The Untapped Area Potential for Photovoltaic Power in the European Union
Abstract
:1. Introduction
2. Policy Background
3. Status of Photovoltaics in the EU
4. The Potential of Where to Install Photovoltaics in the EU
4.1. Rooftops
4.2. Coal Mining Regions
4.3. Dual-Use of Infrastructure
- Closed landfill sites: First, landfills are brownfields, and their use for PV plants will not affect sensitive ecosystems [28]. Second, closed landfills are often connected to the electricity grid, and in the case of landfill gas use, the PV system can improve the load factor of the plant;
- Hydro dams: In the case of earthen dams, the PV installation can protect the surface and minimise erosion caused by rain [35];
- Sound barriers: Sound barriers along motorways and train lines can be used to generate electricity not only when they are south facing; thanks to bifacial PV technology, east- and west-facing barriers can also be utilised [40,41]. The electricity generated along train lines could be used directly to power trains. In contrast, sound barriers on motorways could provide sustainable electricity either to the municipalities they are shielding the noise from or to electric vehicle charging stations in service areas.
5. Conclusions
Funding
Conflicts of Interest
References
- In Depth Analysis in Support of the Commission Communication COM. 773 A Clean Planet for All—A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Rebública Porugesa, XXII Governo, Novo Leilão Solar Garante Poupança Anual de 37,2 Milhões Aos Consumidores. 26 August 2020. Available online: https://www.portugal.gov.pt/pt/gc22/comunicacao/noticia?i=novo-leilao-solar-garante-poupanca-anual-de-372-milhoes-aos-consumidores (accessed on 31 August 2020).
- St John, J.; Greentechmedia, L.A. Looks to Break Price Records with Massive Solar-Battery Project. 1 July 2019. Available online: https://www.greentechmedia.com/articles/read/ladwp-plans-to-break-new-low-price-records-with-massive-solar-battery-proje#gs.0kbm0m (accessed on 31 August 2020).
- Energy for the Future: Renewable Sources of Energy—White Paper for a Community Strategy and Action Plan, COM(97)599 Final (26/11/1997). Available online: http://europa.eu.int/comm/energy/library/599fi_en.pdf (accessed on 31 August 2020).
- Jäger-Waldau, A.; Scholz, H. EU renewables: Energy end-use efficiency and electricity from biomass, wind and PV in the EU. Refocus 2005, 6, 58–60. [Google Scholar] [CrossRef]
- European Commission Communication. The European Green Deal; COM (2019) 640 final; European Commission: Brussels, Belgium, 11 December 2019. [Google Scholar]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast). Off. J. Eur. Union 2018, L 328/82.
- European Commission Communication. Sustainable Europe Investment Plan—European Green Deal Investment Plan; COM (2020) 21final; European Commission: Brussels, Belgium, 14 January 2020. [Google Scholar]
- European Commission. Commission Proposal for a Regulation: European Climate Law; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- United Nations Environment Programme. Emissions Gap Report 2019; UNEP: Nairobi, Kenya, 2019; ISBN 978-92-807-3766-0. [Google Scholar]
- European Council. EUCO 10/20. 21 July 2020. Available online: https://www.consilium.europa.eu/media/45109/210720-euco-final-conclusions-en.pdf (accessed on 31 August 2020).
- Szabó, S.; Jäger-Waldau, A.; Szabó, L. Risk adjusted financial costs of photovoltaics. Energy Policy 2010, 38, 3807–3819. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of photovoltaics-February 2020. Energies 2020, 13, 930. [Google Scholar] [CrossRef] [Green Version]
- Masson, G.; Kaizuka, I.; Lindahl, J.; Jaeger-Waldau, A.; Neubourg, G.; Donoso, J.; Tilli, F. A Snapshot of Global PV Markets—The Latest Survey Results on PV Markets and Policies from the IEA PVPS Programme in 2018. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 588–591. [Google Scholar] [CrossRef]
- Jäger-Waldau, A.; Kougias, I.; Taylor, N.; Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renew. Sustain. Energy Rev. 2020, 126, 109836. [Google Scholar] [CrossRef]
- SolarPower Europe and LUT University. 100% Renewable Europe: How to Make Europe’s Energy System Climate-Neutral Before 2050; SolarPower Europe: Brussels, Belgium, 2020. [Google Scholar]
- Zhang, Y.; Ren, J.; Pu, Y.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Lisowska, M.M.; Saretta, E.; Bonomo, P.; Frontini, F. A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale. Energies 2019, 12, 3554. [Google Scholar] [CrossRef] [Green Version]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114. [Google Scholar] [CrossRef]
- Pinna, A.; Massidda, L. A Procedure for Complete Census Estimation of Rooftop Photovoltaic Potential in Urban Areas. Smart Cities 2020, 3, 873–893. [Google Scholar] [CrossRef]
- Eurostat, Energy Balances. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 31 August 2020).
