Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation
Abstract
:1. Introduction
1.1. The Role of Biodiesel in Global Energy Scenario
1.2. Biodiesel Based on Vegetable Oils
1.3. Antioxidants to Improve Oxidative Stability in Biodiesel
1.4. Voltammetry Applied to Antioxidant Determination in Biodiesel
- Cyclic voltammetry: a linear potential scan (triangular shape) as a function of time is carried out, from an initial to a final potential (Ei and Ef, respectively) and the scan is usually inverted to Ei. The signal is obtained when a stationary electrode is immersed in a chemical solution without stirring. This technique is useful to carry out studies concerning electrochemical reaction mechanisms, electrode processes or organic compounds. It is mainly used for quantification, presenting low sensitivity values (LOD 10−5 M).
- Differential pulse voltammetry: DPV is applied as a function of potential versus time, and the signal consists of a series of pulses (shaped like stairs), and the base potential gradually increases at small intervals between 5–10 mV. The signal is obtained through the difference between the intensity obtained before the pulse and the intensity obtained before the end of the pulse application. Consequently, a decrease in the capacitive current is obtained, with a higher sensitivity (LOD 10−7 M) compared to CV.
1.5. Objective and Novelty of This Work
2. Materials and Methods
2.1. Raw Material
2.2. Fatty acid Methyl Ester Production
2.3. Antioxidant Addition
2.4. Extreme Oxidation Conditions
2.5. Sample Characterization
2.5.1. Fatty Acid Methyl Ester Content and Composition
2.5.2. Oxidation Stability
2.5.3. Viscosity
2.5.4. Acid and Iodine Number Determination
2.5.5. PG Content through Voltammetry
2.5.6. Other Quality Parameters
3. Results and Discussion
3.1. Cardoon Biodiesel Characterization
3.2. Effect of PG on Oxidation Stability of Biodiesel
3.3. PG Determination through Voltammetry
3.4. Effect of PG on Biodiesel during Extreme Oxidation
3.4.1. Viscosity Evolution
3.4.2. Acid Number Evolution
3.4.3. PG Content Evolution
4. Conclusions
- Cardoon biodiesel could be a suitable biofuel, as it presents characteristics within the UNE-EN 14214 standards, except for its low oxidative stability.
- Thus, the use of antioxidants, such as propyl gallate, is justified. In this case, propyl gallate showed a high effectiveness in increasing the oxidative stability of cardoon biodiesel, complying with the standard (induction time = 8 h) at low concentrations of this antioxidant.
- Therefore, with the optimum concentration of propyl gallate (425 mg·L−1), cardoon biodiesel showed good resistance to oxidation, retaining properties such as viscosity or acid number during extreme oxidation conditions.
- It was thus proven that voltammetry can be a suitable method for determining propyl gallate in cardoon biodiesel, with the subsequent monitoring of this antioxidant during oxidation. This application could be an important aspect when determining the global quality of biodiesels, as the use of additives such as antioxidants (for instance, PG) is often necessary.
- Moreover, a decrease in propyl gallate during oxidation was observed, especially during the first 3 h, with low amounts of this antioxidant remaining at the end of the extreme oxidation test. Consequently, the optimum concentration ensures that the quality of cardoon biodiesel is maintained.
