no. 2: 609-637. https://doi.org/10.3390/cleantechnol5020031
APA StyleIsmail, I., & Gaganis, V. (2023). Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review. Clean Technologies, 5(2), 609-637. https://doi.org/10.3390/cleantechnol5020031