- Keiner, D.; Ram, M.; Barbosa, L.D.S.N.S.; Bogdanov, D.; Breyer, C. Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Sol. Energy 2019, 185, 406–423. [Google Scholar] [CrossRef]
- Jäger-Waldau, A.; Adinolfi, G.; Batlle, A.; Braun, M.; Bucher, C.H.; Detollenaere, A.; Frederiksen, K.H.B.; Graditi, G.; Guerrero Lemus, R.; Lindahl, J.; et al. Self-consumption of electricity produced with photovoltaic systems in apartment buildings—Update of the situation in various IEA PVPS countries. In Proceedings of the IEEE PVSC-47, Virtual Meeting, 15 June–21 August 2020. [Google Scholar]
- Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, 156/75.
- Alves Dias, P.; Kanellopoulos, K.; Medarac, H.; Kapetaki, Z.; Miranda-Barbosa, E.; Shortall, R.; Czako, V.; Telsnig, T.; Vazquez-Hernandez, C.; Lacal Arántegui, R.; et al. EU Coal Regions: Opportunities and Challenges Ahead; Publication Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Solar Energy Industries Association (SEIA). U.S. Solar Market Insight Report—2018 Year in Review; Solar Energy Industries Association (SEIA): Washington, DC, USA, 2019. [Google Scholar]
- Fragkos, P.; Paroussos, L. Employment creation in EU related to renewables expansion. Appl. Energy 2018, 230, 935–945. [Google Scholar] [CrossRef]
- Szabó, S.; Bódis, K.; Kougias, I.; Moner-Girona, M.; Jäger-Waldau, A.; Barton, G.; Szabó, L. A methodology for maximizing the benefits of solar landfills on closed sites. Renew. Sustain. Energy Rev. 2017, 76, 1291–1300. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Taylor, N.; Jäger-Waldau, A. Solar photovoltaic electricity generation: A lifeline for the european coal regions in transition. Sustainability 2019, 11, 3703. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Regulation Establishing the Just Transition Fund; COM (2020) 22 Final, 2020/0006 (COD); European Parliament and the Council: Brussels, Belgium, 2020. [Google Scholar]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- APV-RESOLA. Available online: https://www.agrophotovoltaik.de/english/research-project-apv-resola/ (accessed on 27 August 2020).
- Defaix, P.R.; van Sark, W.G.J.H.M.; Worrell, E.; de Visser, E. Technical potential for photovoltaics on buildings in the EU-27. Sol. Energy 2012, 86, 2644–2653. [Google Scholar] [CrossRef] [Green Version]
- El Gammal, A.; Mueller, D.; Buerkstuemmer, H.; Vignal, R.; Macé, P. Technical Evaluation of BIPV Power Generation Potential in EU-28. In Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, 21–26 June 2016. [Google Scholar] [CrossRef]
- Kougias, I.; Bódis, K.; Jäger-Waldau, A.; Monforti-Ferrario, F.; Szabõ, S. Exploiting existing dams for solar PV system installations. Prog. Photovolt. Res. Appl. 2016, 24, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Gaikwad, O.D.; Deshpande, U.L. Evaporation control using floating pv system and canal roof top solar system. IRJET 2017, 4, 214–216. [Google Scholar]
- Kougias, I.; Bódis, B.; Jäger-Waldau, A.; Moner-Girona, M.; Monforti-Ferrario, F.; Ossenbrink, H.; Szabó, S. The potential of water infrastructure to accommodate solar pv systems in mediterranean islands. Sol. Energy 2016, 136, 174–182. [Google Scholar] [CrossRef]
- Neumann, H.-M.; Schär, D.; Baumgartner, F. The potential of photovoltaic carports to cover the energy demand of road passenger transport. Prog. Photovolt. Res. Appl. 2012, 20, 639–649. [Google Scholar] [CrossRef]
- Krishnan, R.; Haselhuhn, A.; Pearce, J.M. Technical solar photovoltaic potential of scaled parking lot canopies: A case study of walmart USA. J. Innov. Sustain. RISUS 2017, 8, 104–125. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, T.; Vontobel, T.; Clavadetscher, L. 15 Years of Practical Experience in Development and Improvement of Bifacial Photovoltaic Noise Barriers along Highways and Railway Lines in Switzerland. In Proceedings of the 27th European PV Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012. [Google Scholar] [CrossRef]
- Faturrochman, G.J.; de Jong, M.M.; Santbergen, R.; Folkerts, W.; Zeman, M.; Smets, A.H.M. Maximizing annual yield of bifacial photovoltaic noise barriers. Solar Energy 2018, 162, 300–305. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jäger-Waldau, A. The Untapped Area Potential for Photovoltaic Power in the European Union. Clean Technol. 2020, 2, 440-446. https://doi.org/10.3390/cleantechnol2040027
Jäger-Waldau A. The Untapped Area Potential for Photovoltaic Power in the European Union. Clean Technologies. 2020; 2(4):440-446. https://doi.org/10.3390/cleantechnol2040027
Chicago/Turabian StyleJäger-Waldau, Arnulf. 2020. "The Untapped Area Potential for Photovoltaic Power in the European Union" Clean Technologies 2, no. 4: 440-446. https://doi.org/10.3390/cleantechnol2040027
APA StyleJäger-Waldau, A. (2020). The Untapped Area Potential for Photovoltaic Power in the European Union. Clean Technologies, 2(4), 440-446. https://doi.org/10.3390/cleantechnol2040027