- Further studies in this field should consider the application of voltammetry to determine the concentrations of combined antioxidants, such as PG or TBHQ, whose synergistic effects can enhance biodiesel properties during storage. Additionally, the possible combination of this technique with kinetic models could provide valuable information regarding the effects of antioxidants during the auto-oxidation of biodiesel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costantini, V.; Morando, V.; Olk, C.; Tausch, L. Fuelling the Fire: Rethinking European Policy in Times of Energy and Climate Crises. Energies 2022, 15, 7781. [Google Scholar] [CrossRef]
- Gitelman, L.; Kozhevnikov, M. Energy Transition Manifesto: A Contribution towards the Discourse on the Specifics Amid Energy Crisis. Energies 2022, 15, 9199. [Google Scholar] [CrossRef]
- Overland, I.; Bazilian, M.; Ilimbek Uulu, T.; Vakulchuk, R.; Westphal, K. The GeGaLo index: Geopolitical gains and losses after energy transition. Energy Strategy Rev. 2019, 26, 100406. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; Bautista, F.M.; Luna, D.; Luna, C.; Calero, J.; Posadillo, A.; Romero, A.A. Biodiesel at the crossroads: A critical review. Catalysts 2019, 9, 1033. [Google Scholar] [CrossRef]
- Androniceanu, A.; Sabie, O.M. Overview of Green Energy as a Real Strategic Option for Sustainable Development. Energies 2022, 15, 8573. [Google Scholar] [CrossRef]
- Ideris, F.; Zamri, M.F.M.A.; Shamsuddin, A.H.; Nomanbhay, S.; Kusumo, F.; Fattah, I.M.R.; Mahlia, T.M.I. Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production. Energies 2022, 15, 7190. [Google Scholar] [CrossRef]
- Sales, M.B.; Borges, P.T.; Ribeiro Filho, M.N.; Miranda da Silva, L.R.; Castro, A.P.; Sanders Lopes, A.A.; Chaves de Lima, R.K.; de Sousa Rios, M.A.; dos Santos, J.C.S. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioengineering 2022, 9, 539. [Google Scholar] [CrossRef]
- Haq, M.U.; Jafry, A.T.; Ahmad, S.; Cheema, T.A.; Ansari, M.Q.; Abbas, N. Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends. Energies 2022, 15, 7281. [Google Scholar] [CrossRef]
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable energy and geopolitics: A review. Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Curt, M.D.; Sánchez, G.; Fernández, J. The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass Bioenergy 2002, 23, 33–46. [Google Scholar] [CrossRef]
- Ciancolini, A.; Alignan, M.; Pagnotta, M.A.; Vilarem, G.; Crinò, P. Selection of Italian cardoon genotypes as industrial crop for biomass and polyphenol production. Ind. Crops Prod. 2013, 51, 145–151. [Google Scholar] [CrossRef]
- Martínez, G.; Sánchez, N.; Encinar, J.M.; González, J.F. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass Bioenergy 2014, 63, 22–32. [Google Scholar] [CrossRef]
- Varatharajan, K.; Pushparani, D.S. Screening of antioxidant additives for biodiesel fuels. Renew. Sustain. Energy Rev. 2018, 82, 2017–2028. [Google Scholar] [CrossRef]
- Aini, N.; Bello, U.; Sya, M.; Ruslan, H. Heliyon The role of antioxidants in improving biodiesel ’ s oxidative stability, poor cold fl ow properties, and the effects of the duo on engine performance: A review. Heliyon 2022, 8, e09846. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Kumar, D.; Singh, B.; Shahbeig, H.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Biodiesel antioxidants and their impact on the behavior of diesel engines: A comprehensive review. Fuel Process. Technol. 2022, 232, 107264. [Google Scholar] [CrossRef]
- Serqueira, D.S.; Pereira, J.F.S.; Squissato, A.L.; Rodrigues, M.A.; Lima, R.C.; Faria, A.M.; Richter, E.M.; Munoz, R.A.A. Oxidative stability and corrosivity of biodiesel produced from residual cooking oil exposed to copper and carbon steel under simulated storage conditions: Dual effect of antioxidants. Renew. Energy 2021, 164, 1485–1495. [Google Scholar] [CrossRef]
- Xin, J.; Imahara, H.; Saka, S. Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 2009, 88, 282–286. [Google Scholar] [CrossRef]
- Rodrigues, J.S.; do Valle, C.P.; Uchoa, A.F.J.; Ramos, D.M.; da Ponte, F.A.F.; de S. Rios, M.A.; de Queiroz Malveira, J.; Pontes Silva Ricardo, N.M. Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renew. Energy 2020, 156, 1100–1106. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.; Yang, S.; Bi, Y. Inhibitory effect of antioxidants on biodiesel crystallization: Revealing the role of antioxidants. Fuel 2021, 297, 120782. [Google Scholar] [CrossRef]
- de Araujo, T.A.; Barbosa, A.M.J.; Viana, L.H.; Ferreira, V.S. Electroanalytical determination of TBHQ, a synthetic antioxidant, in soybean biodiesel samples. Fuel 2011, 90, 707–712. [Google Scholar] [CrossRef]
- de Araújo, T.A.; Barbosa, A.M.J.; Viana, L.H.; Ferreira, V.S. Voltammetric determination of tert-butylhydroquinone in biodiesel using a carbon paste electrode in the presence of surfactant. Colloids Surf. B Biointerfaces 2010, 79, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Tormin, T.F.; Cunha, R.R.; Richter, E.M.; Munoz, R.A.A. Fast simultaneous determination of BHA and TBHQ antioxidants in biodiesel by batch injection analysis using pulsed-amperometric detection. Talanta 2012, 99, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Caramit, R.P.; de Freitas Andrade, A.G.; Gomes de Souza, J.B.; de Araujo, T.A.; Viana, L.H.; Trindade, M.A.G.; Ferreira, V.S. A new voltammetric method for the simultaneous determination of the antioxidants TBHQ and BHA in biodiesel using multi-walled carbon nanotube screen-printed electrodes. Fuel 2013, 105, 306–313. [Google Scholar] [CrossRef]
- Goulart, L.A.; Teixeira, A.R.L.; Ramalho, D.A.; Terezo, A.J.; Castilho, M. Development of an analytical method for the determination of tert-butylhydroquinone in soybean biodiesel. Fuel 2014, 115, 126–131. [Google Scholar] [CrossRef]
- Squissato, A.L.; Richter, E.M.; Munoz, R.A.A. Voltammetric determination of copper and tert-butylhydroquinone in biodiesel: A rapid quality control protocol. Talanta 2019, 201, 433–440. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Guiberteau, A.; Encinar, J.M. Effect of tert-butylhydroquinone on biodiesel properties during extreme oxidation conditions. Fuel 2022, 310, 122339. [Google Scholar] [CrossRef]
- Suzihaque, M.U.H.; Alwi, H.; Kalthum Ibrahim, U.; Abdullah, S.; Haron, N. Biodiesel production from waste cooking oil: A brief review. Mater. Today Proc. 2022, 63, S490–S495. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Encinar, J.M.; González, J.F. Safflower biodiesel: Improvement of its oxidative stability by using BHA and TBHQ. Energies 2019, 12, 1940. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Encinar, J.M.; Guiberteau, A.; Márquez, S. The Effect of Antioxidants on Corn and Sunflower Biodiesel Properties under Extreme Oxidation Conditions. J. Am. Oil Chem. Soc. 2019, 97, 201–212. [Google Scholar] [CrossRef]
- UNE-EN ISO 12966-2:2011; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters Of Fatty Acids. ISO: Geneva, Switzerland, 2011.
- Focke, W.W.; Van Der Westhuizen, I.; Oosthuysen, X. Biodiesel oxidative stability from Rancimat data. Thermochim. Acta 2016, 633, 116–121. [Google Scholar] [CrossRef]
- UNE-EN ISO 3104/AC:1999; Petroleum Products. Transparent and Opaque Liquids. Determination of Kinematic Viscosity and calculation of dynamic Viscosity (ISO 3104:1994). ISO: Geneva, Switzerland, 1999.
- UNE-EN-12634:1999; Productos Petrolíferos y Lubricantes. Determinación del Índice de Ácido. Método de Valoración Potenciométrica en un Medio no Acuoso. AENOR: Madrid, Spain, 1999.
- UNE-EN 14111:2003; Fat and Oil Derivatives. Fatty Acid Methyl Esters (FAME). Determination of Iodine Value. AENOR: Madrid, Spain, 2003.
- Espinosa-Mansilla, A.; Muñoz de la Peña, A.; González Gómez, D. Using Univariate Linear Regression Calibration Software in the MATLAB Environment. Application to Chemistry Laboratory Practices. Chem. Educ. 2005, 10, 1–9. [Google Scholar] [CrossRef]
- UNE-EN-ISO 3675; Crude Petroleum and Liquid Petroleum Products. Laboratory Determination of Density. Hydrometer Method. ISO: Geneva, Switzerland, 1999.
- UNE-EN-ISO-12937:2000; Productos Petrolíferos. Determinación de Agua. Método de Karl Fischer por Valoración Culombimétrica. ISO: Geneva, Switzerland, 2001.
- UNE-EN 116:2015; Diesel and Domestic Heating Fuels—Determination of Cold Filter Plugging Point—Stepwise Cooling Bath Method. German Institute for Standardization: Berlin, Germany, 2015.
- UNE-EN 51023:1990; Petroleum Products. Determination of Flash and Fire Points. Cleveland Open Cup Method. AENOR: Madrid, Spain, 1990.
- UNE-EN 14214:2012; Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Biodiesel Engines and Heating Applications—Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2013.
- Sajjadi, B.; Raman, A.A.A.; Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev. 2016, 63, 62–92. [Google Scholar] [CrossRef]
- Jaliliantabar, F.; Ghobadian, B.; Carlucci, A.P.; Najafi, G.; Ficarella, A.; Strafella, L.; Santino, A.; De Domenico, S. Comparative evaluation of physical and chemical properties, emission and combustion characteristics of brassica, cardoon and coffee based biodiesels as fuel in a compression-ignition engine. Fuel 2018, 222, 156–174. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Sánchez, N.; Encinar, J.M. Valorization of Cynara Cardunculus L. Oil as the Basis of a Biorefinery for Biodiesel and Biolubricant Production. Energies 2020, 13, 5085. [Google Scholar] [CrossRef]
- Mancini, M.; Lanza Volpe, M.; Gatti, B.; Malik, Y.; Moreno, A.C.; Leskovar, D.; Cravero, V. Characterization of cardoon accessions as feedstock for biodiesel production. Fuel 2019, 235, 1287–1293. [Google Scholar] [CrossRef]
- Saluja, R.K.; Kumar, V.; Sham, R. Stability of biodiesel—A review. Renew. Sustain. Energy Rev. 2016, 62, 866–881. [Google Scholar] [CrossRef]
- Tang, H.; De Guzman, R.C.; Salley, S.O.; Ng, S.K.Y. The oxidative stability of biodiesel: Effects of FAME composition and antioxidant. Lipid Technol. 2008, 20, 249–252. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Encinar Martín, J.M. Cardoon biolubricant through double transesterification: Assessment of its oxidative, thermal and storage stability. Mater. Lett. 2021, 302, 130454. [Google Scholar] [CrossRef]
- Khan, E.; Ozaltin, K.; Spagnuolo, D.; Bernal-ballen, A.; Piskunov, M.V.; Di Martino, A. Biodiesel from Rapeseed and Sunflower Oil: Effect of the Transesterification Conditions and Oxidation Stability. Energies 2023, 16, 657. [Google Scholar] [CrossRef]
- Sia, C.B.; Kansedo, J.; Tan, Y.H.; Lee, K.T. Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatal. Agric. Biotechnol. 2020, 24, 101514. [Google Scholar] [CrossRef]
- Serrano, M.; Martínez, M.; Aracil, J. Long term storage stability of biodiesel: Influence of feedstock, commercial additives and purification step. Fuel Process. Technol. 2013, 116, 135–141. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Cabanillas, A.G.; Romero, Á.G.; Encinar Martín, J.M. Monitoring tert-Butylhydroquinone Content and Its Effect on a Biolubricant during Oxidation. Molecules 2022, 27, 8931. [Google Scholar] [CrossRef] [PubMed]
Parameter | Units | Results | UNE-EN 14214 Limits |
---|---|---|---|
FAME content | % | 97.3 | >96.5 |
Density | kg·m−3 | 880 | 860–900 |
Viscosity at 40 °C | mm2·s−1 | 4.44 | 3.50–5.00 |
Acid number | mg KOH·g−1 | 0.25 | <0.50 |
Oxidation stability | h | 2.02 | >8.00 |
Iodine number | g I2·100 g−1 | 116 | <120 |
C. F. P. P. † | °C | −1 | −20–+5 |
Flash point | °C | 179 | >120 |
Combustion point | °C | 188 | n.a. * |
Moisture | mg·kg−1 | 320 | <500 |
Methyl linolenate | % | 2 | 12 |
Parameter | Results |
---|---|
Number of standards | 6 |
Slope, nA·mg·L−1 | 1761 |
Intercept, nA | 952.8 |
Standard deviation (slope), nA·mg·L−1 | 4.72 |
Standard deviation (intercept), nA | 73.89 |
Coefficient of determination, R2 | 0.9886 |
Linearity, % | 97.32 |
Analytical sensitivity, gamma−1 | 0.9908 |
Detection limit (Long–Winefordner), mg·L−1 | 1.43 |
Detection limit (Clayton), mg·L−1 | 2.43 |
Quantification limit, mg·L−1 | 24.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogales-Delgado, S.; Guiberteau Cabanillas, A.; Moro, J.P.; Encinar Martín, J.M. Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation. Clean Technol. 2023, 5, 569-583. https://doi.org/10.3390/cleantechnol5020029
Nogales-Delgado S, Guiberteau Cabanillas A, Moro JP, Encinar Martín JM. Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation. Clean Technologies. 2023; 5(2):569-583. https://doi.org/10.3390/cleantechnol5020029
Chicago/Turabian StyleNogales-Delgado, Sergio, Agustina Guiberteau Cabanillas, Juan Pedro Moro, and José María Encinar Martín. 2023. "Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation" Clean Technologies 5, no. 2: 569-583. https://doi.org/10.3390/cleantechnol5020029
APA StyleNogales-Delgado, S., Guiberteau Cabanillas, A., Moro, J. P., & Encinar Martín, J. M. (2023). Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation. Clean Technologies, 5(2), 569-583. https://doi.org/10.3390/cleantechnol5020029